Operations Research,  2017,  pp.  1-11. 
https://doi.org/10.1155/2017/4093689. 
Asefi, H., Shahparvari, S., Chhetri, P., & Lim, S. (2019). 
Variable  fleet  size  and  mix  VRP  with  fleet 
heterogeneity in Integrated Solid Waste Management. 
Journal of Cleaner Production,  230,  1376-1395. 
https://doi.org/10.1016/j.jclepro.2019.04.250 
Braekers,  K.,  Ramaekers,  K.,  &  Van  Nieuwenhuyse,  I. 
(2016).  The  vehicle routing  problem:  State of  the  art 
classification  and  review.  Computers & Industrial 
Engineering,  99,  300-313.  https://doi.org/10.1016/ 
j.cie.2015.12.007 
Cordeau, J.-F., Gendreau, M., & Laporte, G. (1997). A tabu 
search  heuristic  for  periodic  and  multi-depot  vehicle 
routing problems. Networks:   An International Journal, 
30, 105–119. https://doi.org/10.1002/(SICI)1097-0037 
(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G 
Drexl, M., & Schneider, M. (2015). A survey of variants 
and  extensions  of  the  location-routing  problem. 
European Journal of Operational Research,  241(2), 
283-308. https://doi.org/10.1016/j.ejor.2014.08.030 
Elshaer, R., &  Awad,  H. (2020). A  taxonomic  review  of 
metaheuristic algorithms for solving the vehicle routing 
problem  and  its  variants.  Computers & Industrial 
Engineering,  140,  106242.  https://doi.org/10.1016/ 
j.cie.2019.106242 
Irnich,  S.,  Toth,  P.,  &  Vigo,  D.  (2014).  Chapter  1:  The 
Family of Vehicle Routing Problems. In P. Toth & D. 
Vigo  (Eds.),  Vehicle Routing  (pp.  1-33).  Society  for 
Industrial  and  Applied  Mathematics.  https://doi.org/ 
10.1137/1.9781611973594.ch1 
Kabadurmuş, Ö., Erdoğan, M. S., Özkan, Y., & Köseoğlu, 
M.  (2019).  A  Multi-Objective  Solution  of  Green 
Vehicle  Routing  Problem.  Logistics & Sustainable 
Transport,  10  (1),  pp.  31-44.  https://doi.org/ 
10.2478/jlst-2019-0003. 
Kardar, L., Farahani, R., & Rezapour, S. (2011). Logistics 
Operations and Management: Concepts and Models. 
Elsevier.  http://ebookcentral.proquest.com/lib/upgdl-
ebooks/detail.action?docID=692427 
Nucamendi-Guillén,  S.,  Padilla,  A.  G.,  Olivares-Benitez, 
E.,  &  Moreno-Vega,  J.  M.  (2020).  The  multi-depot 
open  location  routing  problem  with  a  heterogeneous 
fixed fleet. Expert Systems with Applications, 113846. 
https://doi.org/10.1016/j.eswa.2020.113846 
Rabbani,  M.,  Farrokhi-Asl,  H.,  &  Asgarian,  B.  (2017). 
Solving  a  bi-objective  location  routing  problem  by  a 
NSGA-II  combined  with  clustering  approach: 
Application  in  waste  collection  problem.  Journal of 
Industrial Engineering International,  13(1),  13-27. 
https://doi.org/10.1007/s40092-016-0172-8 
Ramos, M. A., Boix, M., Montastruc, L., & Domenech, S. 
(2014).  Multiobjective  Optimization  Using  Goal 
Programming  for  Industrial  Water  Network  Design. 
Industrial & Engineering Chemistry Research, 53(45), 
17722-17735. https://doi.org/10.1021/ie5025408 
Rayat,  F.,  Musavi,  M.,  &  Bozorgi-Amiri,  A.  (2017).  Bi-
objective  reliable  location-inventory-routing  problem 
with  partial  backordering  under  disruption  risks:  A 
modified AMOSA approach. Applied Soft Computing, 
59,  622-643.  https://doi.org/10.1016/j.asoc.2017. 
06.036 
Schneider,  M.,  &  Drexl,  M.  (2017).  A  survey  of  the 
standard  location-routing  problem.  Annals of 
Operations Research,  259(1-2),  389-414. 
https://doi.org/10.1007/s10479-017-2509-0 
Tavakkoli-Moghaddam,  R.,  Makui,  A.,  &  Mazloomi,  Z. 
(2010). A new integrated mathematical model for a bi-
objective multi-depot location-routing problem solved 
by a multi-objective scatter search algorithm. Journal 
of Manufacturing Systems,  29(2-3),  111-119. 
https://doi.org/10.1016/j.jmsy.2010.11.005 
Toro, E. M., Franco, J. F., Echeverri, M. G., & Guimarães, 
F.  G.  (2017).  A  multi-objective  model  for  the  green 
capacitated  location-routing  problem  considering 
environmental  impact.  Computers & Industrial 
Engineering,  110,  pp.  114-125,  https://doi.org/ 
10.1016/j.cie.2017.05.013. 
Wang,  S.,  Wang,  X.,  Liu,  X.,  &  Yu,  J.  (2018).  A  Bi-
Objective  Vehicle-Routing  Problem  with  Soft  Time 
Windows and Multiple  Depots to Minimize the Total 
Energy  Consumption  and  Customer  Dissatisfaction. 
Sustainability,  10(11),  4257.  https://doi.org/10.3390/ 
su10114257 
Wang, T. J., & Wu, K. J. (2015). Optimization algorithm 
for  multi-vehicle  and  multi-depot  emergency  vehicle 
dispatch problem. Advances in Transportation Studies, 
2,  pp.  23-30.  https://doi.org/10.4399/97888548896 
3703 
Wu,  T.-H.,  Low,  C.,  &  Bai,  J.-W.  (2002).  Heuristic 
solutions  to  multi-depot  location-routing  problems. 
Computers & Operations Research,  29(10),  1393-
1415. https://doi.org/10.1016/S0305-0548(01)00038-7 
Yousefi,  H.,  Tavakkoli-Moghaddam,  R.,  Taheri  Bavil 
Oliaei, M., Mohammadi, M., & Mozaffari, A. (2017). 
Solving  a bi-objective  vehicle routing  problem under 
uncertainty  by  a  revised  multi-choice  goal 
programming  approach.  International Journal of 
Industrial Engineering Computations,  283-302. 
https://doi.org/10.5267/j.ijiec.2017.1.003 
Zhao, J., & Verter, V. (2015). A bi-objective model for the 
used  oil  location-routing  problem.  Computers & 
Operations Research,  62,  157-168.  https://doi.org/ 
10.1016/j.cor.2014.10.016 
Zitzler,  E.,  &  Thiele,  L.  (1999).  Multi-objective 
evolutionary algorithms: A comparative case study and 
the  strength  Pareto  approach.  IEEE Transactions on 
Evolutionary Computation,  3(4),  257-271. 
https://doi.org/10.1109/4235.797969