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Abstract: Limited dimensionality of the dataset obtained from an electronic nose (EN) is due to the number of elements 
in the sensor array used generally in the range of 4-8 elements only. Further, large number of sensor data can 
be generated by sampling the sensor responses both during the transient and steady states. The lower-
dimensionality of sensor data prohibits the use of a convolutional neural network (CNN)-based pattern 
recognition techniques because the kernels of a CNN cannot be used on the obtained sample vectors to extract 
the features. In this paper, we have proposed a novel approach to enhance the data dimensionality keeping the 
sensor response characteristics absolutely unaltered. By leveraging the concept of mirror mosaicking 
technique, we have upscaled the input sample vectors into a 6×6 2-D input arrays to train the shallow CNN. 
Using the proposed approach, all the 16-unknown steady-state test samples classified accurately which are 
not used during the training. Moreover, the parameters of the classification report viz., Precision, Recall, and 
F1 score also obtained with a fraction value of 1.00. The proposed technique is a generic approach that can 
be used to classify various low-dimensional datasets obtained from various sensor arrays in various fields. 

1 INTRODUCTION 

In the current scenario, Artificial Intelligence (AI), 
Machine Learning (ML), Deep Learning (DL), and 
modern Pattern Recognition (PR) techniques are 
finding their applications in almost all the research 
areas; for delivering better results. An electronic nose 
(EN) is the mimicry of the olfactory system that is a 
popular topic of research as a multidisciplinary area. 
The word multidisciplinary represents the wide area 
of applications of EN related to different industries. 
Various traditional pattern recognition approaches 
have been used for the classification of gases or 
odors, as described by (Santos et al., 2017; Fujinaka 
et al., 2008; Hodgins and Simmonds, 1995; Tang et 
al., 2010; Keller et al., 1995; Rodrguez et al., 2010; 
Capelli et al., 2014; Kızıl et al., 2017; Chen et al., 
2013). The EN is a system that contains a gas sensor 
array consisting of few sensors typically 4 to 16. 
Moreover, data pre-processing and pattern 
recognition modules are the main parts of any EN 
system (Arshak et al., 2004). The EN system can be 
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made more selective for analytes under observation, 
using an array of sensors (Zhang et al., 2017). A gas 
sensor array logically has more than one sensor 
element to enhance the selectivity of the system. If 
there are fewer numbers of sensors in a gas sensor 
array, the resulting response dataset has a feature 
vector of limited size for each sample. A concept of 
mirror mosaicking technique is proposed in this work 
to broaden the applicability of deep learning pattern 
recognition techniques for automatic feature 
extraction and classification of small gas sensor array 
responses. Subsequently, any gas sensor array 
response can be analyzed using the convolutional 
neural network (CNN) at the sample level irrespective 
of the size of the gas sensor array. The feature vector 
of any sample is obtained from the respective gas 
sensor array response having the length equal to the 
number of the sensor elements. Each pattern 
recognition technique requires a specific input format 
or length of the feature vector. For example, various 
dimensional versions viz., 1-D, 2-D, and 3-D based 
on the type of operation of the convolution of CNN 
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require a 1-D vector, 2-D array, and 3-D array (Eren, 
2017; Yamashita et al., 2018). Therefore, each 
version has its limitation of input sample 
representation. A 2-D CNN has vast popularity in the 
area of computer vision and image processing. 
However, any of the versions of CNN can be used 
depending on the available dimension of the sample. 
In this work, data pre-processing and classification 
parts of an EN system has been demonstrated. The 
pre-processing has been used to obtain the mosaicked 
sample and later on the classification task is 
implemented using a convolutional neural network. 

The rest content has been organized in the 
following sections. The proposed mirror mosaicking 
technique has been explained in Section 2. While 
Section 3 describes the designed convolutional neural 
network to generalize the proposed approach. 
Moreover, Section 4 and Section 5 are dedicated to 
the used material and obtained results, respectively. 
Lastly, the conclusions have been summed up in 
Section 6. 

2 MIRROR MOSAICKING 

2.1 Need of Mirror Mosaicking 

As discussed in the previous section, the particular 
dimensional version of CNN requires a specific 
format of the input. The 1-D CNN requires input as a 
feature vector. The 1-D CNN significantly can be 
applied if the feature vector has sufficient length. The 
length of the feature vector proportionally depends on 
the number of sensor elements in the gas sensor array. 
As quoted earlier, a gas sensor array has more than 
one sensor element, then the least possible array must 
have two gas sensors elements. Let us suppose we 
have the smallest gas sensor array, then the feature 
vector of this array will have a length of 2 units. This 
length of the feature vector is insufficient to explore 
the significance of the 1-D CNN. Similarly, the 2-D 
CNN needs input in the form of a 2-D/3-D matrix 
(grayscale/color image). A feature vector of the 
smallest sensor array of length 2 units is incompatible 
for converting into a 2-D matrix. Therefore, the 
sample obtained from this sensor array cannot be feed 
as input into the 1-D CNN or the 2-D CNN and the 
subsequent higher dimensional version 3-D CNN. 

Consequently, a sample obtained from the least 
feasible gas sensor array or the gas sensor array with 
two sensor elements is insufficient to deal with the 1-
D CNN and the 2-D CNN. Moreover, these samples 
will also be insufficient to the subsequent higher 
dimensional version of CNN that is 3-D CNN. Hence 

a technique called mirror mosaicking has been 
proposed so that each sample obtained from any 
sensor array can be analyzed using 2-D CNN. The 
popularity of 2-D CNN has been proved worldwide 
by computer vision and image classification 
applications. 

2.2 Implementation of Mirror 
Mosaicking 

The proposed mirror mosaicking is the approach in 
which each sample vector obtained from any gas 
sensor array can be converted into a 2-D matrix of 
significant size so that a 2-D CNN can be applied at 
the sample level (Chaudhri et al., 2020). First of all, 
the original sample feature vector is converted into 
the square 2-D matrix using zero-padding if required. 
Subsequently, the mirror mosaicking technique is 
applied to this square 2-D matrix to obtain the desired 
mosaicked sample compatible with the 2-D CNN. 
 

 
Figure 1: Directions of Mirrors. 

Let's assumed that eight mirrors are placed around 
the square 2-D matrix obtained from the original 
sample feature vector using zero-padding if required. 
The corresponding directions of the mirrors are 
shown in Figure 1. The obtained corresponding 
mirror images of the square 2-D matrix at the center 
are mosaicked with it at their respective locations to 
obtain the desired mosaicked sample. Thus, the 
obtained mosaicked sample of the corresponding 
original sample now compatible as input to the 2-D 
CNN. Further, the depth of the used 2-D CNN is the 
thing to note down. There is no restriction for the 
depth of the network based on the fully connected 
layers provided the increasing number of layers 
makes the model complex. But concerning the 
convolutional and the pooling layers, the network 
depth depends on the size of the input. Considering 
the case of the smallest feasible gas sensor array a 
shallow convolutional neural network (SCNN) has 
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been designed that can be extended according to the 
size of the input by adding more convolutional or 
pooling layers. The word shallow indicates that few 
convolutional layers in the designed 2-D CNN are 
two according to the size of the input. 

3 SHALLOW CONVOLUTIONAL 
NEURAL NETWORK (SCNN) 

As quoted in Section 2, the designed shallow 
convolutional neural network (SCNN) has two 
convolutional layers. Depending on the size of the 
available input sample, convolutional and pooling 
layers can be increased in the designed model. Mainly 
pooling layers are used in those deep networks which 
are specifically designed to deal with image-related 
tasks because images are made of large 2-D matrices. 
In our work, SCNN is designed to classify the gases 
using gas sensor array responses which have a limited 
sample size. But the SCNN can be extended to 
classify the responses obtained from the gas sensor 
array having any number of sensor elements. The 
used SCNN has the following layers: 
• Convolutional Layers (Input Layer) 
• Flatten Layer 
• Dense or Fully Connected Layers 
• Dropout Layers 
• Softmax Layer (Output Layer) 
The SCNN with the mentioned layers has been 
designed considering the smallest gas sensor array. A 
brief theoretical introduction for the basic layers is 
given below (Bhandare et al., 2016): 

Convolutional Layers. 
The model attains the leading significance of 
automatic feature extraction by this layer. In this 
layer, the number of kernels is initialized, which are 
used to produce the same number of feature maps. 
The feature maps are obtained from the convolution 
of the input and the kernel. All the stacked feature 
maps are forwarded to the next layer in the form of 
input. 

Pooling Layers. 
It is used for down-sampling. There are three basic 
types of pooling namely max pooling, min pooling, 
and average pooling. Out of the three types, max 
pooling is used widely. 

Flatten and Fully Connected Layers. 
The flatten layer is used after all the used 
convolutional and pooling layers to convert the output 

feature map into the vector format. Subsequently, the 
dense layers or the fully connected layers are used. A 
fully connected layer is that in which each neuron is 
connected to each neuron of the previous and next 
layer. 

Softmax Layer. 
The softmax layer is the output layer in which the 
number of neurons must equal to the number of 
targets. In this layer, for each input, the membership 
fraction corresponding to each target is obtained. 

Dropout and Normalization Layers. 
The dropout and the normalization, both layers are 
used to get rid of overfitting. In the dropout layer, a 
dropout amount is initialized to discard the neurons 
containing the value less than or equal to the dropout 
amount. The value of the dropout amount always lies 
between 0 and 1. While, the normalization is required 
for improving the speed, performance, and stability of 
the network, in the complex network models. 

After the brief introduction of the layers, the 
architecture of the designed SCNN can be explained 
easily. This model contains two convolutional layers, 
the flatten layer, a fully connected layer, and the 
softmax layer. The model termed as shallow network 
instead of a deep network, due to the use of only two 
convolutional layers. A schematic diagram of the 
proposed network is shown in Figure 2. Since the 
input size is limited, so there is no need for down-
sampling. Accordingly, the pooling layer has not been 
used in the proposed network. If the CNNs are used 
to deal with image data (large matrices), then pooling 
layers are essentially used in the designed network. 

4 USED MATERIAL 

In this work, the material used to verify the proposed 
methodology has been taken from a thick film gas 
sensor array. This gas sensor array consists of the 
following four sensors: 
• Cadmium sulfide (CdS) 
• Molybdenum Oxide (MoO) 
• Tin Oxide (SnO2) 
• Zinc Oxide (ZnO) 
Four gases had been exposed to this array in the 
ambiance of Nitrogen (N2). These gases are 
mentioned below: 
• Acetone (CH3COCH3)/ACE 
• Carbon Tetrachloride (CCl4)/CAR 
• Ethyl Methyl Ketone (C2H5COCH3)/EMK 
• Xylene (CH3C6H4CH3)/XYL 
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The steady-state response of the mentioned gas sensor 
array has been taken to verify the results. The SCNN 
has been trained with exclusive samples from the test 
samples. Later on, the classification performance is 
obtained using test samples. The performance of the 
classifier model on a smaller dataset signifies the 
applicability of the proposed methodology using the 
mirror mosaicking technique. Moreover, our 
methodology is not limited to the number of samples 
or number of the sensor elements in the gas sensor 
array. It can be used for any gas sensor array. The 
explained details about the gas sensor array and its 
response are given in (Nayak et al., 1994; Rajput et 
al., 2010). 
 

 

Figure 2: Schematic block diagram of SCNN. 

5 RESULTS AND DISCUSSION 

The results obtained from the classifying network 
SCNN after applying on the steady-state response 
dataset has been discussed in this section. The 
parameters that are used to tune the classifying 
network have been listed in Table 1. The 
classification of all the instances proves the 
applicability and efficiency of our proposed 
technique. The classification report is shown in Table 
2. Precision, Recall, and F1-score metrics are shown 
in the report. The expressions for all the metrics have 
been given in equation (1), (2), and (3) respectively. 
All the aforesaid metrics have been calculated based 
on the confusion matrix. A confusion matrix is a 
square matrix of size equal to the targets. The 
elements of this matrix show the description of the 
reference points and the corresponding predicted 
outputs. 
 Precision ൌ TPTP  FP (1)

 Recall ൌ  TPTP  FN (2)

 F1 Score ൌ 2 ∗ ሺPrecision ∗ RecallሻሺPrecision  Recallሻ  (3)

 Accuracy ൌ  ሺTP  TNሻሺTP  TNሻ  ሺFP  FNሻ (4)

The overall accuracy has been given by equation (4). 
The term TP, TN, FP, FN in equation (1), (2), (3), and 
(4) represent the correctly predicted positive values, 
correctly predicted negative values, actual negative 
predicted positive, and actual positive predicted 
negative values respectively. Using equation (4) the 
overall accuracy has been obtained equal to 1.00. In 
terms of the percentage, it is obtained as 100%, as 
shown in Table 2. Moreover, the overall classification 
accuracies for the used dataset have been given in 
Table 3 using various classifying techniques. 

The proposed technique is a comprehensive 
approach that can also be used to classify the dataset 
obtained from the transient response of a gas sensor 
array. There are two ways to deal with the transient 
response. Firstly, the last observation of transient 
response can be considered as a steady-state response. 
Secondly, the averaged transient response can be 
considered as a steady-state response. In this way, the 
huge computational cost can be reduced up to a very 
low cost. Moreover, the pre-processing and 
classification procedure will remain the same. 

Table 1: Model Parameters. 

Size of input samples 6×6 

Convolutional layer 1 
Number of kernels 

Size of kernels Activation 

 
64 

3×3 
tanh 

Convolutional layer 2 
Number of kernels 

Size of kernels 
Activation 

 
64 

3×3 
tanh 

Flatten layer ( ) 

Fully connected layer 1 
Number of neurons Activation 

 
64 

tanh 
Dropout layer 1 0.25 
Softmax layer 

Number of targets 
Activation 

 
4 

softmax 
Optimizer 

Learning rate 
Adam 
0.001 

6 CONCLUSIONS 

The proposed technique provides all the samples 
well-classified that proves the significance of the 
mirror mosaicking technique. The proposed 
technique can be used to classify any gas sensor array 
response using well-known CNN-based pattern 
recognition techniques. In a nutshell, the points of 
significance of this paper can be stated as follows: 
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• A new technique "Mirror Mosaicking" of data 
pre-processing has been proposed. 

• The dataset obtained from the response of the least 
feasible size gas sensor array can be classified 
using a convolutional neural network using mirror 
mosaicking. 

Table 2: Classification Accuracies for Classical Machine 
Learning Datasets using Convolutional Neural Network 
based on Mirror Mosaicking Approach. 

Datasets Train/Test 
Samples 

Overall Test 
Accuracy (%) 

IRIS Dataset 120/30 100 
Wine Dataset 112/66 98.48 
Parkinson’s 

Dataset 136/59 100 

Table 3: Classification Report. 

 Precision Recall F1 
Score Support 

ACE 1.00 1.00 1.00 2 
CAR 1.00 1.00 1.00 3 
EMK 1.00 1.00 1.00 6 
XYL 1.00 1.00 1.00 5 

 
Avg./ 
Total 1.00 1.00 1.00 16 

Test 
Accuracy 100% 

 
The proposed technique is a generic approach that 

can be used to classify any other non-imaging 
datasets, obtained from any other sensor arrays in 
various fields. For example, various classical 
machine learning datasets viz., iris data, wine data, 
Parkinson's disease data (Dua et al., 2019; Little et al., 
2007), etc. can be classified accurately by using the 
proposed technique. The classification accuracies for 
these datasets have been given in Table 4 which have 
been obtained using convolutional neural networks 
based on the mirror mosaicking approach. 

Table 4: Classification Accuracies using Various 
Classifiers. 

Classifier Overall Accuracy (%) 
KNN 87.50 

Linear SVM 81.25 
RBF SVM 87.50 

Random Forest 93.75 
Naïve Bayes 87.50 
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