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Abstract: In the last few years, Intel has launched several low-cost RGB-D cameras. Three of these cameras are the
SR305, the L415, and the L515. These three cameras are based on different operating principles. The SR305
is based on structured light projection, the D415 is based on stereo based also using the projection of random
dots, and the L515 is based on LIDAR. In addition, they all provide RGB images. In this paper, we perform
an experimental analysis and comparison of the depth estimation by the three cameras.

1 INTRODUCTION

Consumer-level RGB-D cameras are affordable,
small, and portable. These are some of the main fea-
tures that make these types of sensors very suitable
tools for research and industrial applications, rang-
ing from practical applications such as 3D recon-
struction, 6D pose estimation, augmented reality, and
many more (Zollhöfer et al., 2018). For many applica-
tions, it is essential to know how accurate and precise
an RGB-D camera is, to understand which sensor best
suits the specific application (Cao et al., 2018). This
paper aims to compare three models of RGB-D cam-
eras from Intel, which can be useful for many users
and applications.

The sensors are the RealSense SR305, D415, and
L515. Each sensor uses different methods to calculate
depth. The SR305 uses coded light, where a known
pattern is projected into the scene and, by evaluat-
ing how this pattern deforms, depth information is
computed. The D415 uses stereo vision technology,
capturing the scene with two imagers and, by com-
puting the disparity on the two images, depth can be
retrieved. Finally, the L515 that measures time-of-
flight, i.e., this sensor calculates depth by measuring
the delay between light emission and light reception.

Several different approaches can be used to evalu-
ate depth sensors (P.Rosin et al., 2019),(Fossati et al.,
2013). In this case, we focused on accuracy and re-
peatability. For this purpose, the cameras were eval-
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uated using depth images of 3D planes at several dis-
tances, but whose ground truth position and orien-
tation were not used as we don’t know them. Ac-
curacy was measured in terms of point-to-plane dis-
tance, and precision was measured as the repeatability
of 3D model reconstruction, i.e., the standard devia-
tion of the parameters of the estimated 3D model (in
this case, a 3D plane). We also calculated the aver-
age number of depth points per image where the cam-
eras failed to calculate depth (and their standard de-
viation), and the number of outliers per image (points
for which the depth was outside an interval). More-
over, we employ directional statistics (Kanti V. Mar-
dia, 1999) on the planes’ normal vectors to better il-
lustrate how these models variate.

2 RELATED WORK

Depth cameras and RGB-D cameras have been an-
alyzed and compared in many different ways. In
(Halmetschlager-Funek et al., 2019) several param-
eters of ten depth cameras were experimentally an-
alyzed and compared. In addition to that, an anal-
ysis of the cameras’ response to different materials,
noise characteristics, and precision were also evalu-
ated. A comparative study on structured light and
time-of-flight based Kinect cameras is done in (Sar-
bolandi et al., 2015). In (Chiu et al., 2019) depth cam-
eras were compared considering medical applications
and their specific requirements. Another comparison
for medical applications is performed in (Siena et al.,
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2018). A comparison for agricultural applications is
performed in (Vit et al., 2018). Analysis for robotic
applications is performed in (Jing et al., 2017). In
(Anxionnat et al., 2018) several RGB-D sensors are
analyzed and compared based on controlled displace-
ments, with precision and accuracy evaluations.

3 METHODOLOGY

3.1 Materials

As aforementioned, the sensors used in this evalu-
ation employ different depth estimation principles,
which yields information about the sensor’s perfor-
mance and how these technologies compare to each
other (for the specific criteria used).

The SR305 uses coded light, the D415 uses stereo
vision, and the L515 uses LIDAR. The camera spec-
ifications are represented on table 1. The three cam-
eras were mounted on the standard tripod.

To ensure constant illumination conditions, a LED
ring (eff, 2020) was used as the only room illumina-
tion source.

Table 1: Sensors resolution (px*px) and range (m).

Sensor SR305 D415 L515
Depth 640x480 1280x720 1024x768
Color 1920x1080 1920x1080 1920x1080
Range [0.2 1.5] [0.3 10] [0.25 9]

Note that the values on table 1 are upper bounds,
meaning that the specifications may vary for different
sensors’ configurations. It is also important to men-
tion that the D415 range may vary with the light con-
ditions.

3.2 Experimental Setup

Each camera was mounted on a tripod and placed at
a distance d of a wall. The wall is white and covers
all the field of view of the cameras. The optical axes
of the sensors are approximately perpendicular to the
wall. Placed above the camera is the light source,
above described. The light source points to the wall
in the same direction as the camera. For practical rea-
sons, the light source is slightly behind the camera so
that the camera does not interfere with the light. A
laptop is placed behind the camera where the camera
software is executed and where the images are stored.
All the experiments took place at night, avoiding any
unwanted daylight. Hence, the room’s light was kept
constant between experiments and always sourced by
the same element.

The camera, light source, and laptop were placed
on top of a structure. We wanted everything to be
high relative to the ground to ensure that the sensors
captured neither floor nor ceiling. For each distance
at which the cameras were placed, 100 images were
acquired. The distances for which both D415 and
L515 were tested are 0.5m, 0.75m, 1m, 1.25m, 1.5m,
1.75m, 2m, 2.5m, 3m, and 3.5m. The furthest dis-
tance was the maximum distance for which neither
floor nor ceiling appeared on the images. The SR305
was tested at 0.3m, 0.4m, 0.5m, 0.75m, 1m, 1.25m,
and 1.5m. In this case, the furthest distance is the
maximum specified range for the SR305 sensor.

The experiments started at the closest distance.
The sensors were switched right after the other se-
quentially. After all the images were obtained at that
distance, all the structure was moved away from the
wall by the aforementioned intervals. The structure
moved approximately perpendicularly to the wall.

For the D415 and the L515 sensors, we used cus-
tom configurations. For the SR305 we used the de-
fault configuration. These configurations were the
same as those of table 1.

3.3 Software

To deal with the sensors, the Intel RealSense SDK
2.0 was used. The Intel RealSense Viewer applica-
tion was used to check the sensors’ behavior right be-
fore each execution, to check for the direction of the
optical axis and distance. All the other tasks were
executed using custom code and the librealsense2 li-
brary. These tasks include both image acquisition and
storing, camera configuration, and point cloud gen-
eration. This part of the work was executed using
Ubuntu. All the statistical evaluation was performed
in MatLab, on Windows 10.

3.4 Experimental Evaluation

3.4.1 Performance

The performance of the sensors was measured in two
ways. First, we calculated the average number of
points for which the sensor failed to measure depth
and the standard deviation of the same number of
points. Then we do the same for outliers.

Whenever the Intel RealSense SDK 2.0 and cam-
era fail to measure the depth at some point, the corre-
sponding depth is defined as zero. Hence, all we do
here is to count pixels in the depth image with a depth
equal to zero.

Depth values also contain outliers. Outliers can be
defined in several ways. In this case, we considered
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as an outlier every point with a depth value differing
10cm from the expected distance, given the specific
geometric configuration and setup.

As described in the Intel RealSense D415 prod-
uct DataSheet (D41, 2020), the D415 sensor has an
invalid depth band, which is a region in the depth im-
age for which depth cannot be computed.

The coordinate system of the left camera is used as
the reference coordinate system for the stereo camera.
The left and right cameras have the same field of view.
However, due to their relative displacement, there is
an area in the left image for which it is impossible to
compute disparities since the corresponding 3D vol-
ume is not visible in the right camera. It results in a
non-overlap region of the left and right cameras for
which it is impossible to measure depth. This region
appears in the image’s leftmost area and is illustrated
in figure 1. The total number of pixels in the invalid
depth band can be calculated in pixels as follows:

InvalidDepthBand =
V RES∗HRES∗B
2∗Z ∗ tan(HFOV

2 )
(1)

Where V RES and HRES stand for vertical and hori-
zontal resolution respectively (720px and 1280px), B
is the baseline → 55mm, Z is the distance of scene
from the depth module → d and HFOV is the hori-
zontal field of view→ 64◦.

Bearing that in mind, the pixels in the invalid
depth band were ignored in our calculations.

Figure 1: Invalid Depth Band.

3.4.2 Plane Fitting

Point clouds were first obtained using the depth data,
the image pixel coordinates, and the camera intrinsics.
This is possible because we have depth information,
letting the coordinate z be equal to the measured depth
at that point, i.e., z = dm the following equations can
be applied:

x = z∗ u− ppx

fx
(2) y = z∗

v− ppy

fy
(3)

Where (u,v) are the pixel coordinates, (ppx, ppy)
are the coordinates of the principal point, fx and fy

are the focal lengths in pixel units.
The point clouds correspond to a wall. Thus it is

possible to fit a plane to the data.
Since we handle ourselves the outliers, we per-

formed the plane equation’s estimation using standard
least-squares regression, employing the singular value
decomposition, instead of robust approaches such as
RANSAC.

The model we want to be regressed to the point
clouds is the general form of the plane equation:

x∗nx + y∗ny + z∗nz−d = 0 (4)

Where (nx,ny.nz) stands for the unit normal, and
d stands for distance from the plane to the origin.

If we now build a n ∗ 4 matrix from the point
clouds with n points, which we will denote as matrix
P. We can rewrite equation 4:

0 =


x1 y1 z1 −1
x2 y2 z2 −1
...

...
...

...

︸ ︷︷ ︸
P

xn yn zn −1


nx

ny
nz
d

 (5)

By computing the singular value decomposition
on matrix P as:

P =U ∗Σ∗V ′ (6)

We can now use the values of the column of ma-
trix V that corresponds to the smallest eigenvalue in
matrix Σ, as the parameters n∗x ,n

∗
y ,n
∗
z and d∗ of the

plane that fit that point cloud. Then, we normalize
the plane’s normal vector, which will become handy
in further calculations and recover the true distance in
meters of the plane from the sensor.

3.4.3 Accuracy

For the accuracy analysis, we compute the point-to-
plane distance. For each point of the point cloud, we
use the fitted plane equation to compute the errors,
i.e., the point-to-plane distance. We then calculate the
average root mean square error for each set of 100
images as an accuracy measurement. For the sake of
comparison, we perform this computation for two dif-
ferent threshold values for outlier rejection (±10cm
and±35cm), another one where we use all points with
the measured depth.

3.4.4 Precision

In this work, precision is measured as per image plane
consistency, i.e., how the plane model changes in be-
tween images of the same sensor at the same distance.
As neither the scene nor the sensor change while tak-
ing the pictures, we could expect the models to be
the exact same if we had an ideal sensor. Thus, by
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measuring the standard deviation of the plane model
parameters in between images, we might be able to
better understand how consistent the sensors are with
their measurements and how this consistency varies
with the distance.

Additionally, we also transform the plane’s nor-
mal vector into spherical coordinates, where we can
perform analysis of directional statistics as all the nor-
mals are distributed on a spherical surface. Specifi-
cally, the circular mean and standard deviation of an-
gles θ and φ, and the spherical variance of the normal
vectors. Since ~ni is unitary, its norm ρ is 1.

Let θ and φ be the azimuth and altitude angles of
~ni:

θi = arctan
nyi

nxi

(7) φi = arctan
nzi√

n2
xi
+n2

yi

(8)

As in (Kanti V. Mardia, 1999), the circular mean
of the angles above can be computed as follows:

θ = arctan

n
∑

i=1
sinθi

n
∑

i=1
cosθi

(9)

φ = arctan

n
∑

i=1
sinφi

n
∑

i=1
cosφi

(10)

Now, to show how the spherical variance is com-
puted, we need to introduce vector~n, which is the vec-
tor whose components are the mean of each compo-
nent of ~n. If we now compute the norm of ~n and call
it R, the spherical variance is calculated as follows:

V = 1−R (11)

4 RESULTS

4.1 Performance Analysis

In tables 2, 3 (In Appendix) and figure 2, we show
the results for the average number of failed points
and the standard deviation of the number of failed
points per image (points where the sensor could not
compute depth). As it can be verified, the L515 sen-
sor outperforms both D415 and SR305. This sensor
not only showed to be capable of estimating more
depth data relative to its resolution, but the results also
show that that number (of failed points) remains al-
most constant up until 2 meters of distance. This can
be explained by the fact that this sensor uses LIDAR

technology, which is more robust than the stereo vi-
sion and coded light approaches since LIDAR directly
computes depth.

On the other hand, the D415 sensor shows much
better results than the SR305.

A relevant detail of this performance measurement
is that the standard deviation of the number of failed
depth points for the D415 is not strongly dependent
with the distance, whereas that does not seem to be
the case for the L515.

Tables 4, 5 (In Appendix) and figure 3 include the
results for the number of outliers. Just as it happened
in terms of the average number of failed depth points,
the data for the D415 camera show an increase in the
average number of outliers as the distance increases.
On the other hand, the number of outliers for the
SR305 seems to decrease with increasing distances.
These results are quite different from those presented
in table 2 (In Appendix). The main reason for these
results is probably because the SR305 camera is es-
timating a relatively small number of depth points at
higher distances, therefore decreasing the probability
of outlier occurrences.

To better illustrate this, we show in figure 4 a sam-
ple image taken with the SR305 sensor at 1.5 meters
of distance, where it is notorious the small amount of
points for which this sensor is measuring depth (the
dark region represents points where the depth was not
computed).

On the other hand, for the case of the L515, the
number of outliers is essentially independent of the
distance. Even though there is some fluctuation in the
numbers, the variation is relatively small. Consider-
ing the standard deviation of the number of outliers
per image obtained with the L515 at 0.75, 1.5, and
1.75 meters, we can see that it is zero, meaning that
the total number of outliers per image stayed constant
over the 100 images. This led us to determine the
pixels where L515 generated outliers. We found out
that the miscalculated points always correspond to the
same pixels from the image’s leftmost column. We
believe that this may be happening to an issue with
the camera used in the experiments, which requires
further investigation.

4.2 Accuracy Analysis

The results of the accuracy study are represented on
table 6 (In Appendix) and in figure 5, where we plot
the point-to-plane RMSE distances for the three cam-
eras, taking into account only points whose distances
from the expected distance are within 10cm.

Again, the sensor that achieves the best results is
the L515. It not only has the lowest average root mean
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Figure 2: Failed Points - D415 vs L515 vs SR305.

Figure 3: Outliers - D415 vs L515 vs SR305.

Figure 4: SR305 depth image at 1,5m.

square error per image, but it also shows to be the
least sensitive to distance. It should be mentioned that
the image acquisition conditions for the L515 were
close to being optimal since the images were acquired
indoors, without daylight illumination.

In the case of camera D415, its RMSE follows a
smooth increasing pattern as it goes further from the
wall. On the other hand, the RMSE for the SR305
camera does not vary as smoothly with distance. The
RMSE values for this sensor increase until 0.75m and
then start to decrease until 1m. In fact, 1 meter is
the distance for which the SR305 is optimized (SR3,
2020), therefore one should expect this sensor to work
better within this range.

4.3 Precision Analysis

The results show that the camera L515 is significantly
more consistent than the other sensors. The results
from tables 7 and 8 (In Appendix), show L515 to be
more precise in terms of 3D estimation. It is notice-
able how this sensor seems to be very consistent be-
tween pictures and for different distances.

Figure 5: Point-To-Plane RMSE D415 vs L515 vs SR305 -
±10cm.

In table 8 (In Appendix) we show the directional
statistics results. The values for the angle θ frequently
change in a non-systematic way. This happens be-
cause, as φ gets closer to 90◦, the components nx and
ny of the normal vector get closer to zero, which will
lead to large variations of the angle θ. For this reason,
we omit the azimuth calculations.

The spherical variation behaves just as expected,
showing again that the L515 sensor is the most sta-
ble and that the measurements from the other two are
more distance sensitive.

For ease of comprehension of our precision re-
sults, we plot on figures 6 and 7 the standard devia-
tion of parameter d of the plane for all cameras at all
distances, and also the spherical variation.
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Figure 6: Parameter d standard deviation.

Figure 7: Spherical Variation.

5 CONCLUSION

In this paper, we described a set of experiments
performed to compare the depth estimation perfor-
mance of three RGB-D cameras from Intel, namely
the SR305, the D415, and the L515. In general, the re-
sults show that the L515 is more accurate and precise
than the other two while also providing more stable
and consistent measurements in the specific environ-
mental conditions of the experiments (indoors with
controlled and stable illumination).
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APPENDIX

Table 2: Average of failed points ratio per image by distance
in meters.

d D415 L515 d SR305
0.5 0.2801% 0.0020% 0.3 1.3967%

0.75 0.5099% 0.0001% 0.4 0.6062%
1 0.5414% 0.0023% 0.5 1.6930%

1.25 0.6415% 0.0001% 0.75 6.0734%
1.5 0.3025% 0.0014% 1 25.8181%

1.75 0.7472% 0.0017% 1.25 56.3898%
2 1.1202% 0.0320% 1.5 84.2698%

2.5 0.7945% 0.1648% — —
3 0.7660% 0.8263% — —

3.5 0.8644% 0.5456% — —

Table 3: Standard deviation of failed points ratio per image
by distance in meters.

d D415 L515 d SR305
0.5 0.0248% 0.0023% 0.3 0.0397%
0.75 0.0224% 0.0003% 0.4 0.0198%

1 0.0195% 0.0050% 0.5 0.0415%
1.25 0.0211% 0.0004% 0.75 0.0783%
1.5 0.0329% 0.0033% 1 0.1282%
1.75 0.0458% 0.0025% 1.25 0.1886%

2 0.0319% 0.0100% 1.5 0.2714%
2.5 0.0335% 0.0278% — —
3 0.0378% 0.0570% — —

3.5 0.0585% 0.0155% — —

Table 4: Average of outliers ±10cm ratio per image by dis-
tance in meters.

d D415 L515 d SR305
0.5 0.1141% 0.0968% 0.3 0.1560%

0.75 0.1112% 0.0753% 0.4 0.0933%
1 0.0667% 0.0968% 0.5 0%

1.25 0.2809% 0.0968% 0.75 0.0081%
1.5 0.5387% 0.0968% 1 3.9062%

1.75 0.2568% 0.0813% 1.25 0.0032%
2 0.0558% 0.0957% 1.5 0.0063%

2.5 0.8361% 0.0882% — —
3 3.9436% 0.0839% — —

3.5 10.3307% 0.0609% — —

Table 5: Standard deviation of outliers ±10cm ratio per im-
age by distance in meters.

d D415 L515 d SR305
0.5 0.0209% 0% 0.3 0.0004%

0.75 0.0193% 0.0034% 0.4 0.0018%
1 0.0139% 1.2715% 0.5 0%

1.25 0.0226% 0% 0.75 0.0105%
1.5 0.0380% 0% 1 0.0003%

1.75 0.0431% 0.0025% 1.25 0.0046%
2 0.0168% 0.0008% 1.5 0.0057%

2.5 0.1892% 0.0018% — —
3 0.5601% 0.0027% — —

3.5 0.7226% 0.0001% — —

Table 6: Sensors’ accuracy in terms of average root mean
square point-to-plane distance error per image.

Camdist ±10cm ±35cm All Points
D4150,5m 0,002 0,004 0,122
D4150,75m 0,003 0,003 0,087
D4151m 0,005 0,005 0,079

D4151,25m 0,007 0,007 0,037
D4151,5m 0,009 0,009 0,139
D4151,75m 0,013 0,013 0,293
D4152m 0,017 0,017 0,093

D4152,5m 0,025 0,027 0,036
D4153m 0,036 0,042 0,069

D4153,5m 0,045 0,063 0,065
L5150,5m 0,001 0,001 134,853
L5150,75m 0,001 0,001 202,285
L5151m 0,001 0,001 150,913

L5151,25m 0,002 0,002 7,556
L5151,5m 0,002 0,002 14,588
L5151,75m 0,002 0,002 22,389
L5152m 0,002 0,002 15,542

L5152,5m 0,003 0,003 14,865
L5153m 0,004 0,004 25,025

L5153,5m 0,006 0,006 13,835
SR3050,3m 0,003 0,036 113,994
SR3050,4m 0,005 0,005 114,889
SR3050,5m 0,008 0,008 0,008
SR3050,75m 0,009 0,009 0,009
SR3051m 0,005 0,005 0,006

SR3051,25m 0,007 0,007 0,008
SR3051,5m 0,008 0,008 0,011
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Table 7: Camera precision in terms of plane modelling consistency.

Camdist nx σnx ny σny nz σnz d σd
D4150,5m 3,9E-03 2,5E-04 4,1E-03 2,1E-04 1,0E+00 1,5E-06 -5,0E-01 1,1E-04
D4150,75m 3,7E-03 3,0E-04 -8,8E-03 2,0E-04 1,0E+00 1,5E-06 -7,5E-01 2,2E-04
D4151m 1,7E-02 7,2E-04 -1,3E-03 2,6E-04 1,0E+00 1,3E-05 -1,0E+00 1,6E-04

D4151,25m 1,4E-02 1,6E-03 -2,7E-03 3,6E-04 1,0E+00 1,8E-05 -1,3E+00 3,1E-04
D4151,5m 1,8E-02 8,7E-04 3,0E-03 4,3E-04 1,0E+00 1,6E-05 -1,5E+00 4,6E-04
D4151,75m 2,2E-02 8,5E-04 3,4E-04 5,8E-04 1,0E+00 1,8E-05 -1,8E+00 4,9E-04
D4152m 1,3E-02 2,9E-03 2,4E-03 8,6E-04 1,0E+00 2,9E-05 -2,0E+00 1,1E-03

D4152,5m 1,0E-02 1,5E-03 -3,2E-03 9,3E-04 1,0E+00 1,4E-05 -2,5E+00 2,8E-03
D4153m 1,4E-02 3,2E-03 -5,8E-04 1,1E-03 1,0E+00 3,3E-05 -3,0E+00 1,8E-03

D4153,5m 6,6E-03 1,8E-03 1,8E-03 1,3E-03 1,0E+00 1,2E-05 -3,5E+00 3,2E-03
L5150,5m -4,6E-05 6,1E-04 -2,9E-03 2,3E-04 1,0E+00 7,9E-07 -5,0E-01 3,5E-04
L5150,75m 1,8E-03 4,6E-04 -2,7E-03 1,6E-04 1,0E+00 7,1E-07 -7,5E-01 3,3E-04
L5151m -1,9E-03 6,1E-04 -5,7E-03 1,5E-04 1,0E+00 1,9E-06 -1,0E+00 3,5E-04

L5151,25m -6,8E-06 3,1E-04 2,1E-03 7,6E-05 1,0E+00 1,9E-07 -1,3E+00 3,1E-04
L5151,5m -3,1E-03 5,2E-04 -9,2E-04 1,9E-04 1,0E+00 1,7E-06 -1,5E+00 3,3E-04
L5151,75m 1,8E-03 3,3E-04 3,1E-04 1,0E-04 1,0E+00 6,2E-07 -1,8E+00 3,1E-04
L5152m -8,0E-04 4,5E-04 -5,1E-04 1,7E-04 1,0E+00 4,4E-07 -2,0E+00 3,9E-04

L5152,5m 3,2E-04 3,5E-04 -8,7E-04 1,4E-04 1,0E+00 1,7E-07 -2,5E+00 3,5E-04
L5153m -2,1E-03 3,3E-04 -3,9E-03 1,5E-04 1,0E+00 1,1E-06 -3,0E+00 3,3E-04

L5153,5m 1,7E-03 4,0E-04 -6,8E-03 8,3E-05 1,0E+00 7,7E-07 -3,5E+00 3,5E-04
SR3050,3m 4,4E-03 4,6E-03 -5,6E-03 1,0E-04 1,0E+00 2,7E-05 -3,0E-01 1,8E-04
SR3050,4m 7,7E-03 5,2E-03 -8,2E-04 8,7E-05 1,0E+00 6,2E-05 -4,0E-01 2,3E-04
SR3050,5m 1,7E-02 7,8E-03 5,2E-03 1,2E-04 1,0E+00 1,6E-04 -5,0E-01 2,7E-04
SR3050,75m -1,7E-02 1,3E-02 -1,3E-04 2,8E-04 1,0E+00 2,6E-04 -7,5E-01 6,3E-04
SR3051m -1,7E-02 7,3E-03 6,6E-03 1,8E-04 1,0E+00 1,0E-04 -1,0E+00 7,7E-04

SR3051,25m -2,7E-02 1,2E-02 -2,3E-03 5,0E-04 1,0E+00 2,6E-04 -1,3E+00 1,3E-03
SR3051,5m -2,3E-02 2,0E-02 -2,9E-03 1,1E-03 1,0E+00 5,8E-04 -1,5E+00 2,8E-03

Table 8: Camera precision in terms of plane normal vector angles standard deviation and spherical variance.

Camdist φ σφ V Camdist φ σφ V
D4150,5m 9,0E+01 1,5E-02 5,3E-08 L5151,5m 9,0E+01 3,1E-02 1,5E-07
D4150,75m 8,9E+01 9,2E-03 6,5E-08 L5151,75m 9,0E+01 1,9E-02 5,9E-08
D4151m 8,9E+01 4,1E-02 2,9E-07 L5152m 9,0E+01 2,4E-02 1,2E-07

D4151,25m 8,9E+01 8,5E-02 1,3E-06 L5152,5m 9,0E+01 8,6E-03 7,3E-08
D4151,5m 8,9E+01 4,9E-02 4,7E-07 L5153m 9,0E+01 1,4E-02 6,5E-08
D4151,75m 8,9E+01 4,9E-02 5,3E-07 L5153,5m 9,0E+01 6,2E-03 8,3E-08
D4152m 8,9E+01 1,6E-01 4,6E-06 SR3050,3m 9,0E+01 1,5E-01 1,1E-05

D4152,5m 8,9E+01 7,9E-02 1,6E-06 SR3050,4m 9,0E+01 3,0E-01 1,4E-05
D4153m 8,9E+01 1,7E-01 5,6E-06 SR3050,5m 8,9E+01 4,2E-01 3,1E-05

D4153,5m 9,0E+01 1,0E-01 2,5E-06 SR3050,75m 8,9E+01 7,0E-01 9,0E-05
L5150,5m 9,0E+01 1,4E-02 2,1E-07 SR3051m 8,9E+01 3,2E-01 2,7E-05
L5150,75m 9,0E+01 1,2E-02 1,2E-07 SR3051,25m 8,8E+01 5,6E-01 7,4E-05
L5151m 9,0E+01 1,8E-02 2,0E-07 SR3051,5m 8,9E+01 1,0E+00 2,1E-04

L5151,25m 9,0E+01 4,8E-03 5,2E-08 — — — —
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