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Abstract: Real-time interaction is a necessary part of the modern high performance computing (HPC) environment, used
for tasks such as development, debugging, visualization, and experimentation. However, HPC systems are re-
mote by nature, and current solutions for remote user interaction generally rely on remote desktop software
or bespoke client-server implementations combined with an existing user interface. This can be an inhibiting
factor for a domain scientist looking to incorporate simple remote interaction to their research software. Fur-
thermore, there are very few solutions that allow the user to interact via the web, which is fast becoming a
crucial platform for accessible scientific HPC software. To address this, we present a framework to support re-
mote interaction with HPC software through web-based technologies. This lightweight framework is intended
to allow HPC developers to expose remote procedure calls and data streaming to application users through
a web browser, and allow real-time interaction with the application while executing on a HPC system. We
present a classification scheme for remote applications, detail our framework, and present an example use case
within a HPC visualization application and real world performance for remote interaction with a HPC system
over a Wide Area Network.

1 INTRODUCTION

In the modern Internet era, much of the informa-
tion we need throughout our working day is available
on the web. Over the past few decades communi-
cations infrastructure, user hardware, web browsers,
and associated tools and libraries have evolved to
such an extent that many user applications that once
would have been installed locally are now run entirely
remotely. This new, remote, web-based, paradigm
means that a modern Internet user can do much
more than type emails and view static pages in their
browser, as was the case in the early days of the In-
ternet. They can now type documents through online
word processors, edit photos with image manipula-
tion tools, compete in online 3D games via real-time
3D rendering and streaming, design engineering solu-
tions with web CAD applications, and more, all from
the comfort of a laptop web browser. This paradigm
has led to a user expectation of powerful web services,
exploiting cloud computing (Patidar et al., 2012), that
are more accessible, portable, and simpler to use, than
traditional applications. Web browsers typically do
not require expensive high powered hardware, and

are pre-installed on most personal computing devices.
Users can access services built and hosted on the other
side of the world to communicate, run applications,
and store and retrieve data in real-time, without prior
installation or configuration on their local machine.
With the rise of low cost, on-demand, cloud-based
web infrastructure, for example Amazon Web Ser-
vices (AWS) and Microsoft Azure, and fast Internet
streaming speeds, it is becoming commonplace for
fully featured Software As A Service (SaaS) applica-
tions to be available in-browser (e.g. (Miller, 2009)).

Conversely, High Performance Computing (HPC)
applications are typically executed remotely by ex-
ploiting computing clusters accessible by terminal or
remote desktop protocol (e.g. Virtual Network Com-
puting (VNC) client or X Forwarding protocol). User
applications are run via job requests submitted to a
resource management system, which are queued and
executed when the required resources become avail-
able. This approach is effective for many traditional
HPC applications (e.g. modelling and simulation);
however, due to the paradigm of web and cloud com-
puting, the modern day research scientist (a typical
HPC user) has access to a much broader array of tools
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that may benefit from, or even require, high perfor-
mance computing, from interactive computing with
Python-based tools to workflow software for coupling
and/or chaining multiple large scale parallel applica-
tions.

Notably, there are a variety of HPC applica-
tions that necessitate a Human-In-The-Loop (HITL)
(Nunes et al., 2015) with real-time user interaction;
for example, visualization software, monitoring and
inspection utilities, debugging tools, and computa-
tional steering software. This type of application re-
quires some form of user interface, which is typically
achieved through a client-server remote software ap-
proach where a local user application communicates
with a remote HPC application; for example, a lo-
cal graphical debugging client connected to a debug
server running on a HPC system. However, these ap-
proaches are often tailored to a specific application
and require a significant amount of setup (detailed fur-
ther in Section 2). This class of application could ben-
efit from the accessibility, portability, and simplicity
of cloud-like web-based software.

There are existing efforts to provide cloud-like
services for HPC, from creating HPC-like environ-
ments or running traditional HPC applications on
cloud-computing infrastructures (Canon et al., 2010;
Church et al., 2015; Younge et al., 2017), to building
cloud-like infrastructures on HPC systems (Mauch
et al., 2013). This extends to HPC applications ex-
posed to users through the web via workflow man-
agement tools (Goecks et al., 2010; Brown et al.,
2015) and Science Gateways (Gesing et al., 2015),
and public web platforms supported by HPC infras-
tructures such as the Theoretical Astrophysical Obser-
vatory (TAO) (Bernyk et al., 2016) and similar efforts
in other scientific communities. However, for devel-
opers to build HPC applications requiring real-time
interaction, interoperability between web and HPC
technologies is a necessity, particularly in terms of
auxiliary software libraries. This is challenging espe-
cially due to the significantly disparate environments,
both software and hardware, of web and HPC. A do-
main scientist developing high performance research
software is unlikely to also be an expert in web de-
velopment or even familiar with the languages and
tools common in the field, and vice versa. This diffi-
culty is compounded when there is a requirement for
real-time interaction, necessitating high performance
implementations on both sides. There are only few
examples of HPC applications and web applications
interacting in real-time (see Section 3); whilst this is
partially due to the infancy of a HPC-Web conver-
gence, the problem is exacerbated by a lack of general
purpose tools to facilitate interoperability.

This challenge of interoperability has been the fo-
cus of existing efforts in the HPC community, for
example with REST APIs for web-based interaction
with resource management systems (Cholia et al.,
2010; Cruz and Martinasso, 2019), environments
such as EnginFrame1 and Bridges (Nystrom et al.,
2015) that are designed to support web portals and
non-traditional HPC workloads, and containerized so-
lutions packaging HPC software for general portable
usage such as those available on NVIDIA’s GPU-
Cloud2. It is clear there is an emerging paradigm
shift in HPC from the traditional command line batch
scheduled job execution to a more accessible and
user-friendly experience motivated by web, cloud,
and interactive technologies. However, there is still
a long distance to go, particularly for applications re-
quiring real-time user interaction.

In this paper, to help bridge the gap between HPC
and Web applications and address the lack of gen-
eral purpose interoperability tools, we introduce WS-
RTI: a WebSocket (Fette and Melnikov, 2011) based
framework for fast data streaming and simple, real-
time, user interaction with HPC applications. The
core principle of this framework is to allow HPC spe-
cialists and research scientists to quickly and easily
create web interfaces to monitor and interact with ac-
tive HPC applications in real-time. We provide a
lightweight mechanism for a headless HPC applica-
tion to expose a Remote Procedure Call (RPC) in-
terface automatically linked to a web based graphical
user interface. This is complimented by data stream-
ing support to allow the user to transport data to and
from the application independently of the RPC mech-
anism.

The remainder of the paper is structured as fol-
lows: Section 2 presents a novel classification scheme
to identify and differentiate remote applications. With
reference to this scheme we discuss related work in
Section 3, before presenting the WSRTI framework in
Section 4. This is followed by a practical explanation
of the requirements for a HPC application to utilize
WSRTI in Section 5, followed by a specific example
use case within a high performance visualization ap-
plication in Section 6. We briefly discuss performance
in Section 7, and Section 8 concludes the work with a
summary and future directions.

1https://www.nice-software.com/products/enginframe
2https://www.nvidia.com/en-us/gpu-cloud/
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2 A CLASSIFICATION SCHEME
FOR REMOTE APPLICATIONS

The inherently remote nature of working on a HPC
system can discourage use of interactive applications.
HPC systems are traditionally hosted in dedicated
computing centers and on university campuses, and
access typically requires a local workstation and ter-
minal connection via Secure Shell (SSH) protocol.
Once connected, the user can submit jobs through a
resource management system such as SLURM (Yoo
et al., 2003) or the Portable Batch System (PBS)3 to
request computing resources in either a batch or in-
teractive manner. Batch submission inserts the job
into a queue and schedules it to run when resources
are available to be allocated, which allows efficient
job management by the scheduler and maximum re-
source utilization. However, the job must be defined
ahead of time and often failure will yield the alloca-
tion and require a new job to be created. Interactive
submission indicates the resources are required im-
mediately, providing the user with a shell where they
can interactively launch applications for the duration
of the allocation. While it is standard practice to sup-
port an interactive queue for applications that require
it, interactive applications typically have a broader set
of requirements, e.g. supporting user interaction.

An important characteristic of an interactive HPC
application is the means by which user interaction is
supported. This can be complicated by one or more
layers of indirection that typically exist between the
user and the compute nodes on which their software
executes, illustrated by Figure 1. This indirection is
necessary for security of the system, however it can
introduce difficulties for the end user who is routinely
also outside of a gateway firewall. Furthermore, com-
pute nodes typically have a stripped down operating
system with only high performance components, and
as such may not include software for traditional desk-
top environments (e.g. an X11 server). Interaction
with software running on the compute nodes must
somehow address these layers of indirection between
the user and the application. The most common ap-
proach is for the remote application to act as a server,
and a local application on the user’s machine to act
as a client, coupled via a communication schema and
forwarding mechanism such as SSH tunnelling. How-
ever, there are a variety of different approaches for
this client-server scenario, from remote-desktop soft-
ware to bespoke application frameworks.

To contextualise the work presented in this pa-
per, we first critically review and classify the existing

3e.g. http://www.pbspro.org/

Gateway Node Login Node Compute NodesUser Machine

WAN LAN

Figure 1: The typical layers of indirection between a user
machine and the compute nodes of a HPC system.

approaches for remote interaction with high perfor-
mance applications, in terms of direct vs. indirect ap-
proaches, and web vs. native approaches. This classi-
fication scheme is outlined in Figure 2, in the context
of a typical HPC setup. In this diagram, the high per-
formance application consists of Interface and Com-
pute components, which are exposed to the user via
five different approaches with varying layers of in-
direction. Indirection of an approach refers to the
use of auxiliary software (Aux) to support the remote
access. Applications are connected via an Applica-
tion Layer Protocol (ALP) (Zimmermann, 1980), and
each hop refers to a jump between network layers that
may need facilitating (e.g. by port forwarding).
Direct Remote Native (DRN): This classification
refers to native applications that implement the full
end to end client-server model, i.e. the application
interface is installed on a users local machine, and
the application server runs on the compute nodes of
a HPC system. The connection is typically a cus-
tom messaging schema sent over a common appli-
cation layer protocol (e.g. ZeroMQ4, TCP sockets),
and each hop is often enabled via SSH tunneling.
This approach can perform well due to developer op-
timised messaging schemas tailored for the specific
application, however relies on availability and instal-
lation of a client for the specific user machine. The
increased performance is more effective for interac-
tive applications, particularly those requiring real-
time interaction. Examples of this class of appli-
cation are high performance visualization software
tools ParaView (Ahrens et al., 2005) and VisIt (Childs
et al., 2011), and remote debugging software such
as NVidia NSight Eclipse edition (NVIDIA Corpo-
ration, 2018a).
Indirect Remote Native (IRN): In this case na-
tive applications implement part of the client-server
model, however they may rely on auxiliary software
to extend fully to the user machine, or they may not
directly connect to the remote application. There are
various indirect approaches, and the location of the
interface or auxiliary software does not always match
exactly the two example scenarios shown in Figure
2. A typical example of the first scenario is a client

4http://zeromq.org/
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Figure 2: A classification scheme for remote applications in the context of HPC systems. Top: Native applications (DRN,
IRN), Bottom: Web applications (DRW, IRW).

application which runs on the login node of the HPC
system in order to interact with the resource manage-
ment system; the client is then accessed locally via
a remote desktop approach such as TurboVNC or X
Forwarding. The second scenario requires the inter-
face and auxiliary software to run directly on the com-
pute nodes; this can be more difficult to achieve due to
the lack of common desktop environment software on
compute nodes. Both approaches can provide more
portability when using auxiliary software. For exam-
ple, a linux client can run on the HPC system whilst
the user connects through remote desktop software
on a Microsoft Windows-based PC. However, perfor-
mance can degrade as auxiliary software is typically
not able to optimise data transfers as effectively as
custom approaches in a Direct Remote Application,
and may use slow transfer protocols such as reliance
on a shared filesystem. Examples of this type of appli-
cation are remote profiling tools such as Intel VTune
Amplifier (Intel Corporation, 2018) or the NVidia Vi-
sual Profiler (NVIDIA Corporation, 2018b). This ap-
proach is also commonly used to allow installing a
variety of user software, which may in fact be direct
remote applications, on a HPC system, such that the
users of the system only need to install a remote desk-
top solution on their own machine.
Direct Remote Web (DRW): A web application run-
ning in the users browser is directly connected to the
application server running on compute nodes. The di-
rect approach requires exposing a public web server
that also has internal access to the compute nodes, and

directly connecting the user web application to the
server via a web-capable ALP such as WebSockets
(the direct connection may include intervening router
software). This approach is most flexible and conve-
nient for the user, however introduces significant se-
curity concerns if the web-server is to be made public.
A simple work-around for an internal application is to
run the web server on an internal node, and use SSH
Tunneling to forward ports from the user machine
to the internal node, thus securing the user connec-
tion via SSH. Some examples of these approaches are
the ParaView Web Interface and JupyterHub (Jupyter
Hub Development Team, 2018), detailed further in
Section 3.
Indirect Remote Web (IRW): A web application
running in the users browser is connected via a web
server to auxiliary software (beyond simple routing
software), which in turn is connected to the applica-
tion server. This approach allows for the auxiliary
software to provide a layer of security between the
public web server and the application, however can
introduce difficulties for interactivity. For example,
common techniques are to use a shared filesystem or
database polling as an intermediary step to pass re-
quests from the user to the server, which is sufficient
for data access but introduces additional latency and
constraints not amenable to real-time interaction with
the application. This approach is typical for public
facing web portals supported by HPC resources, for
example TAO (Bernyk et al., 2016) and the Cosmo-
logical Web Portal (Ragagnin et al., 2016).
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This four-part classification scheme effectively
describes the ways in which applications are run re-
motely on HPC systems. Some may support more
than one mode of execution, and so can fit into mul-
tiple categories of this scheme; for instance extensive
visualization software ParaView can be used with var-
ious types of interface that can be classified in each of
these categories.

3 RELATED WORK

With reference to the classification scheme of Sec-
tion 2, there are many remote applications that can
be placed into one or more of these categories. The
scope of the work presented in this paper is limited to
those that fit into the Direct or Indirect Remote Web
categories and can support real-time interactivity. The
related tools we have identified that can be classified
as DRW or IRW are listed below.

ParaView (Ahrens et al., 2005) is a large scale par-
allel visualization software, designed for effective ex-
ploitation of HPC systems. A web enabled version
ParaViewWeb5, can act as a Direct Remote Web Ap-
plication by allowing the user to remotely connect
via web browser to a ParaView server running on a
HPC system. The connection is enabled via custom
library wslink6 that connects JavaScript web clients to
a Python web server through ALP WebSockets. Fur-
thermore, the in-situ library Paraview Catalyst (Aya-
chit et al., 2015) allows users to instrument their ap-
plication for in-situ analysis, visualization, and com-
putational steering purposes.

The Cactus computational framework (Goodale
et al., 2003) supports a web browser interface for in-
situ visualization and steering tasks. The user can
instrument existing HPC applications with the Cac-
tus API, and perform interactive steering tasks and
view visualization outputs through a web browser.
The standard implementation utilises a HTTPD 7 web
server, and forwards ports to the user for remote ac-
cess.

The Jupyter Notebook8 is a web application al-
lowing users to interactively write and execute code,
and transform, analyse, and visualize data using a
variety of languages. The Notebook can be set up
manually on a HPC system, exposing a web inter-
face via the built in Notebook python web server that
can be accessed by browser from a user machine via

5https://kitware.github.io/paraviewweb
6https://github.com/kitware/wslink
7https://httpd.apache.org/
8http://jupyter.org/

port forwarding. Furthermore, it is possible to deploy
JupyterHub as a multi-user hub to access over HTTP,
an approach also viable on HPC systems (Milligan,
2017).

The WebVis framework (Zhou et al., 2013) is a
multi-user, client-server, visualization system with a
web-based client that can interact with a cluster-based
visualization server. The client is connected to the
server via a back-end service built using the Google
Web Toolkit and a Java web server, which communi-
cate with an institutional web service that forwards
events and images to and from the internal render
cluster (i.e. an IRW approach). Client GUI inter-
actions are forwarded to the server, and images re-
turned, through an EventBus using the HTTP server
push paradigm.

The commercial remote desktop software FastX9

enables users to use existing desktop interfaces via the
web with a WebAssembly module for a uniquely effi-
cient high performance remote desktop service in the
browser. This option is an effective solution for en-
abling access via the web for applications with ex-
isting interfaces, but does require a FastX license. A
similar approach can be taken with other remote desk-
top protocols, such as VNC through e.g. TightVNC10.
However, compute nodes of HPC systems commonly
have a stripped down version of Linux that does not
support GUI applications, so in most cases the appli-
cation must already support remote execution from a
login node. This software can enable Direct and Indi-
rect Remote Applications to be used as Indirect Web
Applications.

Remote frameworks that support web such as
FastX are seeing some success, for example the web
visualization portal at the Texas Advanced Comput-
ing Centre supports web-based usage of Paraview
through a web-based VNC session, however such ap-
proaches do require the user to already have a direc-
t/indirect remote application. Other solutions are built
upon bespoke frameworks which are effective for a
single application but less useful for the general case
of a HPC application requiring remote interaction or
monitoring. The development of WSRTI, described
in the next section, is intended to address the lack of
general purpose tools for interoperability, in order to
support the development of more applications using
the DRW and IRW approach for remote interactivity.

WSRTI, the development of which is described in
the next section, is intended to address this lack of
general purpose tools for interoperability, in order to
support the development of more applications using
the DRW and IRW approach for remote interactivity.

9https://www.starnet.com/fastx/
10https://www.tightvnc.com/
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Figure 3: Structure of the client-side JavaScript library.

4 A FRAMEWORK FOR
CONNECTING REAL TIME
HPC APPLICATIONS TO THE
WEB

The WSRTI library11 is built to facilitate interoper-
ability of interactive web and HPC technologies. We
aim to reduce as much as possible the burden on
a research scientist to understand web technologies,
and allow them to link their application to a web in-
terface automatically from application-side specifica-
tions. The key features we support are data stream-
ing, RPC and event forwarding, and dynamic inter-
face generation. The following subsections discuss
the technical details of the library and illustrate how
each of the key features is supported.

4.1 Overview

WSRTI is conceptually split into two components, a
client side web library and a set of application-side
C++ utilities to assist HPC developers in exposing
RPC functionality and application data. The two com-
ponents are connected via a WebSocket communica-
tion scheme discussed in Sections 4.2.

The client-side JavaScript library is structured as
illustrated in Figure 3. The Data Handler, Event,
RPC, and Interface modules are described in the fol-
lowing sections, and integrated into an included client
template consisting of a web client capable of receiv-
ing and displaying images with a console input and
debug log.

Figure 4 illustrates the server-side utilities, con-
sisting of modules for binary serialization, generation
of JSON interface objects, RPC, and asynchronous
queues, along with convenience wrappers for image
compression and WebSocket servers. These modules
can be used by the HPC application developer to ex-
port data and interface descriptions, while sending

11https://github.com/RemoteRTI/WSRTI

Serializer TJPPWebSocket
Plus Interface

Server Side
C++ UtilitiesSync

Queue RPC

Figure 4: The collection of C++ utilities for HPC applica-
tions.

Data Stream

RPC
Generic Events

Interaction Events

Data Websocket

Auxiliary WebsocketBinary
Text

HPC Application User Browser

Figure 5: The data flow between a HPC application and
WSRTI. Data is split across two sockets, one for dedicated
binary streaming and a second for binary event and text
RPC messages. Variation of image also presented in (Dykes
et al., 2018) (Figure 5).

and receiving RPCs and events. All modules of the
library are documented with Doxygen12, and contain
unit tests that also act as example usage.

4.2 Communication: Data and Event
Streaming

Client and application side utilities enable the user
to package and asynchronously stream data back and
forth between the active HPC application and web
client; this includes generic binary data, formatted
binary messages, and strings. In order to facilitate
fast and interactive web communication, WSRTI ex-
ploits the WebSocket protocol. The full-duplex nature
of a WebSocket connection is ideal for interactivity;
messages can be sent and responses received without
polling, allowing streaming services to be built in a
simple and efficient manner. Two sockets are cre-
ated to connect to the application, a dedicated Data
Stream WebSocket for streaming binary application
data and user interaction events (mouse and keyboard
input), and an Auxiliary WebSocket for string-based
RPC commands and generic application events, as il-
lustrated in Figure 5.

The user can exploit the dedicated Data Stream to
forward application data to the client. The client data
handler module consists of set of data receivers, one
of which monitors the Data Stream at any one time.
Data receivers are simply implemented, and typically
assume the message they receive is of an expected for-

12http://www.stack.nl/ dimitri/doxygen/
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mat. The client and application should both agree on
the type of data expected on the Data Stream (this can
be agreed, for example, via an event on the Auxil-
iary stream). Messages are received in the form of a
JavaScript Blob and forwarded to the current active
data processing module, which is by default an image
processor. Keyboard and mouse events can also be
automatically streamed to from the client to the appli-
cation on the Data Stream.

The user can exploit the dedicated Auxiliary
Stream via the client event module to send and receive
formatted binary and string messages (distinguishable
in the WebSockets layer). Formatted binary events
are stored as JavaScript TypedArrays with a preced-
ing integer identifier, using a schema agreed upon
by both client and application. This identifier is in-
spected and the event is forwarded to the appropriate
event handler, for example this may be a non-standard
data message (e.g. a one-time downloadable file) or
metadata for analysis. String messages are inspected
for valid JSON-RPC formatting and forwarded to the
RPC module (Section 4.3).

The use of two dedicated sockets allows WSRTI
to make assumptions about the type of message re-
ceived and optimize client-side de-serialization. This
approach is used for data streaming from application
to client, which may potentially trigger messages in
high frequency and volume. For example during im-
age streaming the client data handler can choose to
interpret all messages received as JPEG compressed
images and directly update the display at high frame
rate. This avoids the need to de-serialize and check
a message identifier which can have a noticeable im-
pact on performance in the JavaScript data handling
module.

The application-side serializer utility is a C++
header-only library to assist with serializing C++ ob-
jects and structures to binary messages, for example
to create events or serialize application data. The
tjpp convenience library assists with compressing im-
ages to JPEG via lib-jpeg-turbo13. These can then be
passed to a WebSockets server (WebSocketPlus util-
ity) via a synchronized queue (SyncQueue utility) to
be asynchronously sent to the client.

4.3 Bi-directional RPC

The client and the application can exchange RPC re-
quests in both directions. To avoid the user imple-
menting application specific RPC handling in both the
client and application the application developer can
specify a function name and list of arguments as part
of the interface generation process (see Section 4.4).

13https://libjpeg-turbo.org/

Interface elements such as a button or input field on
the client can be bound to a procedure call on the
server at application run-time. This allows the appli-
cation RPC interface to be extended or updated with-
out changing the client code, and avoids the need for
specific RPC functions and arguments to be known in
advance,

Internally, the RPC module can send and receive
JSON-RPC14 formatted requests. The JSON-RPC
format is a simple specification that covers the nec-
essary feature set for RPC in this context. JSON
(JavaScript Object Notation) is essentially a subset of
JavaScript, and natively supported by the language.
Bi-directional RPC allows the server to also trigger
client-side operations if supported, such as handling a
dynamic interface descriptor or accepting a file down-
load. This model of RPC allows more advanced
clients to be implemented, for example facilitating a
peer-to-peer model where a client can trigger an ac-
tion that will be forwarded to multiple other clients.
This feature would support an advanced implementor
in creating a collaborative environment through indi-
rect messaging between clients.

4.4 Dynamic Interface Generation

The library follows an application-centric design,
meaning that the majority of the client functionality is
defined by the application through dynamic interface
generation and RPC linkage. This allows the devel-
oper to focus on their HPC application and the data
they want to expose, rather than on building a web
GUI. The HPC application at runtime can define and
modify the look and feel of the web client user in-
terface, for example adding or removing buttons and
sliders and specifying RPC calls and arguments that
should be linked to client actions.

The interface generation mechanism depends on
the construction of an interface descriptor, typically
on the application side, which is forwarded to the
client on connection. This can then be updated via
client-targeted or broadcast RPC messages from the
application, or upon request by the client. The de-
scriptor is a hierarchical structure, reflecting the typ-
ical conceptual hierarchy of a user interface, that de-
scribes a series of buttons, sliders, input fields and dis-
play fields.

Figure 6 demonstrates the application-side pro-
cess to create an interface descriptor. Groups of menu
elements are of type group, while elements have types
such as Button or TextInput which are used by the
client to generate web interface elements. The args
object is used to specify arguments to the RPC call,

14http://www.jsonrpc.org/specification
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which are linked to data objects contained in the in-
terface descriptor and can be generated via menu in-
teractions or manually. The JSON descriptor is gener-
ated using a language specific JSON library, such as
RapidJSON15 for C++. A C++ Interface header in-
cluded with the framework provides utility functions
to generate JSON menu elements such as text input
boxes, numerical sliders, and buttons, whilst an RPC
header supports creation of RPC messages.

The client interface module (Figure 3) is split be-
tween a CLI component and a GUI component. In the
template example. the CLI component is linked to an
input box on the web page, and parses the input string
for internal commands (such as a request to print the
help message to the log), distinguished by a preced-
ing ’.’ character, or commands to the server which
are forwarded as RPC calls. This is helpful for simple
text interfaces and debugging.

The GUI component generates an interface based
on the interface descriptor. By default, the interface is
generated via lightweight graphical interface library
datGUI16, however this can be replaced by a different
interface library (e.g. React, jQuery) by overriding a
series of interface generation functions. This allows
users with web-experience to exploit more extensive
interface libraries to add widgets and other advanced
interface elements. Whilst the client typically parses
the interface descriptor from the application and dy-
namically generates a user interface, it is also pos-
sible to manually construct this on the client-side if
preferred.

5 EXPOSING A REMOTE
APPLICATION FOR
INTERACTION VIA WSRTI

In order to interact with an active remote applica-
tion, there is a set of requirements the application
should satisfy. As interaction is typically a necessary
part of computational steering, the following require-
ments take inspiration from those for steering libraries
(Brooke et al., 2003). However, WSRTI is intended to
apply more generally to remote interaction with ap-
plications, as opposed to steering of numerical sim-
ulations, as such the requirements are generalised to
represent the minimal requirements for user interac-
tion. At least one of these requirements must be met
in order to enable remote interaction: (1) expose a
representation of application state, (2) expose a repre-
sentation of application data, (3) expose an RPC inter-

15http://rapidjson.org/
16https://github.com/dataarts/dat.gui

// JSON Value objects, a top level descriptor, a group

representing a subfolder and its contents.

Value dsc(kObjectType), user_grp(kObjectType),

user_content(kObjectType);

string current_input_file = "";

// A text box for an input file name and a ’load’ button

user_content.AddMember("Input File",

ui_text_input(current_input_file));

// Describe the argument to the ’Load’ function: 1

string, the ’Input File’ text box content

vector<string> args = { "User Settings/Input File" };

user_content.AddMember("Load", ui_button("cmd_load",

args));

// Add the contents to the ’User Settings’ group

user_grp.AddMember("type", "Group");

user_grp.AddMember( "contents", user_content);

// Add ’User Settings’ group to the interface descriptor

dsc.AddMember("User Settings", user_grp);

Figure 6: Creating an interface descriptor with one menu
called ”User Settings”, containing a text input box and a
button to load an input file by name. RapidJSON custom
memory allocator arguments are removed for brevity.

face, (4) accept input from standard Human Interface
Devices (HIDs).

Supporting (1) is a minimal requirement allow-
ing a web interface to display the current application
state. This could be, for example, whether the appli-
cation is still running and some indicator of algorith-
mic progress, e.g. the current time in a computational
simulation. (2) enables an interface to display a repre-
sentation of the applications working data. This could
be a subset of simulation data for analysis, or pre-
generated analyses such streaming 3D visualization
or graph plots. (3) enables linking web interactions to
an RPC interface to trigger application mechanisms
such as modifying variables or changing state. (4)
relates to input from HIDs, for example linking key-
board and mouse interactions to actions within the ap-
plication such as controlling a virtual camera during
visualization or stepping through program execution
in a debugging tool.

In order to support one or more of these require-
ments, the application must contain a control loop or
checkpoint, in which point actions (1) and/or (2) can
be performed, or input from the remote client can be
accepted and handled (Figure 7, left). A typical case
of control loop is iterating over the time domain dur-
ing a simulation (or time stepping), in which case
WSRTI could be used for computational steering.
These requirements may be satisfied by instrument-
ing user code with a set of additional functions. Fig-
ure 7, right, demonstrates the minimum necessities to
add interactivity to a generic application for WSRTI.
setup() is responsible for initialising the WebSocket
servers and providing callbacks for event handling,
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initialise()
while(true)
process_data()
write_output()
check_exit_condition()

finalise()

initialise()

while(true)

finalise()

setup()

update()
process_data()
write_output()

check_exit_condition()
send_state_and_data()

Figure 7: The generic case for instrumenting a high perfor-
mance application for remote observation or interaction.

along with constructing the JSON interface descriptor
which is sent to the remote client. update() receives
events and RPC requests from the client and pro-
cesses them accordingly, potentially modifying the
user code parameters based on the events received.
send state and data() outputs application state and
data for the client to process, either in the form of
interface updates or streaming data.

To demonstrate the applicability of WSRTI to
real-time applications, we use as an example case a
high performance batch visualization code. This HPC
application is instrumented to accept input, RPC and
image streaming to become a web-accessible real-
time large scale visualization server for HPC systems.

6 USE CASE: SCIENTIFIC
VISUALIZATION

Splotch (Dolag et al., 2008) is a scientific visualiza-
tion package designed to run on HPC systems and
process large scientific datasets. Splotch is open
source, written entirely in C++, with minimal depen-
dencies beyond those for parallel models and spe-
cific file I/O. Splotch can exploit OpenMP for shared
memory parallelism, MPI for distributed memory par-
allelism, and is also able to exploit heterogeneous
machines with computational accelerators (Jin et al.,
2010; Rivi et al., 2014; Dykes et al., 2017).

Initially designed to run in batch processing mode,
Splotch reads a file on start-up describing input data
and visualization parameters. After loading the input
data and setting up the visualization scene, an itera-
tive render loop performs the visualization, creating
and writing a series of one or more images along a
pre-defined camera path. We detail the steps taken to
instrument our code to communicate with the WSRTI
library and fulfil the requirements in Section 5, ex-
tending Splotch from a batch visualization software
to a visualization server capable of real-time interac-
tion through a web interface.

The Splotch algorithm is presented in Figure 8,
with additions for WSRTI marked in red. The key al-

Binary Data File(s)

Load parameter file and data file
Setup server components, build interface

descriptor

Handle Events, Update parameters,
Update interface descriptor

3D Transformation, perspective
projection, coloring

Solving radiative transfer equation
along lines of sight

Parallel image reduction

Save to disk or compress and send to
client 
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Image file

INPUT

UPDATE LOOP

PROJECT/COLOR

RENDER

COMPOSITION

OUTPUT

Figure 8: The Splotch algorithm, with changes for WS-
RTI interactivity highlighted in red. Image also presented
in (Dykes et al., 2018) (Figure 4).

gorithmic change involved the addition of an update
function with loop back mechanism to move from al-
gorithm completion back to the update, followed by a
series of additional functions to perform tasks as de-
tailed below.
Initialisation. After file input, we initialise the WS-
RTI server side components and create an interface
descriptor as demonstrated in Figure. 6, adding text
input and number sliders, adding RPC linkage for var-
ious modifiable visualization parameters.
Update. At the beginning of the control loop the
update function performs various tasks. Event han-
dling processes both events and RPCs received since
the last update. Local parameters are updated, and
updates are reflected in the interface descriptor. In
the case of Splotch, we support HID events to control
the visualization camera (mouse for rotation, keys for
movement), and RPC messages to update visualiza-
tion parameters such as the active dataset, color map,
and graphical variables.
Output Data. Our output data, an uncompressed
TGA formatted image, is passed through a JPEG
image compressor and added to the message queue
(using WSRTI syncqueue utility), which is asyn-
chronously extracted and passed to the WebSocket-
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Figure 9: Splotch running on a HPC system visualizing
an astronomical light-cone in real-time, streaming to web
browser via the WSRTI framework. Dynamic interface is
seen on the right hand side using the default dat.GUI inter-
face generator. Image also presented in (Dykes et al., 2018)
(Figure 11), see reference for further details.

Plus utility for sending to the client. In Splotch, the
limiting factor on framerate is the data size; for large
datasets (hundreds of Gigabytes and more), it is ex-
pected to run at a reduced frame-rate (e.g. 10fps) as
compared to other real-time rendering. For this reason
we use only frame-by-frame compression, rather than
video compression which would increase the latency
for user interaction at low frame rates.

Various application-specific optimisations were
implemented to achieve a fast frame rate for real-time
visualization, outside of the scope of WSRTI. These
focused predominantly on reduced memory allocation
and reuse of data buffers, and may or may not be nec-
essary for a more general research application.

The initial instrumentation for interactivity is
lightweight, and so a researcher looking for low-
impact monitoring can be up and running quickly,
however further work is required to create a fully fea-
tured interactive application. The interactive build of
Splotch exploiting WSRTI is illustrated in Figure 9,
and for more extensive detail on the feature-set and
usage of interactive Splotch for astronomical visual-
ization, the reader is referred to (Dykes et al., 2018).

Instrumentation via WSRTI also allows a deeper
integration with web-based tools for scientific analy-
sis, beyond the simple client shown in Figure 9. To
demonstrate this, in Figure 10 we embed our web
client within a Jupyter notebook, and connect it to the
Splotch visualisation server running on a high perfor-
mance computing system (test system as detailed in
Section 7).

In this case, we are visualising a set of snapshots
of a large state of the art galaxy formation simulation
GigaERIS (Tamfal, Mayer, et al. in prep.), a higher
resolution follow-up to the successful Eris simulation
suite (Guedes et al., 2011). The full evolution of this

Figure 10: A Jupyter Notebook showing interactive visual-
ization via the Splotch code running on a remote HPC sys-
tem, visualizing the results of state of the art galaxy forma-
tion simulation GigaERIS.

simulation produces hundreds of snapshots, each of
which consists of 1.1 billion particles, with 10-12 data
fields per particle, resulting in approximately 50GB
disk space required per snapshot. There are three
types of particle, dark matter, stars, and gas; the vi-
sualisation consists of just the stars and gas (between
500 and 600 million particles for a single snapshot),
with gas coloured by temperature and stars coloured
by age. A volume rendering of such data is typically
beyond the capabilities of a web browser, due to the
size (too large to download and process locally), lo-
cation (source data is often stored on the parallel file
system of a supercomputer), and complexity (can re-
quire domain specific tools and high performance re-
sources to visualize).

Whilst this example is simple and demonstra-
tory, a full integration could benefit from Python
to JavaScript bindings to allow full control of the
Splotch server through the Notebook. For example,
interesting subsets of data may be identified and ex-
tracted via the visual interface, and statistical analy-
sis may then be applied using common Python-based
analysis tools, either via downloading to the local ma-
chine, or via a hosted Jupyter Notebook instance on
the HPC system.

7 REAL WORLD
PERFORMANCE

HPC systems are typically accessed remotely, from
elsewhere in the same building to continents on the
other side of the world. For this reason, we run a num-
ber of tests spanning a wide physical area to demon-
strate the extent of support for event and data stream-
ing through WebSockets for WSRTI.
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For many network-based tools, performance is
significantly dependent on the performance of the net-
work, as such the most significant factor in this case is
the variable Internet connection between the user and
the HPC system. Real-world performance for WSRTI
is dependent on the user and their environment as well
as the typical load on the network at any one time.
This section describes the performance for one such
environment, which represents a typical user scenario.
A user laptop is set up as a client in a U.K. University
laboratory, whilst a server application is executed on
a HPC system at a remote computing facility abroad.

The test system is Swan, a Cray XC50 located at
the Cray computing facility in Wisconsin, USA. Each
utilized node consists of 2 Broadwell 22-core Xeon
CPUs clocked at 2.2Ghz. The web client runs on a
Macbook Pro (early 2013 model) with 2.7 GHz In-
tel Core i7, and Mozilla Firefox 61.0.1, at the Univer-
sity of Portsmouth in the UK. The test environment on
the HPC system is a C++ application (included with
the library) that generates data buffers of varying size
and streams them over WebSockets using the Sync-
Queue and WebsocketPlus utilities. It has the capac-
ity to send without expecting reply, mimicking a data
stream, or wait for replies and measure send and re-
ceive latencies mimicking events or RPC calls. On the
user laptop the template web client in which we have
implemented an additional generic client DataHan-
dler (see 4.2), which can act as a binary data stream
receiver or a ping-pong type application that will re-
turn each received message. The test system network
is organised similarly to Figure 1, without the gate-
way node. A port is forwarded for each WebSocket
via SSH tunnel, and the client web-page is hosted lo-
cally for the user. For a series of tests with varying
packet size, we stream packets to the client and mea-
sure latency and bandwidth.

Figure 11 shows a series of bandwidth results for
the described test setup. In this environment we reach
a maximum sustained bandwidth for data streaming
of ˜9 MB/s, which is reached at packets of 2MB,
with ideal bandwidth for packet ranges from 128KB
to 2MB. As previously mentioned, test results are de-
pendent on the current network load, and so may vary
with time. Figure 12 shows data latency, for packets
under 8KB we have a latency of under 100ms, which
is typically acceptable for real-time interaction in a
typical remote application. For packets up to 500KB
latency remains in the 1-200ms range, steadily rising
as packets increase in size beyond this.

Figures 11 and 12 show WSRTI performance
when streaming from a HPC system roughly 4000
miles away, and typical users of HPC centers in their
own country, or even their own institution, may ob-

0

1

2

3

4

5

6

7

8

9

10

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

16
77

72
16

33
55

44
32

67
10

88
64

13
42

17
72

8

Ba
nd

w
id

th
 (M

B/
s)

Data Packet Size (Bytes)

Bandwidth v.s. Packet Size: Wisconsin, USA -
Portsmouth, UK.

Figure 11: Bandwidth for data streaming from a WSRTI-
enabled synthetic remote application.
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Figure 12: Packet latency for data streaming from a
WSRTI-enabled synthetic remote application.

tain higher bandwidths. Conversely, users in remote
locations may indeed obtain much lower bandwidths.
This can affect both the number of data packets that
we can receive per second, and the latency at which
we receive them, as illustrated by inconsistent band-
width measurements for larger data objects in Figure
11. In our Splotch use case, JPEG compressed im-
ages are streamed from the application to the client
and user interaction events (mouse and keyboard) and
RPC messages are returned. Figure 13 illustrates the
compressed binary size of a typical 1920x1080 pixel
High Definition (HD) Splotch image at varying com-
pression qualities. Referring to Figure 11, we are able
to achieve maximum bandwidth in the mid to high
quality ranges (JPEG 60-95 range of Figure 13), and
>10 FPS on all compressed data sizes.

The size of binary events and RPC calls typically
range from 32 to 128 bytes, potentially extending to a
few kilobytes and above if a data packet is attached to
an RPC call. As demonstrated by the data in Figures
11 and 12, for real-time interaction with a HPC ap-
plication WSRTI can perform sufficiently to stream
user interaction events and RPC calls between the
web client and application. Whilst bandwidth may be
low for small size packets case, the low latency means
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Figure 13: The relationship of JPEG compression quality
factor and image byte-size for a typical High Definition
(1920x1080 pixel) Splotch visualization image. Uncomp
indicates the size of an uncompressed output.

interaction is effective and responsive.
For real-time data streaming, there are a few lim-

itations on the web-client. Particularly, the web
browser is less capable of processing large data (e.g.
in the range of multiple Gigabytes). In our tests, web
browsers typically have upper limits on single Web-
Socket messages starting around 256 MB, and will
struggle computationally with buffers of multiple gi-
gabytes. For larger data, it is recommended to per-
form computationally-intensive analysis on the HPC
system and send small analysis datasets along with
application status/interface and analysis results such
as graph plots and visualization images to the client.

8 SUMMARY AND
CONCLUSIONS

In this paper we introduce the WSRTI library, which
aims to support integration between traditional HPC
applications in languages such as C or C++, and the
modern day Web environment. In particular, we aim
to provide a lightweight solution to interact via the
web with HPC applications in real-time.

We summarise and classify the techniques avail-
able for remote connections to HPC systems, explain-
ing the process and benefits of each. We summarise
existing tools supporting remote interaction via web,
highlighting the lack of general purpose tools to as-
sist HPC application developers in remotely interact-
ing with their applications, and detail the features of
WSRTI and how they can be used to support such ac-
tivities, demonstrating usage by instrumenting a batch
scientific visualisation software for real-time interac-
tion. We expect future work to include streamlining
our utilities to reduce the tax on HPC developers hop-
ing to extend their HPC application for web connec-
tivity, particularly reducing the necessity for boiler-

plate code. One of the avenues we are exploring is
the use of a wrapper API to allow WSRTI to be used
in a similar manner to popular in-situ visualization li-
braries such as Paraview Catalyst and VisIt Libsim.
We also intend to further optimise the communica-
tion routines, especially for data streaming, consider-
ing features such as automatic compression factor ad-
justment and tiled compression for multiplexed image
streams. This should be combined with an investiga-
tion into the optimal approach to set up a WebSocket
between HPC applications and Web clients from a se-
curity perspective, whilst retaining interactivity. Fi-
nally, we are also considering interfaces for other lan-
guages in use in HPC, such as Fortran.
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