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Abstract: Most of the research that analyses password security has been developed targeting English-speaking users. In
this work, we present a framework for password segmentation, semantic classification, and clustering, in a
multilingual context. This research uses natural language processing, statistical and deep learning techniques
to obtain and leverage semantic patterns for password definition. Using the methods proposed in this work
in password-guessing models produce over a 10% increase with respect to state-of-the-art methods (with a
guessing space limited to 500 million predictions) on a dataset of leaked credentials.

1 INTRODUCTION

Passwords have been used since ancient times as a
tool in military, commerce, and private life. To date,
they remain the primary authentication method de-
spite their known flaws which include human’s diffi-
culty for remembering complex patterns, user engage-
ment, storage and encryption and susceptibility to at-
tacks (Morris and Thompson, 1979). They are not
likely to be replaced soon as alternatives, such as bio-
metric or device authentication and trust scores, are
still not feasible for massive use. Even though pass-
words have been used for a long time in networked
systems, there seems to be little understanding of their
composition. The patterns people use to create them
are very important to generate adequate security poli-
cies, assess security metrics, and suggest best-practice
modifications to users (Weir et al., 2009). Currently,
the community’s understanding of password struc-
tures is limited to superficial patterns and a deeper un-
derstanding is key to address their security challenges.

In this work, we analyse these issues. Using
SAP’s SWAM tool, we collected a dataset com-
posed of publicly available leaks from different in-
ternet services which contain information about users
from several countries. We provide insights into the
most relevant patterns that users display when cre-
ating passwords and highlight their dependencies to
the language of the subject or the source of the leak.
Also, to further analyze the presence of certain key
categories in the passwords, we created a language-
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dependent system that labels the category of a word
(based on a set of dictionaries, a lexical database and
semantic categories found through word embeddings
created using unsupervised learning). Additionally,
we propose a Probabilistic Context Free Grammar
(PCFG) model that leverages these language and cul-
tural dependent labels to produce password guessing
attempts. We compare the results to those from avail-
able password strength meters, such as Dropbox’s
zxcvbn (Wheeler, 2016).

To this end, the research objectives of this work
are: First, to analyze the language and source-
dependent characteristics of password composition in
our database. We then construct a pipeline to generate
semantic categories relevant to the password sources
using specialized lists, lexical tools and unsupervised
word embeddings in a multilingual context. Finally,
we assess the impact of using semantic categories
in password cracking attempts with a PCFG model
and compare these results with available password
strength meters.

2 RELATED WORK

Password choice is largely dependent on users’ cul-
tural background, such as their language and origin
(Maoneke et al., 2018) (Wang et al., 2019) (Mori
et al., 2019). Most of the body of research in pass-
word analysis has been devoted to predominantly
English-speaking sources, although recent attention
has been given to other languages (Wang et al., 2019)
(Mori et al., 2019) (Maoneke et al., 2018). Most work
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in the field focuses on the presence of numeric, al-
phabetic, or special characters in the passwords but
some works have begun to use dictionaries (Wang
et al., 2019), or lexical databases (Veras et al., 2014)
to generate semantic categories. Still, work remains
to be done to generalize these categories to out-of-
vocabulary words and to apply these concepts in a
multilingual context.

While certain works provide insights into the rela-
tionship between password safety and the user’s na-
tive language (Wang et al., 2019) (Maoneke et al.,
2018), there is currently no consensus on how to mea-
sure password strength. Most assessments use word
entropy or the number letters, digits and symbols but
these patterns have proven to be predictable (Golla
and Dürmuth, 2018) (Wheeler, 2016) . Other tools,
like Dropbox’s zxcvb (Wheeler, 2016), provide alter-
native measurements based on a series of heuristics
that simulate the number of tries required to crack a
password. It also provides feedback on password al-
terations to improve its security. Other approaches in-
clude using predefined dictionaries, password black-
lists, or assessments such as Markov models (Ma
et al., 2014) and Probabilistic Context Free Grammars
(PCFGs) (Weir et al., 2009). These last two require
significant computational resources and are state-of-
the-art methods for password cracking/guessing (we
refer to guessing as trawling guessing). Some works
involve deep learning techniques which require more
training data and are usually less insightful about the
patterns that produce weak passwords(Hitaj et al.,
2017)(Melicher et al., 2016). Nonetheless, (Hranický
et al., 2020) presented an online method for character-
level vulnerability analysis for passwords, thanks to a
data-driven approach based on PCFGs and deep learn-
ing. On the other hand, PCFGs provide a framework
for targeted attacks (Wang et al., 2016) which signi-
fies a security risk in case of leaked credentials.

In the remainder of this paper, we will describe
our contributions to password security assessment by
adapting statistical and deep learning methods.

3 DATASET

A series of leaked credentials were obtained using
SAP’s SWAM platform, a cyber threat monitoring
tool which collects samples from several sources
and serves for security research purposes. We col-
lected over 600.000 samples, coming from 17 unique
sources, including: Amazon, Crunchyroll, Ebay,
Facebook, Fornite, Gamming site, Hulu, McDonads,
Minecraft, Netflix, Spotify, NordVPN, and Wish.com
Likewise, the dataset contains users from 164 differ-

ent countries. Nonetheless, most of the data did not
have any metadata (e.g. leak source, user informa-
tion). We infer the language of the password either
through metadata provided in the leak (e.g. coun-
try of origin of the account) or through the suffix of
the email linked to the account. We exclude emails
with suffixes like “.com”, “.net”, or “.edu”. We focus
our study in three main European languages (English,
French and Portuguese), which amount to 120.000
samples and we contrast the password characteristics
depending on their origin.

Given that these leaks contain personal informa-
tion about the users, for security and ethical reasons,
this dataset cannot be made publicly available for the
moment.

4 SEMANTIC CATEGORY
GENERATION

In this work, we exploit semantic structures in
passwords to aid cracking systems generate better
guesses. In this section, we present the different tech-
niques we used to obtain insights of the main pass-
words patterns chosen by users. We start by intro-
ducing password base structures obtained by statisti-
cal analysis. We then present a series of created and
mined specialized lists that were deemed relevant for
this problem. Next, we explore the use of traditional
NLP tools, such as lexical dictionaries, and more re-
cent techniques, such as word embeddings. It should
be noted that these processes are language dependent;
one needs to have a prior of what distribution to use,
which we have obtained from the dataset’s metadata.

4.1 Password Base Structures

Most of the related works in literature find words in
passwords using a naı̈ve strategy in which the vocab-
ulary of the text is found by separating the letters, dig-
its and special characters, e.g. “charles.1994” would
have “L6 S1 D4” as base structures. Next, the letter
sequence, interpreted as a word, is compared to a pre-
defined dictionary. However, this approach is unable
to properly account for multiple words in a sequence,
e.g. “goodpassword.1994”. We propose a method to
optimize the segmentation of a password by includ-
ing into our vocabulary all the words inside the letter
strings in a password.

In the context of password cracking, (Veras et al.,
2014) use a set of English corpora as the ground-truth
of the language word distribution to then optimize the
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coverage of the n-grams1, according to its frequency
information. We follow a similar approach in a multi-
language context, selecting the n-grams that maxi-
mizes the likelihood of the partition, taking as ground-
truth the Zipf’s law distribution of a given language.

Zipf’s law (Zipf, 1949) is an empirical formula-
tion which uses a power law distribution to model the
rank of a word in a language. This law implies that the
most frequent word in language will appear roughly
twice more than the second most common, and trice
the third most common, until a given threshold in
which the law breaks for uncommon words (given
that the harmonic series diverges). The frequency of
a word is inversely proportional to its statistical rank
r:

P =
1

r.ln(1.78R)
(1)

Where r is the rank of a word, and R the size of
the vocabulary. It is largely agreed this is a good em-
pirical approximation for languages (Yu et al., 2018)
(Thurner et al., 2014). In our approach, we use it to
model the best partition of a given text. We use the
data from the Python library word f req (Speer et al.,
2018) as ground-truth on our experiments. This mul-
tilingual corpus contains data from sources such as
Wikipedia, Twitter, Books, and Movies, which seem
to provide a good basis to model the true distribution
of a language. We perform analysis in the languages
with the largest number of samples in our data and
word f req.

Assuming that the words are independently dis-
tributed, and modeling the language with a Zipf’s
Law before optimizing the segmentation of the words,
we develop an algorithm to obtain a more complete
representation of vocabulary in the dataset. First, we
separate the string into basic base structures (letters,
symbols, and digits). In each of the alphabetic sec-
tions, we apply a dynamic programming algorithm
that outputs the best partition of the array, according
to the Zipf distribution of that array. The most likely
sentence is the one that maximizes the product of the
probabilities of each candidate word, after evaluating
all the possible partitions. We base our method on
(Generic Human, 2012), where the logarithm of the
inverse of the probabilities is minimized. There can
be some ambiguity in the segmentation, which will
favor the most common words. The independence as-
sumption limits the capacity of the algorithm to model
languages in a more general manner, but it is an ap-
proximation that correctly enriches our vocabulary.

1N-grams are subdivisions of size N in a text, with N be-
ing the number of characters in the section. For instance, the
N-grams of the word “Password”, with N=4, are: “pass”,
“assw”, “sswo”, “swor”, “word”

This approach is generalizable to multiple lan-
guages, which enables us to analyze sources that pre-
vious studies have not explored. In the examples of
Table 1, the segmentation for a relatively long “pass-
word” with multiple words, in different languages,
can be properly split into its most likely components,
if one has the right prior language.

4.2 Specialized Lists

Like (Veras et al., 2014) we use a set of special-
ized lists in order to classify some of the words in
our corpus. We extend some of the categories they
use, for a more extensive categorization, using a mul-
tilingual approach. We collect a comprehensive set
of lists specific for each language in our corpus (En-
glish, French, Portuguese) either through governmen-
tal sources, interest-specific online sources or through
the authors’ personal experience. In our experiments,
the words detected after the segmentation step are first
fed to a program that detects Keyboard walks (e.g.
qwerty, azerty, asdfg), long sequence of repeating n-
grams (e.g. lalala, qqqq, asdasd) and specific numeric
constructions (e.g. date formats with years in the
1900-2100 range). If the words are not part of these
categories, they are labelled using the mentioned set
of specialized lists. Some of the collections we used
include language-specific stop words from Python’s
NLT K. Because proper names seem to be a recurring
source of inspiration for passwords, we include lists
with names and terms that could stem from personal
relationships (most common given names for males,
females and pets) as well as affectionate or love terms
(e.g. love, honey, etc), nouns associated to a person
(e.g. man, woman, boy, friend, pal) and noble ranks
and titles (e.g. lord, queen or knight), all in a multi-
lingual context. We cover pop and media culture with
lists including the most popular sports, athletes (ac-
tive and retired), sports teams and celebrities in social
media platforms. We also used the 250 most popular
movies of all time according to IMDB and a list of
superheroes, anime and video games. Finally, a list
of religious and profanity terms as well as a list with
regional information (i.e. names of countries, con-
tinents and cities with over 200.000 inhabitants) was
included. In total, we collect over 17.000 distinct base
structures in our dataset.

Nevertheless, this approach has a limited reach,
as gathering a set of lists to label all the words in the
corpus is unfeasible. Indeed, between 20 and 30%
of the vocabulary is composed of alphabetic strings
with an undefined category. In the following section,
we describe how we use lexical dictionaries and un-
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Table 1: Example segmentations found on different languages.

Input Password Resulting Segmentation Cost
EN Longersentencescanbestudiedtoo Longer sentences can be studied too 49.42
FR Desphrasespluslonguespeuventaussiêtreétudiées Des phrases plus longues peuvent aussi être étudiées 65.58
PT Frasesmaislongastambempodemserestudadas Frases mais longas tambem podem ser estudadas 64.84

supervised NLP techniques to address the remaining
corpus.

4.3 Lexical Dictionaries

Wordnet is a lexical dictionary originally developed
by Princeton (Princeton University, 2010) which
ties together word’s concepts in a graph representa-
tion. This tool labels words’ meaning under struc-
tures called synsets. Synsets are organized into four
classes: verb, adverb, adjective and noun. Then, the
structure of the words would be composed by a name,
a type and a number, therefore having a structure such
as dog.n.01, for the synset corresponding to the first
sense of dog used as a noun. Wordnet groups words
from the same category (e.g. car, automobile, auto
and autocar) and in a hierarchical structure (i.e. from
general to specific concepts). Synsets higher in the
hierarchy with respect to a word are called hyper-
nyms, while hyponyms are the synsets located at a
lower point in the hierarchy. For instance, the synset
dog.n.01 can have the following hierarchical path: en-
tity.n.01, physical entity.n.01, object.n.01 ,whole.n.02
,living thing.n.01, organism.n.01 ,animal.n.01, chor-
date.n.01, vertebrate.n.01, mammal.n.01, placen-
tal.n.01, carnivore.n.01 ,canine.n.02, dog.n.01

Some studies, like (Veras et al., 2014), have used
Part-of-Speech tagging (POS-tagging) techniques to
disambiguate the syntactical purpose of the word.
Nonetheless, we found that POS taggers for the dif-
ferent languages often led to unreliable results. There-
fore, we do a semantic classification for Wordnet by
taking the most common synset of a word without
specifying its POS type.

Following the idea used to develop the specialized
lists in the previous section, we aim to create seman-
tic categories for the labeled words using WordNet.
Nonetheless, it is not trivial to find a representation for
a word that is not too general or specific. The authors
of (Veras et al., 2014), developed a tree-cut model for
the synsets found for the English language. Nonethe-
less, upon manual inspection, we observed that their
resulting synsets were not generalizable enough to
be considered as semantic categories in the context
of this work. We instead perform a clustering of
the words found using Wordnet. We propose to use
the Wu-Palmer (WUP) similarity metric between the
found synsets in Wordnet. The WUP is a normalized
metric determined by the depth of two synsets in the

graph, and the depth of their most specific ancestor
node (Least Common Subsemer). To create the fea-
ture space expressing the synset relations present in
Wordnet, we compute the WUP similarity for every
combination of synset in the corpus. This results in
a nxn similarity matrix that represents the semantical
relations of the words found in WordNet.

4.4 Word Embeddings

Fasttext (Bojanowski et al., 2016) is a framework to
represent word embeddings as an aggregation of their
n-gram level embeddings instead of computing them
from the words itself. Fasttext has pre-trained models
are available online in different languages, including
English, French, and Portuguese. We also explore the
relevance of Bert, a state-of-the-art language model
developed by Google (Devlin et al., 2018). In con-
trast with Fasttext, Bert uses context-dependent em-
beddings. This means that the vector of a word would
be different based on its context, whereas models
such as Fasttext obtain static word embeddings; their
vector representation will be unique, and context-
independent. The use of context-dependent represen-
tations can be a great tool to get a richer understanding
of the function of a word in a text as language can be
ambiguous. For the English language, we make use
of the pre-trained, large version of the model, uncased
with whole word masking. For the French language,
we use the model developed by Inria and Facebook
called Camembert (Martin et al., 2020).

4.5 Semantic Categories from Lexical
Dictionaries and Word Embeddings

Figure 1 shows the two-dimensional projection after
using T-SNE manifold reduction on the word feature
spaces obtained from the embedding models (Fasttext
and Bert) and the WUP similarity between synsets.
Clusters obtained from the lexical similarity feature
space (from Wordnet) appear to have larger intra-
cluster similarity and inter-cluster separation, with
less overlap and noise.

When using a hierarchical clustering model op-
timized for the Silhouette coefficient (Rousseeuw,
1987) and the Calinski Harabasz (CH) (Caliński and
JA, 1974) index metrics (both specific to the unsuper-
vised learning context), we obtain the results in Table
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Figure 1: 2-dimensional T-SNE of the Bert, WordNet and Fasttext feature spaces.

Table 2: Metrics for the found clusters of each feature space.

# of Silhouette CH
Clusters Score Index

English
WordNet 15 0.34 4585.77
FastText 10 -0.04 161.84
Bert 9 0.04 299.35
French
WordNet 18 0.37 2245.03
FastText 10 -0.05 75.24
Camembert 11 -0.02 121.49
Portuguese
WordNet 18 0.41 1703.94
FastText 11 -0.07 51.72

2. Here it is clear that the quality of the clusters seems
to be superior in the WordNet space.

Nonetheless, WordNet’s drawback is its relatively
low coverage for the vocabulary in the dataset. The
vocabulary covered by WordNet on the unlabeled data
was of 62.19% for English, 51.53% in Portuguese,
and 49.79% in French. This poses additional chal-
lenges, as the rest of the vocabulary must be labeled
in a naı̈ve manner. To account for this limitation, we
grouped together strings based on their length to ad-
dress this issue.

From a more empirical point of view, we observe
that the categories obtained using the WordNet space
are more likely to be grouped in semantically similar
categories. Examples of the clusters found in French
include: animals (viper, ape, chat, poussin, chien,. . . ),
substances (whisky, sand, vodka, fur,. . . ) and regions
(Togo, Cracovie, Acadie, Versailles, . . . ).

Clusters found using Fasttext and Bert embed-
dings appear to follow morphological similarities by
clustering abbreviations, words in foreign languages,
and small affectionate terms: affectionate nouns
(lolo, coucou, titi, juju, vero, fifi, nath, jojo, caro,
zouzou,. . . ), abbreviations/slang (ouch, lol, janv, nov,
tte, km, jr. . . ), words in foreign language- English
(Cat, One, Top, Fire, Big, Red, Did, And, Funny,
Killer,. . . ), words in foreign language- Germanic
(der, das sie, wie, wenn, wij, vor, von, ook,. . . )

In the following section we will assess the influ-
ence of these clusters, along with the previously con-
structed specialized lists, for password security.

5 ASSESSING PASSWORD
SECURITY

Inspired by (Weir et al., 2009), we use a Probabilis-
tic Context Free Grammar (PCFG) model to learn the
syntactic and semantic characteristics of a password
vocabulary exploiting the previously defined seman-
tic categories. Intuitively, the use of semantic cate-
gories reduces the search space the guesser needs to
explore to find the most probable passwords. PCFGs
produce competitive results while using a relatively
small number of samples and have shown to benefit
from semantic categories. These properties are not
found in similar deep learning models, which moti-
vates the use of this statistical learning method. A
generic PCFG is be composed of:
• A set of terminals ∑ formed by the vocabulary of

the Corpus: ∑ = w1,w2, ...,wv

• A set of non-terminals, or variables V , which are
the syntactic categories of the grammar.

• A star symbol N1

• A set of rules, Ni → ζ j, where ζ j is a sequence
of terminals or non-terminals. And follows:
∑ j P(Ni→ ζi) = 1,∀i
In the context of password security, a PCFG

first splits the elements in a string into similar
groups. For instance, under the first implementa-
tion of this method (Weir et al., 2009) the password
“seville!1994” will be divided into the letter segment
L “seville” of length 7, a symbol segment D “!” of
length 1, and a digit segment D “1994” of length 4.
Providing the base structure ζi = L7,S1,D4, which
will have a probability:

P(ζi) =
Occurences o f ζi

Occurences o f all base structures ζn
(2)
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Then the probability of a guess will be equal to the
product of the production (non-terminal base struc-
tures and terminals). Thus, for this example the prob-
ability of “seville!1994”, which we will denote as
P(ζa) is:

P(ζa) = P(ζi)P(wLx)P(wSy)P(wDz) (3)

P(ζa) = P(L7,S1,D4)P(L7→ ”seville”)P(S1→ ”!”)P(D4→ ”1994”)
(4)

With (wLx)∪ (wSy)∪ (wDz) = ζi
In our approach, instead of assuming the naı̈ve let-

ter, symbol and digit, we use the semantic categories
obtained with specialized lists and with unsupervised
learning methods, as we described in the previous sec-
tion. These classes served to build the base structures
and compute the terminal probabilities. Moreover,
there were some practical considerations and assump-
tions we considered, some proper of the model, others
designed.
Individual Transitions Do Not Impact Each Other.
By using a PCFG, one assumes the probabilities in the
base structures are independent. In reality, there can
be dependencies between the terminals, but this sim-
plification has proven to be effective while keeping
the complexity of the model and the computational
ressources necessary low.
The Transitions of the Grammar Are Non-
ambiguous. Every terminal value will be associ-
ated with only one rule. Sometimes repeated guessed
are produced because of different evaluations of the
two base structures might coincide in its final string.
Nonetheless, this accounts for less of 0.5% of the total
in our experiments.
Recursion Is Not Allowed. The graph will follow
a hierarchical structure with no jumps back (which
are allowed in PCFGs). For instance, rulea →
ruleb;ruleb→ rulea is not allowed.
Rules Are Expressed in Lowercase. Naı̈ve im-
plementations of PCFG interpret “Cat”, “cat”, and
“CAT” as different terminals. We group terminal val-
ues according to their lower-case version as mangling
rules can be trivially added in later stages (Veras et al.,
2014).

In order to keep the number of guesses (as well
as computational times and memory resources) to a
minimum, we opted for an algorithm that parses the
generated tree using an efficient strategy, as opposed
to producing all possible combinations in each base
structure. To generate guesses, we replicate the “next”
algorithm developed by Weir (Weir et al., 2009). It
uses priority queues to progressively add candidate
guesses and achieves the goals of avoiding duplicates
by parsing the tree once, generating parses in prob-
ability order, and minimizing time and memory re-

Table 3: Percentage of the passwords guessed by the mod-
els.

PCFG English French Portuguese
Fasttext-clusters 48.47% 41.07% 43.29%
Wordnet-clusters 48.14% 39.85% 43.07%
Bert-based 45.53% 40.97% -

quirements. This results in lopsided trees that avoid
duplicate nodes.

Despite these optimizations, the process is very
resource-intensive: using PCFGs to generate 500 mil-
lion guesses requires around 30 hours of computa-
tions, outputs a guessing file of 5 GBs, and requires to
have in memory an increasingly large priority queue
(approximately 60 million samples). Further alterna-
tives to optimize this algorithm (e.g. implementing it
in a low-level programming language) are out of the
scope of this work.

6 RESULTS AND DISCUSSION

We use the categories found in the previous section
as non-terminal rules of the model to evaluate their
impact and compare it to the naı̈ve implementation of
PCFG (taking only character level information about
the passwords), and Weir’s publicly available tool
(an improved version of his original PCFG proposal)
(Weir, 2017). Moreover, we conduct these experi-
ments on the English, Portuguese, and French sources
we labeled using WordNet, Fasttext, and Bert-like
models. We perform a stratified train-test split of 80-
20% by selecting for testing, similarly ranked pass-
words than in the training set.

In Table 3, the performance of the models trained
by our method can be observed. It is seen how most
of the models have a guessing rate of over 40% of
the test data. Table 4 summarizes the improvements
found for the Fasttext Embeddings models, which is
common across the worked languages, where it is
clear that our proposed semantic categories found us-
ing specialized lists and unsupervised learning repre-
sent an improvement over other comparable methods.

The available data for English was roughly twice
that of French and Portuguese, which is partially
responsible for the higher performances achieved.
Nonetheless, it is remarkable that the multilingual
pipeline to address the different semantic categories
have produced a valid PCFG model, that outperforms
Weir’s tool, and classic PCFGs.

In Figure 2, we can observe how the different
models behave in time, for the English language. Por-
tuguese and French have similar behaviors. At the
point of the final evaluation (500 million guesses),

Sociocultural Influences for Password Definition: An AI-based Study

547



Table 4: Summary of the Improvements of the Fasttext
PCFG over the other tested tools.

Language Model Improvement (%)
English original PCFG 34.03
English Weir’s tool 10.53
French original PCFG 30.08
French Weir’s tool 2.3
Portuguese original PCFG 71.49
Portuguese Weir’s tool 10.11

Figure 2: Performance of the tested models for the English
language.

the proposed models do not seem to reach the satura-
tion point. Nonetheless, continuing with the guesses
until a higher dimensional space was not possible
due to time and memory constraints. It can also be
seen in Figure 2 how the use of simple synsets as
semantic categories produce results that also outper-
form the other PCFG tools. Grouping these clusters
into optimized semantic categories proves to be bene-
ficial for the overall performance of the model. How-
ever, the simpler PCFG version has a performance
comparable to those of the semantic guesser, up to
1.000.000 guesses. This could indicate their validity
for a quicker, less resource-intensive cracking session,
where the hacker is satisfied with a lower guessing ac-
curacy.

It is interesting to compare these findings with
Dropbox’s zxcvbn tool for measuring password
strength. We found that the tool was “pessimistic”, as
it indicated that the number of guesses that it would
take a model to guess a password was inferior to
what we found in our experiments. The number of
times it overestimated the strength of the password
was smaller than the number of times that it under-
estimated it. Excluding the passwords that were not
guessed by our model, we found that the number of
attempts required to crack a password was smaller
37.48% for English, 18.84% for French, and 30.05%
for Portuguese. These assessments might be more ac-
curate under a context where there is more vocabulary
to learn from. In Table 5, it can be observed that the
number of tries required by our algorithm and Drop-

Table 5: Correlation between the log10 of the required
guesses for the passwords in French, English and Por-
tuguese, and the log10 estimated by Dropbox’s zxcvbn tool.

Model English French Portuguese
Fasttext 0.68 0.48 0.22
WordNet 0.67 0.46 0.22
Weir 0.57 0.32 0.3
Naive PCFG 0.66 0.6 0.49

box’s tool are correlated.

7 CONCLUSIONS

We performed an empirical analysis over a set of dif-
ferent languages and sources that helps characterize
passwords. We analyzed some of the main structural
and semantic patterns proper of the origin of the leak.
Factors such as user language and interests, as implied
from the sources of the leaks (e.g. gaming or anime
sites), influence the choice of passwords. In our ex-
periments, we reaffirm the remarks in (Veras et al.,
2014) that the usage of semantic categories improves
password guessing algorithms.

We successfully propose a new method for seman-
tic classification in different languages that provide
insights into the intricacies of password composition,
while highlighting some of the challenges of obtain-
ing these categories. We extend PCFG structures to
include syntactical and semantical categories not used
before (like pop culture semantical categories) as well
as structures derived from lexical tools (Wordnet) and
unsupervised NLP techniques resulting in word em-
beddings. Our new method for password cracking
outperforms existing architectures and could serve re-
searchers and forensic experts by using it for proac-
tive password checking and password strength esti-
mation. Nonetheless, we would suggest training these
models on a bigger dataset to leverage the extended
vocabulary for a more precise assessment of the secu-
rity of a password.

We show that with our architecture, we can lever-
age a relatively small number of samples to out-
perform other comparable tools. Moreover, the qual-
ity of the feature space using the Silhouette score
and the Calinski Harabasz Index, seem to be outper-
formed by the fact that vocabulary can be fully ex-
ploited in a feature space. This could explain the
difference in performance between the WordNet and
the embeddings feature space. Even though, WordNet
and the WUP metric output a space of characteristics
that is more suitable for clustering, it does not account
for all the words in the vocabulary, which probably
accounts for the decline in performance (one has to
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label the rest of the data with a more naı̈ve approach).
Nonetheless, the difference is very small and shows
improvements concerning the other methods tested.

In future works, we suggest exploring the secu-
rity implications of integrating personal information
into the PCFG models. As we have highlighted in
this work, language and culture are shapers of pass-
word structures. Thus, websites, and other stakehold-
ers that use passwords as an authentication method,
should consider the cultural patterns proper of their
users.
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