
Characterization of Software Design and Collaborative Modeling in
Open Source Projects

Khandoker Rahad a, Omar Badreddin b and Sayed Mohsin Reza c

Computer Science, University of Texas at El Paso, El Paso, Texas, U.S.A.

Keywords: UML, UML Usages, Software Design, Software Quality, Software Maintenance, Mining Software
Repositories.

Abstract: Software design is fundamental to developing high-quality, sustainable, maintainable software. Design lan-
guages, such as UML, have become the defacto standard in software design, but their infiltration in the main-
stream practices remains vague. Recent studies suggest significant and increasing uptake in mainstream and
open source spheres. Mining repositories and the software modeling artifacts often underpin the findings of
these studies and focus on counting the instances of modeling artifacts as an indicator for adoption. This study
aims to characterize this uptake in greater depth by focusing on analyzing the instances of models in open
source projects. The goal is to uncover the profiles of developers who tend to create modeling artifacts, and
those developers who maintain them throughout the project life cycle and to uncover the timelines of model
creation and manipulation in reference to project evolution. This study sheds light on the nature of model-
based collaboration and interactions and characterizes the role of model-based artifacts well beyond mining
their presence in open source repositories. The study finds that, despite the nominal increase in the presence
of model-based artifacts, these artifacts are rarely maintained and are typically created by a small and unique
set of practitioners. Models are often created early in the project life cycle and do not play any significant role
in the collaborative development activities of the subject projects. Life span of these model files is relatively
shorter than the code file life span. Unexpectedly, models tend to be more frequently updated and maintained
when the project has a relatively fewer number of models.

1 INTRODUCTION

Software systems and software-intensive systems
continue their exponential growth in size and com-
plexity. Such systems require enhanced levels of col-
laborations and collective comprehensibility and de-
signs (Podgorelec and Heričko, 2007). Continuous
software design and modeling throughout the project
life cycle are proven to enhance collaboration, main-
tainability, and the sustainability of these systems.

Recent research that investigates the practices of
software design and the adoption of several design
languages tend to suggest a consistent increase in the
adoption of design and modeling practices. These
studies tend to rely on two primary sources of data;
mining open source repositories and empirical inves-
tigations of the practitioners. Despite the advances
in software repository mining tools and techniques,
these studies tend to rely on nominal numbers of mod-

a https://orcid.org/0000-0001-7481-8954
b https://orcid.org/0000-0002-8851-4131
c https://orcid.org/0000-0003-3379-6319

eling artifacts presence as an indicator for the level
of adoption of design practices. The focus on count-
ing the number of modeling artifacts in repositories
leaves much more uncovered, such as the profiles
of those engineers who create the models, when are
those models created, and how often are these models
are maintained.

The goal of this study is to focus on relatively
smaller instances of repositories, and investigate their
models in greater depth. The investigations focus on
uncovering the specifics of those models, their cre-
ators and maintainers, their lifespans in reference to
the project overall evolution, and the frequency with
which these models are updated in reference to other
repository artifacts.

In this study, we identify seventeen (17) soft-
ware repositories selected from an extensive and cus-
tomized query from GitHub. The query identifies
most active repositories with significant presence of
design artifacts. From these repositories, we extract
every software design artifact and collect extensive
contextual data sets that include, the profile of engi-

254
Rahad, K., Badreddin, O. and Reza, S.
Characterization of Software Design and Collaborative Modeling in Open Source Projects.
DOI: 10.5220/0010266802540261
In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2021), pages 254-261
ISBN: 978-989-758-487-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



neers who created and maintained those models, the
timelines of model creations and maintenance, the
frequency of their updates in reference to other repos-
itory artifacts, among other.

2 RELATED WORK

Studies on software modeling uses are conducted by
surveys and questionnaires (Torchiano et al., 2013).
However, very few studies are focused on the usages
of models in open source (Ho-Quang et al., 2017).

Software modeling practices are investigated by a
few industries. Gorschek et al. focused on a sample
population, who are programmers, partially working
in the industry, and open source systems (Gorschek
et al., 2014). The results show that their sample de-
sign models are not used extensively. However, UML
models are used mainly for communication purposes.
Kobryn et al. reported that UML has been widely
accepted throughout the software industry (Kobryn,
2002).

Often, research would identify a specific project
or organization for in-depth analysis of the practices.
These studies often focus on one or a few cases for in-
vestigations. There are some works addressing small
numbers of case studies of modeling in open source
projects. Yatani et al. (Yatani et al., 2009) reported on
the model usage in Ubuntu development by interview-
ing 9 contributors. The authors found that models are
not actively used and updated.

In open source software development, code re-
mains the key development artifacts (Badreddin et al.,
2013). Researchers know very little about the use of
UML models in open source. However, some soft-
ware engineering researchers performed some efforts
to identify UML models and their usages. Nonethe-
less, the data set is very small and not up to date. Re-
MoDD (France et al., 2006) is a repository for UML
models, but their repository collection is not exten-
sive. Hebig et al. (Hebig et al., 2016) reported on
a study that investigates how UML models are used.
The results of the study suggest that UML models are
generally used at the beginning of the project start.

3 STUDY DESIGN

In this study, we investigate 17 repositories listed in
Table 1 that uses and practices UML modeling in
open source. The goal of the study is to understand
the uses of UML modeling in open source. We used a
tool ModelMine (Reza et al., 2020) to identify UML

model and their repositories. There are some repos-
itory selection criteria that we used to identify UML
models such as programming languages, number of
commits, number of contributors, and popularity in
GitHub. After Identifying models from these selected
repositories we analyzed the UML models. We iden-
tified the total commits in each repository. Commits
are analyzed to understand the updates that are made
on the UML files. The raw data is published in (Khan-
doker Rahad, 2020). This study answers the follow-
ing research questions.
RQ1. How Prevalent Are Model-based Artifacts in
Open Source Projects?
To answer this research question, we investigate the
UML based repository in open source. We use the
ModelMine tool that has a feature to retrieve repos-
itory from open source using different file extension
and number of commits and the project update date
and other criteria. This research question investi-
gates how often UML models are used in open source
repositories.
RQ2. How Are UML Models Maintained in Open
Source Projects?
To answer this research question, we investigate UML
model commits. Model commits are provided with
updates that are performed by the contributors. This
information also provides information on the model
updates in relation to the project update. This will
give us information on how frequently models are
used and get updated over time.
RQ3.What Are the Profiles of Those Engineers
Who Create, Share, and Maintain Model Arti-
facts?
To answer this research question, we obtained the
repository contributor’s information. We also collect
profile information including the practitioners’ activ-
ities, contributions, and experiences in open source
projects. We identify the total number of model con-
tributors in each repository.
RQ4. What Is the Lifespan of Model-based Arti-
facts in Relation to the Project Lifecycle?
To investigate how UML models are maintained by
the repository contributors, we mine model and repos-
itory commits. We compare the total number of
model commits with the total number of repositories
commits.

3.1 Data Collection Methodology

This section presents the data collection of this study.
We use a mining tool to collect UML based repos-
itories from open source platforms. There are sev-
eral open source platforms that contain UML based
repository. GitHub is one of the popular open sources

Characterization of Software Design and Collaborative Modeling in Open Source Projects

255



Table 1: Repository Information.
Repo # Name Contributors Commits Language GitHub URL

1 contrib 7 209 Java https://github.com/europeana/contrib
2 SnakeInTheDark 6 416 Java https://github.com/MrStrings/SnakeInTheDark
3 nanoengineer 6 11688 Python https://github.com/kanzure/nanoengineer
4 luciddb 7 5107 Java https://github.com/LucidDB/luciddb
5 MobSens 7 776 Java https://github.com/Institute-Web-Science-and-Technologies/MobSens
6 lambda-alligatoren 6 1786 Java https://github.com/vincent23/lambda-alligatoren
7 mars city 21 1304 C++ https://github.com/mars-planet/mars city
8 arcemu 11 4307 C++ https://github.com/arcemu/arcemu
9 pse allocation 6 1418 Java https://github.com/EmilDohse/pse allocation
10 h5cpp 12 1317 C++ https://github.com/ess-dmsc/h5cpp
11 netty 11 2247 Java https://github.com/ChenLuigi/netty
12 hotel-california 6 433 Java https://github.com/verath/hotel-california
13 dataDictionary 8 1316 C++ https://github.com/openETCS/dataDictionary
14 TDA593-18 7 312 Java https://github.com/Jaxing/TDA593-18
15 model-driven-software-development 7 478 Java https://github.com/Centril/model-driven-software-development
16 FinalPortalURL 8 254 Java https://github.com/ahuitz/FinalPortalURL
17 moodles 9 222 Java https://github.com/hedmanw/moodles

repositories. However, there are deficiencies identi-
fying UML models in GitHub because GitHub min-
ing is a nontrivial task. Nonetheless, there are few
publicly available repositories that list UML projects.
However, this collection is relatively small and not up
to date. In this study, we use a model mining tool
named ModelMine (Reza et al., 2020) to retrieve the
up to date UML based repositories with recent meta-
data information. The following sections discuss the
mining repositories, identifying UML based reposito-
ries and data extraction of UML files.

3.2 Mining Open Source Repositories

In this section, we present the UML based repository
collection methodology from open source GitHub. To
access the resources from GitHub, we use ModelMine
tool (Reza et al., 2020) which fetches models with fil-
tered criteria. To identify model based repositories
that use UML, we identify 8 filtered variables that
identify well maintained and popular model based
repositories listed in Table 2.

There are two types of artifacts (keywords and
qualifiers). This is because of the tool requirements
for search query construction. It requires at least one
search term as keywords to be included in addition to
that add qualifiers. This artifacts (keywords or qual-
ifiers) allow us to limit our search to specific areas
of open source repositories. For example, minimum
200KB memory size is used to identify non-trivial
projects in Table 2.

We use a .uml file extension in the search and re-
trieve 465 UML based repositories. These reposito-
ries include a minimum of one UML model in the
repository. This is a large number of repositories to
analyze. We use a set of repository selection criteria
shown in fig 1 to make the list short. The criteria are
as follows: minimum 200 commits, 5 contributors,
and primary programming languages of the reposi-
tory must belong to Python, Java or C++. Finally, we

remove duplicate repositories to identify 17 reposito-
ries that has a minimum of one UML modeling. This
exclusion criteria also ensure that we do not include
trivial model based repositories.

3.3 Identification of Potential UML
based Repositories

After the mining process, we identify 17 UML based
repositories. Primarily, the .uml file extension is used
because they are defacto standard (Ozkaya and Erata,
2020). We select .uml file extension to retrieve UML
model files with their repository information. More-
over, all UML files are not actual UML files. There-
fore, we use a manual filtering process to identify ac-
tual UML models to ensure expert opinion on the se-
lection.

This filtering process has been applied after col-
lecting all the UML models. Identifying actual UML
models will be impossible if we do not classify UML
models at the beginning of repository selection.

3.4 UML Metadata Extraction

After identifying 17 repositories that used UML mod-
eling, we found a total number of 886 UML files.
After filtering out the duplicate model files we col-
lected 92 unique model files. To understand the us-
ages of these model files we analyze the commits of
these model files. ModelMine tool is used to retrieve
the commits of those model files. The tool is able to
provide the commits, author information, file creation
date, modification date, etc.

3.5 UML Model File Assessment
Criteria

We conduct analysis on UML model files. We com-
pare code file commits with the average number of
UML model file commits in respective repositories.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

256



Figure 1: Data Collection Flow.

Table 2: Variable Identifying Model Based Repository.
Number Type Variable Name Description

1 Keywords (Required) UML Context Identify repositories that matches given context.
2

Qualifiers (Optional)

Language Identify repositories with given language such as java.
3 Extension Identify repositories with given file extension.
4 Memory size Identify repository which have minimum 200 KB
5 Life Span Identify repositories that have minimum project life span
6 Popularity Identify repositories that have minimum number of stars as popularity index.
7 Commits Number of Commits Identify the total number of commits in a repository
8 Contributors Number of contributors Identify the total number of active contributors in a repository

Commits percentage and average commits are used to
visualize the comparison. Similarly, the life span of
model file is computed. Total number of model file
and model file updates is counted for all seventeen
repositories. Additionally, we assumed software de-
velopment is performed in three development phases
(First phase, Second phase, Third phase). This as-
sumption is made to understand when models are cre-
ated and whether they are maintained after creation.
These three phases are identified by dividing the en-
tire project life into three parts equally.

4 RESULTS

This section presents the results of this study such as
how often models are used in open source, who cre-
ate, contribute, and manage those models. Moreover,
we presented the total number of model file contribu-
tors compared to code file contributors. This section
presents how those models are updated by the contrib-
utors and whether maintained in a timely manner. Fi-
nally, we presented the timeline of model file creation
in reference to the project timeline and time span of
model updates in the software life cycle.

4.1 How Models Are Used in Open
Source

For the analysis, we downloaded 465 non-forked
GitHub repositories with ModelMine tool (Reza et al.,
2020). After filtering out the data for potential UML
files, we retrieved a list of 17 repositories and their
GitHub link. 886 files were classified as UML model
files in 17 repositories, this includes duplicate mod-
els. To filter out unique models files, we performed
the extraction of model related data which are unique.
Unique model files are identified after the data collec-
tion. This filter resulted in 92 unique UML files.

We obtained the dataset from GitHub between Jan
2012 to August/September 2019. All the commits and
repository information lies between this time frame.
The reason for selecting this time span is due to the
fact that our retrieval procedure takes so much time
that context changes. Therefore, for instance, in the
time that goes from the retrieval of information of the
files that are included in a project (August/ 2019) to
the time where the git repositories were downloaded
(November/December 2019), some of them were re-
named, deleted or made private.

In consequence, 92 unique model files are used for
analysis. These files belong to 17 GitHub projects.
Of these 3, include a single UML file, only and 14

Characterization of Software Design and Collaborative Modeling in Open Source Projects

257



projects include between 2 and 9 UML files. We per-
form our analysis in 92 unique model files and their
repositories.

4.2 How Models Are Updated and
Maintained

This research question answers whether models get
updated and if so, how often models get updated. We
computed the model commit in reference to project
commits in fig 2. For example, in repository 17, 8.5%
model commits is performed compared to repository
commits.

Figure 2: UML Model Commits.

Additionally, we computed the total number of
model file updates for those repositories that have
equal or less than 10 model files and those have more
than 10 model file in fig 3. In fig 3, the total number
of model file updates are grouped in eight categories
where X-axis and Y-axis presents the total number
of model file. Our results indicate that many model
files never get updated (fig. 3). The results show
that projects with less than 10 model files are fre-
quently updated than projects containing greater than
10 model files. This result is reflected in Fig 3.

Figure 3: Model File Distribution Per Update.

Fig 2 depicts all that the repositories have lower
number of average model commits than the projects

file commits. This explores the phenomenon that
models are less updated and maintained than code
files. The highest percentage of model commits per-
formed in repository number 12 which is approxi-
mately 12%. However, repository 1,3,4,8,11 have ap-
proximately 0% of model commits compare to repos-
itory commit.

4.3 Who Creates, Contributes, and
Manages Models

This research question investigates model contribu-
tor’s profiling information and the total number of
model contributor in relation to repository contrib-
utor. Table 3 presents model contributors profiling
data in GitHub (Only publicly available data have
been collected). This reveals the model contributor’s
software development experience in GitHub. This
also includes the total number of contributed repos-
itories in GitHub and the total number of contribu-
tions in GitHub. Table 3 data shows that a large num-
ber of model contributors are experienced and have a
minimum number of contributions in GitHub except
for model contributor number 5,6,7 in repository Lu-
cidDb (Repo # 4) which is shown in bold. These three
model contributors have less than one year of soft-
ware development experience and additionally, their
total number of contributions in GitHub is one.

Results also show that very few contributors con-
tribute to the models in fig 4. Fig 4 depicts that the
number of model contributors is always lower than
repository contributors. We measured the average
number of contributors and found that the average
number of model contributors is lower than the repos-
itory contributors. For instance, the average num-
ber of repository contributor is 9 whereas the average
number of model contributors is 4. The average con-
tributor number is measured by simply adding all the
contributors and divided by the total project count.

Figure 4: Number of Model and Repository Contributors.

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

258



Table 3: Model Contributor’s Profiling Information.
Repo # Repo Name Model Contributor Number of Contributed Repos Years of Experience in Github Total Number of Contributions

1 Contrib #1 12 10 1352
#1 9 6 5332 ShakeInTheDark #2 4 6 75
#1 1 10 23 nanoengineer #2 11 10 169
#1 17 9 2127
#2 15 12 1627
#3 1 8 2
#4 37 11 1051
#5 1 0 1
#6 1 0 1

4 LucidDb

#7 1 0 1
#1 6 7 1255 Mobens #2 28 7 1557
#1 19 9 6926 lambda-alligatoren #2 20 8 1434
#1 26 8 5837 mars city #2 68 6 1075
#1 20 11 44988 arcemu #2 6 12 1254
#1 14 7 424
#2 4 4 2099 pse allocation
#3 2 4 233
#1 5 8 421810 h5cpp #2 13 7 5605

11 netty #1 39 15 11031
#1 10 7 868
#2 41 11 3118
#3 8 8 370
#4 6 7 238

12 hotel-california

#5 7 8 365
13 dataDictionary #1 4 8 496

#1 23 6 648
#2 30 6 1605
#3 37 6 243114 TDA593-18

#4 4 6 309
#1 7 7 1091
#2 4 9 562
#3 13 7 5182
#4 2 7 88
#5 2 7 289

15 model-driven-software-development

#6 119 9 13886
#1 15 5 394
#2 8 6 17116 FinalPortalURL
#3 6 5 842
#1 12 7 688
#2 32 7 246917 moodles
#3 35 7 4564

4.4 When Models Are Created and
Updated in Software Life Cycle

The last research question investigates model life cy-
cle in relation to the project life cycle. Fig 5 shows
that 66.3% of models are created and get updated in
the first phase of software development. Only, 24.4%
model files are created and get updated in the second
phase of the development and 9.3% in the third phase.
This reveals an interesting finding that models are in-
troduced at the beginning of the development whereas
at the end very few models are introduced.

Fig 6 shows the life span of the model file in re-
lation to the project life span. We measured the life
span (model and project) by simply identifying the
first creation date and last update date. Results in fig
6 reveal that the average model life span compares to
the project life span is only approximately 15%.

5 ANALYSIS

Considering our initial expectation we found a small
number of model files in open source. 17 selected
repositories contained 886 models. After the filtering
process, we identified 92 unique model files which
is a small number of models compared to code files.
In the following, some interpretations are presented
from this study.

5.1 Models Maintenance

The interpretation is that models are introduced very
early in the development and rarely maintained by
the developers. Several studies support this claim
such as Hebig et al. found that creating/updating of
UML happens most often during a very short phase at
the project start (Hebig et al., 2016). Moreover, Ho-
Quang et al. reported that modeled designs are only
partially followed during implementation (Ho-Quang

Characterization of Software Design and Collaborative Modeling in Open Source Projects

259



Figure 5: Distribution of model files when first introduced
in project life cycle.

Figure 6: Life Span of UML Models.

et al., 2017). Models are just used in designing or
visualizing the system, which could be one of the rea-
sons behind this. Another interpretation is that main-
taining models is an extra work that developers are
not willing to perform because of time constraint.

Fig 3 shows different model file distributions per
edit. This explores that projects with fewer model
files are updated frequently than projects with a
higher number of model files. The reason behind this
could be there is no systematic way to maintain model
files such as if any changes needed to make model
files require to regenerate the model file.

However, introducing models is a positive aspects
on the usages of modeling in open source. This could
be a starting point of the use of models in open source.

5.2 Model Contributors

Results show that model contributors are a subset of
repository contributors. It is also evident that very few
contributors take part in modeling compare to code
file contribution. The interpretation behind this is
contributors who are experienced with modeling are
able to contribute to model creation and updates. Ta-
ble 3 data verifies this claim. However, Gorschek et
al. found a different result that modeling is mostly
done by the novice programmers rather than experi-
enced software engineer (Gorschek et al., 2014).

5.3 Model Life Cycle

Model life cycle refers to the time between model cre-
ation and end. In the analysis, it is found that models
are created a very early stage of developments and get
maintained after that for a short period of time (Fig.
5). However, at the end of development, there is very
little updates evident in the model files. The interpre-
tation is that models are only used for system design-
ing purpose and become obsolete over time. Other
possibilities, such as the fact that the models could
also be used for code generation, and the code sim-
ply do not need to be further adapted. Supporting this
claim Osman et al. reported that the frequency of up-
dating UML models is low (Osman and Chaudron,
2013). Authors found two triggers for updating UML
diagrams: 1) if there are changes in the features of
the system, and 2) if there is a group of newcomers
joining the project.

5.4 Reasons of Model Usages

One of the threats that are remained in this study is
that we do not know the source of the actual usages of
these UML modeling. Additionally, we do not have
sufficient evidence on whether these models are in-
troduced because of designing purpose or introduced
to contribute to the actual development. We plan to
further investigate these phenomena in our future re-
search.

6 THREATS TO VALIDITY

There are internal and external threats to validity in
this study. Internal threats refer to risks within the
study whereas external threats refer threats outside of
the study design.
External Threats. We do not claim that the set of
repositories presented in this paper include all UML
based repository in open source. Though this study
is worth to investigate because the results provide in-
sightful information on UML uses in open source.

There is another bias in this study that is whether
identified UML models are actual UML models. To
mitigate this risk we manually checked the identified
UML files that really contain any UML modeling.

The study is conducted within the context of
GitHub, but not other open source platforms such as
BitBucket, SourceForge. Therefore, the results of this
study can not be generalized to the other platforms.
It is possible that UML is used in a different ration
within projects at other platforms. However, GitHub

MODELSWARD 2021 - 9th International Conference on Model-Driven Engineering and Software Development

260



is one of the popular and most used open source plat-
form (Noten et al., 2017), hence the contribution of
this research is useful for fellow researchers in this
field.
Internal Threats. Internal risks of this study is that
considering UML files as the only UML model based
repository. We used UML files since they are defacto
standard (Ozkaya and Erata, 2020). There are many
other file formats are available that also present UML
modeling.

Risks exist in profiling information for the soft-
ware engineers who participate in software modeling.
It could be the case that the targeted software engi-
neers do not perform modeling frequently and this is
the reason, we find fewer updates on models.

Another risk is that the identified UML models are
created only for teaching or academic purpose for a
short period time. And these models are not repre-
sentative for the models in open source projects. To
mitigate this risk we manually checked the reposito-
ries and confirmed that the selected repositories are
non trivial.

7 CONCLUSION

In this paper, we investigate a sub set of projects that
has UML modeling and the usages of model files in
the open source. Model file commits provide use-
ful information on the updates and maintenance of
the UML models. Additionally, this study investigate
how often contributors update model files. Study re-
sults show that the models are created and maintained
by experienced software engineers.

Further, this study reveals that often UML model
files are created at the very first phase of software
development. Modification or updates are made on
the files mostly at the beginning and in the middle
of software development phase. Study results show
that the model life span is shorter compared to project
life span. Often, repositories with fewer model files
get updated frequently than repositories with higher
number of model files.

This study investigate 17 repositories which are
a small data set representing open source projects. In
the future, we have a plan to include more repositories
in our data set which will be a broad representation of
models usages in the open source.

REFERENCES

Badreddin, O., Lethbridge, T. C., and Elassar, M. (2013).
Modeling practices in open source software. In IFIP

International Conference on Open Source Systems,
pages 127–139. Springer.

France, R., Bieman, J., and Cheng, B. H. (2006). Repos-
itory for model driven development (remodd). In In-
ternational Conference on Model Driven Engineering
Languages and Systems, pages 311–317. Springer.

Gorschek, T., Tempero, E., and Angelis, L. (2014). On the
use of software design models in software develop-
ment practice: An empirical investigation. Journal of
Systems and Software, 95:176–193.

Hebig, R., Quang, T. H., Chaudron, M. R., Robles, G., and
Fernandez, M. A. (2016). The quest for open source
projects that use uml: mining github. In Proceedings
of the ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Systems,
pages 173–183.

Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M. R., and
Fernandez, M. A. (2017). Practices and perceptions of
uml use in open source projects. In 2017 IEEE/ACM
39th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-
SEIP), pages 203–212. IEEE.

Khandoker Rahad (2020). Raw data: Characterization of
software design and collaborative modeling in open
source projects,.

Kobryn, C. (2002). Will uml 2.0 be agile or awkward?
Communications of the ACM, 45(1):107–110.

Noten, J., Mengerink, J. G., and Serebrenik, A. (2017).
A data set of ocl expressions on github. In 2017
IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR), pages 531–534. IEEE.

Osman, M. H. and Chaudron, M. R. (2013). Uml usage in
open source software development: A field study. In
EESSMOD@ MoDELS, pages 23–32.

Ozkaya, M. and Erata, F. (2020). A survey on the prac-
tical use of uml for different software architecture
viewpoints. Information and Software Technology,
121:106275.

Podgorelec, V. and Heričko, M. (2007). Estimating soft-
ware complexity from uml models. ACM SIGSOFT
Software Engineering Notes, 32(2):1–5.

Reza, S. M., Badreddin, O., and Rahad, K. (2020). Mod-
elmine: A tool to facilitate mining models from open
source repositories. In 2020 ACM/IEEE 23rd Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems (MODELS). ACM.

Torchiano, M., Tomassetti, F., Ricca, F., Tiso, A., and Reg-
gio, G. (2013). Relevance, benefits, and problems of
software modelling and model driven techniques—a
survey in the italian industry. Journal of Systems and
Software, 86(8):2110–2126.

Yatani, K., Chung, E., Jensen, C., and Truong, K. N. (2009).
Understanding how and why open source contributors
use diagrams in the development of ubuntu. In Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 995–1004.

Characterization of Software Design and Collaborative Modeling in Open Source Projects

261


