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Object recognition and 6DoF pose estimation are quite challenging tasks in computer vision applications. De-
spite efficiency in such tasks, standard methods deliver far from real-time processing rates. This paper presents
a novel pipeline to estimate a fine 6DoF pose of objects, applied to realistic scenarios in real-time. We split
our proposal into three main parts. Firstly, a Color feature classification leverages the use of pre-trained CNN
color features trained on the ImageNet for object detection. A Feature-based registration module conducts
a coarse pose estimation, and finally, a Fine-adjustment step performs an ICP-based dense registration. Our
proposal achieves, in the best case, an accuracy performance of almost 83% on the RGB-D Scenes dataset.
Regarding processing time, the object detection task is done at a frame processing rate up to 90 FPS, and the
pose estimation at almost 14 FPS in a full execution strategy. We discuss that due to the proposal’s modularity,
we could let the full execution occurs only when necessary and perform a scheduled execution that unlocks

real-time processing, even for multitask situations.

1 INTRODUCTION

Object recognition and 6D pose estimation represent
a central role in a broad spectrum of computer vision
applications, such as object grasping and manipula-
tion, bin picking tasks, and industrial assemblies ver-
ification (Vock et al., 2019). Successful object recog-
nition, highly reliable pose estimation, and near real-
time operation are essential capabilities and current
challenges for robot perception systems.

A methodology usually employed to estimate
rigid transformations between scenes and objects is
centered on a feature-based template matching ap-
proach. Assuming we have a known item or a part
of an object, this technique involves searching all the
occurrences in a larger and usually cluttered scene
(Vock et al., 2019). However, due to natural occlu-
sions, such occurrences may be represented only by
a partial view of an object. The template is often an-
other point cloud, and the main challenge of the tem-
plate matching approach is to maintain the runtime
feasibility and preserve the robustness.
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Template matching approaches rely on RANSAC-
based feature matching algorithms, following the
pipeline proposed by (Aldoma et al., 2012b).
RANSAC algorithm has proven to be one of the most
versatile and robust. Unfortunately, for large or dense
point clouds, its runtime becomes a significant limita-
tion in several of the example applications mentioned
above (Vock et al., 2019). When we seek a 6Dof esti-
mation pose, the real-time is a more challenging task
(Marcon et al., 2019). In an extensive benchmark of
full cloud object detection and pose estimation, (Ho-
dan et al., 2018) reported runtime of a second per test
target on average.

Deep learning strategies for object recognition and
classification problems have been extensively studied
for RGB images. As the demand for good quality
labeled data increases, large datasets are becoming
available, serving as a significant benchmark of meth-
ods (deep or not) and as training data for real appli-
cations. ImageNet (Deng et al., 2009) is, undoubt-
edly, the most studied dataset and the de-facto stan-
dard on such recognition tasks. This dataset presents
more than 20,000 categories, but a subset with 1,000
categories, known as ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), is mostly used.
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Training a model on ImageNet is quite a challeng-
ing task in terms of computational resources and time
consumption. Fortunately, transferring its models of-
fer efficient solutions in different contexts, acting as
a blackbox feature extractor. Studies like (Agrawal
et al., 2014) explore and corroborate this high ca-
pacity of transferring such models to different con-
texts and applications. Regarding the use of pre-
trained CNN features, some approaches handle the
object recognition on the Washington RGB-D Object
dataset, e.g., (Zia et al., 2017) with the VGG architec-
ture and (Caglayan et al., 2020) evaluate several pop-
ular deep networks, such as AlexNet, VGG, ResNet,
and DenseNet.

This paper introduces a novel pipeline to deal with
point cloud pose estimation in uncontrolled environ-
ments and cluttered scenes. Our proposed pipeline
recognizes the object using color feature descriptors,
crops the selected bounding-box reducing the scenes’
searching surface, and finally estimates the object’s
pose in a traditional local feature-based approach. De-
spite adopting well-known techniques in the 2D/3D
computer vision field, our proposal’s novelty centers
on the smooth integration between 2D and 3D meth-
ods to provide a solution efficient in terms of accuracy
and time.

2 BACKGROUND

Recognition systems work with objects, which are
digital representations of tangible real-world items
that exist physically in a scene. Such systems are
unavoidably machine-learning-based approaches that
use features to locate and identify objects in a scene
reliably. Together with the recognition, another task
is to estimate the location and orientation of the de-
tected items. In a 3D world, we estimate six degrees
of freedom (6DoF), which refers to the geometrical
transformation representing a rigid body’s movement
in a 3D space, i.e., the combination of translation and
rotation.

2.1 Color Feature Extraction

As a mark on the deep learning history, (Krizhevsky
et al., 2012) presented the first Deep Convolutional
Architecture employed on the ILSVRC, an 8-layer ar-
chitecture dubbed AlexNet. This network was the first
to prove that deep learning could beat hand-crafted
methods when trained on a large scale dataset. Af-
ter that, ConvNets became more accurate, deeper, and
bigger in terms of parameters. (Simonyan and Zis-
serman, 2015) propose VGG, a network that dou-

bled the depth of AlexNet, but exploring tiny filters
(3 x 3), and became the runner-up on the ILSVRC,
one step back the GoogLeNet (Szegedy et al., 2015),
with 22 layers. GoogLeNet relies on the Inception
architecture (Szegedy et al., 2016). Another type of
ConvNets, called ResNets (He et al., 2016), uses the
concept of residual blocks that use skip-connection
blocks that learn residual functions regarding the in-
put. Many architectures have been proposed based
on these findings, such as ResNet with 50, 101,
and 152 (He et al., 2016). Also, based on devel-
opments regarding the residual blocks, (Xie et al.,
2017) developed the ResNeXt architecture. The ba-
sis upon ResNeXt blocks resides on parallel ResNet-
like blocks, which have the output summed before the
residual calculation. Some architectures propose the
use of Deep Learning features on resource-limited de-
vices, such as smartphones and embedded systems.
The most prominent architecture is the MobileNet
(Sandler et al., 2018). Another family of leading net-
works is the EfficientNet (Tan and Le, 2019). Relying
on the use of these lighter architectures, EfficientNet
proposes very deep architectures without compromise
resource efficiency.

2.2 Pose Estimation

As presented in (Aldoma et al., 2012b), a compre-
hensive registration process usually consists of two
steps: coarse and fine registrations. We can produce
a coarse registration transformation by performing a
manual alignment, motion tracking or, the most com-
mon, by using the local feature matching. Local-
feature-matching-based algorithms automatically ob-
tain corresponding points from two or multiple point-
clouds, coarsely registering by minimizing the dis-
tance between them. These methods have been exten-
sively studied and have confirmed to be compliant and
computer efficient (Guo et al., 2016). After coarsely
registering the point clouds, a fine-registration algo-
rithm is applied to refine the initial coarse registra-
tion iteratively. Examples of fine-registration algo-
rithms include the ICP algorithm that perform point-
to-point alignment (Besl and McKay, 1992), or point-
to-plane (Chen and Medioni, 1992). These algorithms
are suitable for matching between point-clouds of
isolated scenes (3D registration) or between a scene
and a model (3D object recognition). This proposal
adopted two approaches to generate the initial align-
ment: a traditional feature-based RANSAC and the
Fast Global Registration (FGR) (Zhou et al., 2016).
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3 PROPOSED APPROACH

In this section, we explain in detail our proposed ap-
proach. Our proposed pipeline starts from an RGB
image and its corresponding point cloud, generated
from RGB and depth images. These inputs are sub-
mitted to our three-stage architecture: color feature
classification, feature-based registration, and fine ad-
justment. We depict our proposal in Figure 1 and
present these steps in the next sections.

3.1 Color Feature Classification

Our proposal starts detecting the target object and es-
timating a bounding box of it. After this detection, we
preprocess the image and submit to a deep-learning-
based color feature extractor. The preprocessing step
includes image cropping and resizing to adjust to the
network input dimensions. The deep network archi-
tectures employed in our experiments output a feature
vector, 1000 bins long, used to predict the object’s
instance, by a pre-trained ML classifier. We empha-
size that our approach is size-independent regarding
the feature vector, but for a fair comparison we chose
networks with the same output size.

In our trials, we explored the achievements of
Table 2, and selected the most accurate networks:
ResNet101 (He et al., 2016), MobileNet v2 (Sandler
et al., 2018), ResNeXt101 32x8d (Xie et al., 2017),
and EfficientNet-B7 (Tan and Le, 2019). These net-
works input a 224 x 244 pixel image and output a
1000 bins feature vector. We employed the Logis-
tic regression classifier, chosen after a performance
evaluation of standard classifiers, to name: Support
Vector Classifier (SVC) with linear and radial-based
kernels, Random forest, Multilayer perceptron, and
Gaussian naive Bayes. We explore two variants of our
ML model: a pre-trained on the Washington RGB-
D Object dataset, and a distinct model, also in such
dataset, but with a reduced number of objects, i.e.,
those annotated on the Washington RGB-D Scenes
dataset. The latter provides an application-oriented
approach, reducing the number of achievable classes,
the inference time, and model size (Table 4). To verify
the best accurate classifier, we do not perform object
detection. Instead, we get the ground-truth bound-
ing boxes provided by the dataset, hence verifying
for each ML system which is the best feasible per-
formance.

3.2 Feature-based Registration

We build a model database by extracting and stor-
ing useful information about the objects in a previous
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step. The database is composed of information con-
cerning each item, as well as the extracted features of
them. We choose a local-descriptors-based approach
to estimate the object’s pose. For each instance of an
object, we store several partial views of it. Between
these views, our method will select the most likely to
the correspondent object on the scene.

Based on the predicted objects’ classes, we can
select a set of described views from the models’
database. We then perform a feature-based registra-
tion between these views and the point cloud of the
scene’s object (previously cropped based on the de-
tected bounding box). This method will estimate a
transformation based on the correspondences between
a scene and a partial view of an object. Then, the view
with the highest number of inliers and at least three
correspondences is selected. The estimated affine
transformation will be input to the ICP algorithm and
perform a dense registration.

We process each cloud with a uniform sampling
as a keypoint extractor, adopting a leaf size of 1 cm.
After, we describe each keypoint using the FPFH
(Rusu et al., 2009) descriptor with a radius of 5 cm.
We choose this descriptor due to its processing time
and size (33 bins), well-suited for real-time applica-
tions. Methods like CSHOT (Salti et al., 2014) de-
scribes the color and geometric information and has
proven to be an accurate solution applied to single
object recognition on RGB-D Object dataset (Oua-
diay et al., 2016). However, with a descriptor length
of 1344 bins, it is not suitable for real-time feature-
matching. Another proposal that deals with color is
PFHRGB (Rusu et al., 2008), which, despite being
shorter (250 bins) than CSHOT, presents inefficient
calculation time (Marcon et al., 2019).

To perform the coarse registration step, we test
two methods previously presented: RANSAC and
FGR. We considered for both techniques an inlier
correspondence distance lower than 1 cm between
scene and models. We set the convergence criteria for
RANSAC to 4M iterations and 500 validation steps,
and for FGR to 100 iterations, following (Choi et al.,
2015) and (Zhou et al., 2016).

3.3 Fine-adjustment

The previous step outputs an affine transformation
that could work as a final pose of the object con-
cerning the scene. However, to guarantee a fine-
adjustment, we employ an additional step to the pro-
cess. We adopt the ICP algorithm, based on the point-
to-plane approach (Chen and Medioni, 1992), to per-
form a dense registration. We use the transforma-
tion resultant from the registration step, the scene, and
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Figure 1: Pipeline of the proposed approach to pose estimation. To estimate the pre-segmented object’s instance, we extract
its features by a deep learning color-based extractor and a pre-trained ML classifier. After selecting the objects database, the
view with the highest number of correspondences resulting from a feature-based registration algorithm. Finally, we apply an
ICP dense registration algorithm to estimate the position and pose of the object.

best-fitted view clouds as input. We set the maximum
correspondence distance threshold to 1 cm. It is im-
portant to point that again, our proposal is generic,
and the fine adjustment algorithm employed in this
stage is flexible. Methods such as ICP point-to-point
(Besl and McKay, 1992) and ColoredICP (Park et al.,
2017) are perfectly adapted to our pipeline.

4 EXPERIMENTAL RESULTS

4.1 Dataset

We validate our proposal on the Washington RGB-D
Object and Scenes datasets. Proposed by (Lai et al.,
2011a) the RGB-D Object contains a collection of
300 instances of household objects, grouped in 51 dis-
tinct categories. Each object includes a set of views,
captured from different viewpoints with a Kinect sen-
sor. A collection of 3 images, including RGB, depth,
and mask is presented for each view. In total, this
dataset has about 250 thousand distinct images. The
authors also provide a dataset of scenes, named RGB-
D Scenes. This evaluation dataset has eight video se-
quences of every-day environments. A Kinect sensor
positioned at a human eye-level height acquires all the
images at a 640 x 480 resolution. This dataset is re-
lated to the first one, composed of 13 of the 51 object

categories on the Object dataset. These objects are
positioned over tables, desks, and kitchen surfaces,
cluttered with viewpoints and occlusion variation, and
have annotation at category and instance levels. A
bidimensional bounding box represents the ground-
truth of each object’s position. Figure 2 presents ex-
amples of both datasets. Table 1 gives some details re-
garding the name and size of the sequences, and their
average number of objects.

‘s’va

Figure 2: Examples of models and scenes from the Wash-
ington RGB-D Scenes dataset (top row), and objects from
the RGB-D Object dataset (bottom row). Source: Adapted
from (Lai et al., 2011a).

4.2 Evaluation Protocol

We evaluate our proposal, quantitatively, and qualita-
tively. First, we consider CNN feature extraction and
classification accuracy based on the models trained in
the Object dataset (Table 2). We also verify the entire
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Table 1: Details regarding the RGB-D Scenes datasets.

Scene Number of frames Models per frame
desk_1 98 1.89
desk_2 190 1.85
desk_3 228 2.56
kitchen_small_1 180 3.55
meeting_small_1 180 8.79
table_1 125 5.92
table_small_1 199 3.68
table_small 2 234 2.89
Average 179.25 3.89

dataset’s processing time, looking at the frame pro-
cessing rate in both classification and pose estimation
scenarios.

As the Scenes dataset does not provide ground-
truth annotations concerning the objects’ pose, we
had to find a plausible metric to evaluate the regis-
tration results. We adopted two different metrics: the
Root mean squared error (RMSE) and an inlier ra-
tio measurement. The latter represents the overlap-
ping area between the source (model) and the target
(scene). It is calculated based on the ratio between
inlier correspondences and the number of points on
the target. We also evaluate the correctness of predic-
tions, both of object presence and pose. To do so, we
follow (Marcon et al., 2019) and employ the Intersec-
tion over Union metric (IoU), defined as:

ToU — BB NBBE: )
BBgr UBBEy
we consider BBgr the 3D projection of the 2D bound-
ing box, provided as ground-truth. BBy, refers to the
3D bounding box that circumscribes the selected ob-
ject view after applying the resulting transformation.
We found experimentally that, for this particular
dataset, when we estimate the IoU between the ob-
ject 3D BB and the scene 2D projection, often the
former is fully contained in the latter. However, due
to their sizes, the calculated IoU is too low. Hence,
we consider another metric, which we call Model In-
tersection Ratio (MIR) that represent the intersection
volume over the model estimation volume:

MIR — BBgr NBBEst @)
BBEst

With the MIR metric, we guarantee that despite

the IoU, when the estimation transform places the

object inside (or nearly inside) the ground-truth 3D

projection, a successful detection is performed. We

consider a true positive when the JoU > 0.25 or the
MIR > 0.90.
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We compared our proposal with the standard 3D
object recognition and pose estimation pipeline (Al-
doma et al., 2012b), and with a boosted version of
such pipeline, proposed by (Marcon et al., 2019). To
calculate precision-recall curves (PRC), we varied the
threshold on the minimum geometrically consistent
correspondences, starting from at least three, related
to each object’s best-suited partial view. The area un-
der the PRC curve (AUC) is then calculated and pro-
vides comparative results that assess our proposals’
efficiency against traditional approaches.

4.3 Implementation Details

We performed our tests on a Linux Ubuntu 18.04
LTS machine, equipped with a CPU Ryzen 7 2700X,
32GB of RAM, and a GPU Geforce RTX 2070 Su-
per. To process the point clouds, perform keypoint ex-
traction, description with FPFH, and registration with
RANSAC and FGR, we used the Open3D Library.
We preprocess images using Pillow and OpenCV.
Deep learning models were implemented in PyTorch,
and the pre-trained models extracted from torchvi-
sion. To implement traditional and boosted versions
of object recognition and pose estimation pipelines,
we use PCL 1.8.1, OpenCV 3.4.2, and the saliency de-
tection of (Hou et al., 2017), following (Marcon et al.,
2019).

4.4 Results

This section summarizes the Washington RGB-D
Scenes’ experimental evaluation results in terms of
accuracy and processing time.

4.4.1 Object Detection Benchmark

To assess the generalization capacity of CNN pre-
trained models, we perform an object detection eval-
uation on the Object dataset (Lai et al., 2011a). Ta-
ble 2 present results regarding classification of partial
views of objects. We evaluate the instance recognition
scenario, following (Lai et al., 2011a), i.e., consider-
ing Alternating contiguous frame (ACF) and Leave-
sequence-out (LSO) scenarios. We compared our re-
sults with state-of-the-art object detection methods
on this dataset. We perceived that pre-trained net-
works provide reliable results as off-the-shelf color
feature extractors. In both evaluation approaches,
tested networks present competitive results concern-
ing the other competitors. In LSO, ResNet101 (He
et al., 2016) features figures in the third position, and
in ACF, 5 of 7 architectures outperform previous pro-
posals.
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Table 2: Comparison of CNN color features on the Wash-
ington RGB-D Object dataset. The best result reported in
blue, the second best in green, and the third in red.

Method LSO ACF
Lai er al. (RF) (Lai et al., 2011a) 59.9 90.1 +0.8
Lai et al. (kSVC) (Lai et al., 2011a) 60.7 91.0 £ 0.5
IDL (Lai et al., 2011b) - 548+0.6
SP+HMP (Bo et al., 2013) 92.1 -
Multi-Modal (Schwarz et al., 2015) 92.0 -
MDSI-CNN (Asif et al., 2017) 97.7 -
MM-LRF-ELM (Liu et al., 2018) 91.0 -
HP-CNN (Zaki et al., 2019) 95.5 -
AlexNet (Krizhevsky et al., 2012) 89.8 939+04
ResNet101(He et al., 2016) 94.1 953+0.3
VGGI16 (Simonyan and Zisserman, 2015) 88.8 91.0 + 0.6
Inception v3 (Szegedy et al., 2016) 88.1 90.3 +0.4
MobileNet v2 (Sandler et al., 2018) 93.8 95.8 £0.3
ResNeXt101 32 x 8d (Xie et al., 2017) 939 957+ 04
EfficientNet B7 (Tan and Le, 2019) 93.8 95.6 + 0.5

Despite the significant results, this evaluation is
essential to select the most suitable to perform object
recognition in realistic scenarios, such as those pre-
sented by the Scenes dataset (Lai et al., 2011a). As
the trials’ output, we selected the top-four architec-
tures to apply in our proposed pipeline.

4.4.2 Object Recognition in Real-world Scenes

We opposed the selected CNN architectures exam-
ining only a classification based on the RGB infor-
mation, taking the annotated bounding box, and sub-
mitting to the Color Feature Classification stage of
our pipeline (as in Section 3.1). Table 3 relates to
instance-level recognition.

The first outcome of this evaluation is the dom-
inance of two networks over the other competitors
considering different aspects. EfficientNet (Tan and
Le, 2019) architecture outperforms in terms of ac-
curacy, and MobileNet v2 (Sandler et al., 2018) in
terms of processing time w.r.t. the others in almost
all scenes.

EfficientNet reaches an average accuracy of al-
most 67%, followed by MobileNet v2, with almost
53%. However, when we aim efficiency in process-
ing time, EfficientNet does not perform so well, be-
ing the slowest network with a frame-rate of 3.02 per
second. On the other hand, the MobileNet v2 fulfills
the network’s main proposal to be time-efficient and
accurate for embedded applications. It presents the
second-best accuracy and the best frame-rate, with al-
most 7 FPS.

The full-set of the Object dataset contains 51
categories and 300 distinct instances. Concerning
the Scenes dataset, the number of annotated samples
drops to 6 categories and 22 instances, i.e., only a
small set of objects of Object dataset is achievable on
the Scenes dataset. When we use a model trained on
the full-set, most categories or instances will never
be detected. Thou, we learned a lighter classifier that
considers only such specific instances (Table 4).

After this change on the model specificity, we dis-
tinguish a noticeable improvement in accuracy and
the processing time, achieving MobileNet v2 a near
real-time performance on average. A significant gain
on accuracy was established, with over 10% for every
architecture, pulling the best result to 83% for Effi-
cientNet.

Regarding the frame processing rate, it is essential
to notice that the average number of models varies
from 1.85 to 8.79 over the scenes, with almost four
objects per frame in mean (Table 3). Thus, we can in-
fer that our proposal can deliver a near-real-time FPS,
inclusive in a multi-classification problem. When we
consider only a single target, the performance is al-
most four times faster, as presented in Table 7, on the
Color only column.

4.4.3 Pose Estimation Results

Based on the assumption that we mapped the objects
we aim to detect in a real-world scenario, we adopted
those models trained on the RGB-D Object dataset
subset. We considered only the instance detection sit-
uation. The reason for disregarding categories is that
we could have intra-class misclassifications, corrupt-
ing the pose alignment step. For each instance de-
tected by the Color feature classification stage, we
take ten views of the referred object from the mod-
els’ database.

In Table 5 we report an evaluation concerning the
Feature-based registration and Fine-adjustment stages
of our pipeline. Getting a set of ten randomly se-
lected views of the same object, we perform a coarse
estimation by using RANSAC or FGR. We evaluate
quantitatively such methods concerning the inlier ra-
tio, RMSE, and execution time. We apply the result-
ing affine transformation as the input of an ICP dense
registration and evaluate if this input can imply differ-
ences in the processing time.

Indeed, the FGR method is much faster than
RANSAC. However, we observe that for both metrics
RANSAC outperforms it. The Inlier ratio presented
by the latter is around 50% higher than the faster
method and also shows an RMSE more consis-
tent. The transformation generated by the coarse
alignment algorithm also impacts the ICP execution
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Table 3: Instance classification performance on the RGB-D Scenes datasets.

MobileNet v2 Resnet101 ResNeXt101 32x8d | EfficientNet-B7
Scene Acc FPS Acc FPS Acc FPS Acc FPS
desk_1 42.70% 13.03 | 51.89% 9.66 | 48.11% 7.63 49.73%  6.55
desk 2 41.76% 1295 | 38.92% 9.31 | 55.40% 7.93 76.42%  6.35
desk_3 7277%  9.84 | 52.57% 7.09 | 5291% 5.78 90.58%  4.60
kitchen_small_1 36.31% 797 | 3474% 5.29 | 48.20% 4.12 56.81% 3.25
meeting_small_1 | 41.40% 3.29 | 38.05% 2.35 | 42.92% 1.74 50.63%  1.33
table_1 56.76%  4.62 | 38.11% 3.43 | 31.08% 2.49 61.49%  2.00
table_small_1 75.03%  7.50 | 63.30% 5.33 | 65.35% 3.89 83.36% 3.16
table_small_2 55.39%  9.13 | 45.35% 6.88 | 49.34% 5.04 65.88% 4.10
Average 5277%  6.99 | 4537% 5.03 | 49.16% 3.80 66.86% 3.02

Table 4: Performance comparison between full and a spe-
cific training set with objects from the Scenes dataset.

Full Scenes
DeepNet
Acc FPS Acc FPS
MobileNet v2 52.77% 6.99 | 67.35% 24.62
Resnet101 4537% 5.03 | 61.41% 13.94
ResNeXt101 32x8d | 49.16% 3.80 | 59.04% 8.86
EfficientNet-B7 66.86% 3.02 | 82.94% 5.88

and we notice that a better estimation can speed
up the fine-adjustment process.

To evaluate more deeply if the ICP, after the
feature-matching application, can surpass problems
like a more rough estimation, we must assess an an-
notated pose. Unfortunately, the adopted dataset does
not offer such data, and further studies may verify that
affirmation on a pose-annotated dataset. However, we
can evaluate the estimation correctness by employing
the IoU and MIR metrics and verify if the feature-
based registration step’s estimation is reliable com-
pared to standard approaches. In Table 6 we perform
such comparison regarding the AUC and FPS values
of different setup of our proposed pipeline, the stan-
dard (Aldoma et al., 2012b), and the boosted (Marcon
et al., 2019) pipelines.

Results of Table 6 confirm our claim that perform-
ing the object detection on the RGB images improves
results compared to traditional approaches. Both stan-
dard and boosted pipelines present accuracy results
worst than all trials we run in our pipeline, even con-
sidering the same conditions of descriptors and leaf
size, e.g., 1 cm of leaf size in Boost USg o trial.
When we consider time processing, the difference
is even more discrepant when our approach presents
in the best case, a frame-rate of 14.18 against 0.09
FPS on the best standard approaches, which repre-
sents a remarkable improvement of more than 150X
in speed. When using the EfficientNet/FGR pair, our
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proposal presents AUC (0.4123) three times higher
than the Boosted pipeline (0.1372). We did not run
the Baseline U Sy o; because this method is very time-
consuming and does not represent a reasonable choice
regarding the boosted version (Boost USpo1). We
found a frame rate of 0.0005 for a small set of frames
experimentally. Besides, the boosted pipeline (Mar-
con et al., 2019) gains on accuracy and time perfor-
mance regarding the traditional version, as seen on
the trials with a leaf size of 0.02 (Baseline U Sy g2 and
Boost USp.o2), and such behavior is also expected on
a smaller leaf size.

4.4.4 Time Processing Evaluation

Now we report the processing rate regarding execut-
ing the three stages of our proposed pipeline. Table 7
presents the frame processing rate based on a single
target object scenario. We evaluate referring to the
first stage execution (Color only), the early two stages
(Columns RANSAC, and FGR), and a pipeline’s full
execution (+ICP).

At first sight, one can conjecture that a RANSAC-
based approach is unpromising when presenting
around 2 FPS. However, considering an FGR-based
process, the results are indeed encouraging, with 8
FPS for the best accurate method, and more than 13
for the others. For many applications that deal with
real-time, a frame rate around eight or more is accept-
able. We agree that the facto standard for real-time
is at least 30 FPS, however, due to the modularity of
our proposed pipeline, the stages are independent, and
we could use the full execution only to indispensable
situations.

An application scenario may include a target ob-
ject’s location and pose recovering, for instance, by a
robot or a visually impaired person. The system could
execute a scheduled procedure, localizing this object
adopting only the first stage of the pipeline, in real-
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Table 5: Comparison between feature-based registration methods. Values reported consider the processing time (in seconds)
for ten views of the same object and the ICP for the best one selected.

Feature-based

Methods . ICP time () Inlierratio (1) RMSE ({)
time ()
RANSAC 0.7688 0.0061 0.2689 0.0055
FGR (Zhou et al., 2016) 0.0580 0.0075 0.1895 0.0059

Table 6: Comparison of the proposed pipeline with standard
object recognition and pose estimation approaches. Base-
line refer to (Aldoma et al., 2012a) and Boost to (Marcon
etal., 2019). Every trial employed FPFH (Rusu et al., 2009)
as local descriptor with a uniform sampling as keypoint de-
tector. Excepting the fisrt two rows, leaf size was set to 1
cm.

Method AUC FPS

Baseline USp 02 0.0401  0.0023
Boost USy.02 0.0868  0.0918
Boost USp.01 0.1372  0.0339
Resnet101 + FGR 0.2228 13.8321
ResNet101 + RANSAC 0.2092  1.9649
MobileNet v2 + FGR 0.2922  13.8939
MobileNet v2 + RANSAC 0.2781  1.8905
ResNeXt101 32x8d + FGR 0.2090 14.1813
ResNeXt101 32x8d + RANSAC  0.1947  2.0268
EfficientNet-B7 + FGR 0.4123  8.9429
EfficientNet-B7 + RANSAC 0.2994  1.4344

time. Then, as the subject approaches the objective,
we could execute the second stage, estimating a rough
transformation, e.g., once a second. Finally, when the
object is next to the user, we can run the full pipeline,
including the fine-adjustment stage.

To investigate more deeply the processing time
of a successfully detected object of our pipeline, we
summarize how much time takes each substep in Fig-
ure 3. We can infer that two main steps negatively
impact the time processing: classification and feature-
based estimation. Regarding the former, the correct
selection of the network to extract color features is
fundamental to speed-up the whole process, present-
ing a significant difference between the faster (San-
dler et al., 2018) and the slower (Tan and Le, 2019).
We perceive a considerable impact in time processing
when using RANSAC instead of FGR for the feature-
based stage. In this implementation, we do not use
any concurrent processing, which could significantly
improve such time for both coarse pose estimation
methods. Our pipeline is highly flexible, and the use
of recent proposals may enhance our results on coarse
estimation, for instance DGR (Choy et al., 2020).

MobileNet v2

ResNet101

Methods

ResNeXt101 32x8d

EfficientNet-B7

0,00 0,05 0,10

Time (s)

B Preprocessing M Classification Keypoint M Description ® Ransac M ICP

(a) FGR

0,00 0,25 0,50 0,75

Methods

EfficientNet-B7

Time (s)

B Preprocessing M Classification Keypoint M Description # Ransac ® ICP

(b) RANSAC

Figure 3: Processing time (in seconds) of each step of the
execution of proposed approach. We consider only success-
fully detected objects on this comparison. (a) presents times
referring to the FGR (Zhou et al., 2016) method, and (b) to
RANSAC.

4.4.5 Qualitative Results

We provide qualitative visualizations of our proposed
method (RANSAC + ICP) in Figure 4. Our method
succeeds in aligning several different shaped mod-
els, such as planes (cereal box), cylinders (soda can,
coffee mugs, and flashlights), and free form models
(caps). As we perform a rigid transformation to align
objects and scenes, the model’s choice is fundamen-
tal. Examples like the red cap that present a crum-
ple on top harm the alignment estimation. Other-
wise, we confirm the robustness of the combination
of coarse and fine alignments on the bowl object (bot-
tom row, on the left), partially cropped on the scene
cloud. Still, our method infers the pose correctly.
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Table 7: Single target pose estimation FPS. Color only refers to object classification, other columns refer to the pose aligment

step, coarse (RANSAC and FGR) or fine (plus ICP).

Coloronly RANSAC FGR RANSAC+ICP FGR +ICP
MobileNet v2 (Sandler et al., 2018) 89.49 1.89 13.89 1.82 13.57
ResNet101 (He et al., 2016) 52.45 1.96 13.83 1.81 13.39
ResNeXt101 32x8d (Xie et al., 2017) 33.73 2.03 14.18 2.09 13.32
EfficientNet-B7 (Tan and Le, 2019) 22.51 1.43 8.94 1.40 8.55

table small_2

table_small_2

Figure 4: Qualitative visualizations of successful pose alignment.

In Figure 5, we present some wrong alignments
of our proposals. We can observe that the objects’
main shape weights a lot on the alignment results.
For instance, the mugs had the body well aligned but
a misalignment on the handle. We also perceive a
flip on the cereal box because of the large plane at
the front. The bowl in the rightmost example fails
in aligning, though, different from the previous fig-
ure, where the method robustly handled a partial view
of a bowl, this particular case, have about 50% only
of the object visible. The ICP algorithm estimates a
locally minimal transformation, and such misalign-
ments may occur because of inaccurate inputs pro-
duced by RANSAC/FGR methods. We espy three
potential solutions: using novel CNN-based estima-
tion methods, e.g., DGR (Choy et al., 2020); adopt-
ing more robust local descriptors to the feature-based
registration phase, also considering color-based ap-
proaches; increasing the number of selected 2.5D
views to enhance pose covering of the scenes’ ob-
jects. The last two cited solutions may negatively
affect time-performance. Despite the misalignments
verified, as we reduce the surface search on the scene
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cloud, we always have an estimation next or even in-
side the 3D projection of the 2D bounding box out-
putted by the detection.

5 CONCLUSIONS

3D pose estimation is a challenging task, mainly for
real-time applications. Sometimes developers must
surrender on the precision, aiming the response time.
In this paper, we introduced a novel pipeline that pro-
poses to combine the power of color features extrac-
tors deep networks, with a local descriptors pipeline
to pose estimation in point clouds. We evaluated
the detection of objects and achieved almost 83% on
an instance situation, in the best case. This preci-
sion is also accompanied by a high frame processing
rate, arriving up to 90 FPS. The pose estimation rate
is plausible for some applications, and by schedul-
ing the stages of our pipeline, we can reach stan-
dard real-time processing. We show experimentally
massive improvements concerning accuracy and time
processing compared to standard approaches for ob-
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table_1

table_1

kitchen_small_1 table 1

Figure 5: Qualitative visualizations of wrong pose alignment. From left to right: two examples of coffee mugs with a

misoriented handles, flipped cereal box, and a rotated bowl.

ject recognition and pose estimation. Our approach
is 3x more efficient and 150 faster than traditional
and grounded methodologies.

Our three-staged detachable pipeline can be used
according to the user/application needs: the color fea-
ture classification provides object detection in real-
time; the feature-based registration estimates an im-
precise but sometimes efficient pose of the scenes’
object; the third stage performs a fine alignment
of the estimation, resulting in a more accurate re-
sult. We believe that our proposal’s adoption may
help researchers and the industry develop reliable and
time-efficient solutions for scene recognition prob-
lems from RGB-D data.

Parallelization strategies can improve time results
even more and also different local descriptors and
keypoint extractors could support this. Findings on
the deepnets architectures can help developing an
integrated region proposal and object detection al-
gorithm, and state-of-the-art deep learning methods
such as SSD (Liu et al., 2016), YOLO (Redmon et al.,
2016), and EfficientDet (Tan et al., 2020) enable such
potentiality.
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