
Lifting Sequence Length Limitations of NLP Models using Autoencoders

Reza Marzban a and Christopher Crick b

Computer Science Department, Oklahoma State University, Stillwater, Oklahoma, U.S.A.

Keywords: Deep Learning, Natural Language Processing, Artificial Intelligence, Transformers.

Abstract: Natural Language Processing (NLP) is an important subfield within Machine Learning, and various deep
learning architectures and preprocessing techniques have led to many improvements. Long short-term mem-
ory (LSTM) is the most well-known architecture for time series and textual data. Recently, models like
Bidirectional Encoder Representations from Transformers (BERT), which rely on pre-training with unsuper-
vised data and using transfer learning, have made a huge impact on NLP. All of these models work well on
short to average-length texts, but they are all limited in the sequence lengths they can accept. In this paper,
we propose inserting an encoder in front of each model to overcome this limitation. If the data contains long
texts, doing so substantially improves classification accuracy (by around 15% in our experiments). Otherwise,
if the corpus consists of short texts which existing models can handle, the presence of the encoder does not
hurt performance. Our encoder can be applied to any type of model that deals with textual data, and it will
empower the model to overcome length limitations.

1 INTRODUCTION

Deep learning is a machine learning (ML) technique
designed as a very rough analogy to the neurons in
a human’s nervous system. Over the last decade,
deep learning architectures have substantially outper-
formed other ML algorithms, especially on unstruc-
tured data, provided that we have a huge amount of
data for training the model. Different deep learning
architectures are designed to work with specific types
of data. Convolutional Neural Networks (CNN) work
well with image data, while Recurrent Neural Net-
works (RNN) work best with time-series or sequen-
tial data like texts. However, deep learning presents a
number of challenges as well. Most importantly, it is
often described as a black box: we throw some data
at it and hopefully get good outputs. This is unhelpful
if we want to optimize the network to improve per-
formance. We need to understand what is happening
inside, what kind of data is being created at each layer
and passed to the next layer, and how can we make it
work better.

Natural language processing (NLP) is a popu-
lar application for artificial intelligence, helping ma-
chines to communicate in human languages. Among
various tasks, sentiment analysis is the basis of many

a https://orcid.org/0000-0003-2762-1432
b https://orcid.org/0000-0002-1635-823X

NLP problems. This involves creating a model that
learns the semantic value of each word and classifying
a text according to the overall mood valence. Our goal
is first to find or create the best possible network for
this specific task, and then generalize the technique
for a wider variety of NLP tasks.

One variety of RNN is the Long Short-term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997) net-
work. Such architectures include a memory model
that makes them a popular choice for sequential or
time-series problems such as interacting with textual
data. LSTM networks attempt to improve on the
methods of naive RNN models, but we know that
LSTM structures still have many limitations. They
do not work well enough when the number of words,
or the variability in word count between texts, is high.
Recently, we have seen an explosion in the diversity
of NLP models, and researchers have devised models
like BERT (Devlin et al., 2018) to boost performance
by pre-training models with a huge amount of data,
while also incorporating other techniques such as at-
tention. BERT has been extremely successful in NLP
research, but in common with LSTM approaches, it
does not handle texts with high word counts very well.
BERT, specifically, is designed only to handle texts of
512 words or fewer.

In this paper, we focus on overcoming this max-
imum sequence length limitation by introducing an

228
Marzban, R. and Crick, C.
Lifting Sequence Length Limitations of NLP Models using Autoencoders.
DOI: 10.5220/0010239502280235
In Proceedings of the 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2021), pages 228-235
ISBN: 978-989-758-486-2
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



encoder layer after the embedding layer of a model.
Most modern NLP models use Word2Vec (Mikolov
et al., 2013) embeddings to represent words. Our en-
coder uses the output of the embedding layer applied
to a text with a large word count and reduces its di-
mensionality to a size compatible with a network such
as BERT. We have tested our new encoder technique
on several models such as LSTM and BERT. This pa-
per is not about fine tuning our models and achieve
the highest accuracy on different datasets. Our goal
is to study the effect of inserting our encoder into dif-
ferent models on various datasets and support our hy-
pothesis: including an engineered encoder layer helps
overcome the maximum sequence length limitation of
NLP models.

Our experiment on the LSTM model involved
creating and comparing three models and evaluating
their performance. Our first baseline model was a
one-dimensional CNN, while the second one was an
LSTM with 128 internal nodes. We compared the per-
formance of these models with our approach, where
we added a convolutional autoencoder to the LSTM
network to reduce the input dimensionality, then fed
the reduced-size data to the LSTM layer. We also
tested our encoder on the BERT model. In order
to achieve that, first we created a smaller version of
BERT, then compared its performance with and with-
out our encoder. Creating a smaller BERT model
helped us to expedite our experiment as the origi-
nal BERT must pre-train for several weeks using sev-
eral tensor processing units (TPUs). After success-
fully creating our small BERT model, we tested it our
datasets.

The results show that in both cases, inserting the
new autoencoder layer increases the number of net-
work parameters very modestly (e.g. in our reduced-
size BERT, by less than one percent), and does not
increase training time significantly. On the other
hand, it disposes of the word length limitation and im-
proves classification performance significantly if the
data contains long text sequences. If the corpus only
contains short texts, adding our encoder does not sig-
nificantly change a model’s behavior. Thus, the en-
coder never hurts performance, but improves it when
long texts are encountered.

2 RELATED WORKS

NLP has long been an important application area for
artificial intelligence and machine learning. NLP
(Hirschberg and Manning, 2015; Goldberg, 2016)
is the science of teaching a machine to understand
and produce content based on human languages. Re-

cently, there has been a huge improvement in NLP
tasks with the help of deep learning. Artificial neural
networks have exceeded traditional machine learning
algorithms in many different fields, like machine vi-
sion, and NLP has benefited likewise.

Although deep learning has boosted performance,
it has also introduced new problems. Researchers
have therefore focused on developing new architec-
tures and improving current ones. One such architec-
ture is LSTM (Hochreiter and Schmidhuber, 1997),
which is a special case of Recurrent Neural Network
introduced in 1997. LSTMs are often used for time
series data as they are equipped with an internal mem-
ory that can remember important data from previous
time steps. They can also decide which data to ignore
or forget when the model determines they are not ma-
terial to its output.

NLP is also categorized as time-series data, where
each word in a sentence is analogous to a time
step. One of the basic yet difficult problems in NLP
is text sentiment analysis (Venugopalan and Gupta,
2015), which deals with the computational study of a
text’s author’s emotions, opinions, and sentiments ex-
pressed in textual data. The problem is usually cast
as a binary classification that separates negative texts
from positive ones. In order to get a good result in
many NLP tasks, we need to transform our data from
a textual format to a numerical one (Collobert et al.,
2011). These numerical values convey the semantics
of each word, so the model can understand their re-
lationships. One-hot encoding is one way of doing
so, but it requires a very large sparse matrix which
is not desirable due to memory limitation. Another
method is to use word embeddings as suggested by
Bojanowski (Bojanowski et al., 2017), and the most
common approach is to employ Word2Vec (Mikolov
et al., 2013) to create these embeddings. Word em-
bedding (Kusner et al., 2015) uses an unsupervised
learning algorithm to assign a vector with a custom
length to each word in the training set. There exist
a number of pre-trained, readily-available word vec-
tor datasets; one of the most famous is Stanford’s
Glove (Pennington et al., 2014), which was trained
on Wikipedia.

Another type of neural network is the CNN which
is believed to work best on images, but many re-
searchers have nevertheless applied CNNs to textual
data with excellent performance (Kim, 2014; Con-
neau et al., 2016). Many papers have compared
LSTM and CNN architectures on different kinds of
data to determine which is most efficient and appro-
priate for particular tasks. Yin (Yin et al., 2017) com-
pared CNNs and LSTMs on NLP tasks and claimed
that LSTMs work better in most cases. Some authors

Lifting Sequence Length Limitations of NLP Models using Autoencoders

229



have tried a mixture of both in order to improve per-
formance (Wang et al., 2016; Sainath et al., 2015).
CNNs can also be used as the basis of an autoencoder
(Zhu and Zabaras, 2018). Such architectures learn to
distinguish important features in order to reduce the
dimensionality of the input.

More recently, a new wave of models have
boosted performance in NLP tasks, starting with
Vaswani (Vaswani et al., 2017). These models cre-
ate a new type of encoder called a transformer which
is based on attention. Transformers have been used
to create much more advanced language models like
BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019) and GPT3 (Brown et al., 2020). BERT (De-
vlin et al., 2018) is a state-of-the-art model built upon
transformers that are pretrained on a huge amount
of unlabeled data for several weeks. BERT can be
fine-tuned for any NLP task for a few epochs and its
performance is much better than preceding models.
Several other scientists have tried to further improve
BERT by tuning hyper-parameters and also pretrain-
ing for a longer time on more data (Sun et al., 2019;
Liu et al., 2019). Yang (Yang et al., 2019) has cre-
ated a model called XLNet, and claims to overcome
some of BERT’s limitations. Longformer (Beltagy
et al., 2020) has tried to overcome the sequence length
limitation in the attention-based transformers, but this
technique can only be applied on transformer archi-
tectures. We need a technique that can be applied to
all models that handle textual data.

Although this field has seen a great deal of rapid
improvement, there are still many holes in our knowl-
edge of deep learning networks. We do not know
how these models perform when applied to long texts,
or when the length variance between different texts
within a training corpus is high. It seems that LSTMs
and BERT work particularly well on textual data, but
is this true for all forms of such data? Can they mem-
orize the information necessary for a decision when
the text in question is article-length, rather than the
size of a tweet? Can they be adapted to any kind
of textual data with any size? In most NLP models,
there is a hard limitation on the maximum number of
words or tokens that each entry can have. In this pa-
per, we overcome that limitation, as there might be
many cases when performing sentiment or other tex-
tual analysis at the level of paragraphs or even longer
text lengths would be helpful. Current models will
truncate texts that are longer than their maximum size,
but by doing so, they lose a lot of information.

Figure 1: IMDb sequence length distribution.

3 TECHNICAL DESCRIPTION

3.1 Dataset Preprocessing

In order to demonstrate our approach, we have used a
broad range of data of various types. The IMDb Large
Movie Review Dataset (Maas et al., 2011) contains
very long movie review texts classified in binary fash-
ion according to sentiment. This allows us to test the
performance of every model on very long sequences.
As Figure 1 shows, most of the data consists of se-
quence lengths of greater than 100 words (tokens).

In addition to the IMDb, we used a dataset of
Amazon Kindle book reviews and user ratings. This
problem again belongs to sentiment analysis, but
rather than a binary classification, it has categorical
ratings with 5 classes. In addition, we used a large
dataset of Stack Overflow questions and tags, where
each question has a label or a tag that specifies which
language or concept the question is about. It has 20
possible tags. The mean sequence length in Stack
Overflow dataset is the largest. Our final dataset is the
20 Newsgroup dataset (Mitchell, 1999) that contains
full text news articles classified into twenty possible
categories. In both the Stack Overflow and 20 News-
group datasets, we only use texts that have at least
128 tokens (a.k.a. words) to observe the effect of very
long texts on our models.

These four datasets were used in testing versions
of our model and the various comparison benchmarks.
We tested the original BERT model, and a simplified
BERT version we created, on the IMDb and Stack
Overflow datasets.

In the cleaning phase, we removed all numerical
values, symbols and stop words. We also removed
words that did not appear in our entire corpus at least
twice and words of only one or two characters, and
converted the whole corpus to lower case. The mod-
els expect an input vector of fixed length, but differ-

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

230



ent sentences and paragraphs obviously have different
lengths. In order to solve this problem, we choose a
number that is close to the maximum of the length
of all sentences in the whole dataset, ignoring a few
outliers which are unusually long in comparison to
other records. We pad the sentences with zero values
at the end of records that have fewer words than our
threshold. In order to create the embedding, we used
the Stanford GloVe pre-trained embedding trained on
Wikipedia. Word2Vec embeds words within vectors
of consistent but arbitrary dimensionality, and in this
case, we chose 100 for the embedding vector size.

These numbers represent the semantic relation-
ships among words. As a result, we expect the
distance between vectors of “Boston” and “Mas-
sachusetts” to be near the distance between “Austin”
and “Texas”. This will help our model to understand
the overall meaning of each sentence. This matrix
would be the preprocessed input of our future mod-
els. As we train the larger overall model, we can train
the embedding at the same time, so that the embed-
ding representation is updated after each iteration to
represent the words more accurately, or we can fix the
embedding weights in advance, so that the model can
concentrate on training other layers’ weights.

3.2 Encoder Technical Details

Our encoder is designed to reduce the length of the
input sequence, as some of the models have hard lim-
its on maximum sequence length. The goal of this
encoder is to reduce the dimensionality of input so
that larger texts can be fed into popular models. Cur-
rently, if a model gets an input with larger sequence
length than allowed, it will simply truncate the se-
quence and ignore potentially useful data in the lat-
ter part of the text. The architecture of the encoder is
very simple, consisting of two layers. The first layer
is a 1-dimensional convolutional layer and the sec-
ond one is a 1-dimensional max-pooling layer. The
number of filters in our convolutional layer is equal to
the length of the embedding vector used to represent
words, which was equal to 100 in our case. The filter
length, as well as the pool size in the pooling layers,
are hyperparameters that can be tuned; in our case,
they were set to 5 and 2 respectively. Our encoder
is applied right after the embedding layer. If the out-
put of the embedding layer has the shape of m ∗ k, in
which m is the number of words, and k is the length
of the embedding vector for each word, the output of
encoder layer is calculated by Equation 1.

(m,k)→
(

m− f +1
s

,k
)

(1)

In Equation 1, the left side is the input shape and
the right side is the output shape. f is the length of fil-
ters and s is the pool size in the pooling layer. Notice
that the depth of input does not change at all, as we in-
tend to reduce the number of sequence steps (words)
in our input and not the size of the embedding. If we
needed a smaller embedding length, we could simply
specify it in the embedding layer. Initializing these
hyperparameters according to our specific model, the
output shape is shown in Equation 2.

(m,100)→
(

m−4
2

,100
)

(2)

Thus, if the embedding output’s shape is
(512,100) (512 words, each represented by 100 nu-
merical values), then after passing through our en-
coder, its shape will be (254,100). The output will
represent 254 important features to be found within
the entire text, instead of merely truncating the input
text. The output of our encoder can be fed into the
model instead of the embedding output. This archi-
tecture allows the use of texts twice as long as the
original models can handle, but this 2:1 scaling is not
required. If further reduction is needed, more pooling
or more layers can be added as necessary.

The hyper-parameters in both our encoder and
models were selected by randomly sampling the pa-
rameter space and selecting for decent performance.

3.3 Testing Encoder on LSTM

In order to evaluate our encoder’s performance in an
LSTM context, we created three models and tested
these three on different datasets. Each of these mod-
els varies in the structure and most of the hyper-
parameters, but the following hyper-parameters are
the same for all three: the learning rate and learning
rate decay are both 0.001, we used the Adam opti-
mizer, the batch size was 32, the number of epochs
was 20, we applied an L2 regularizer to the last layer
of each model, and used the cross entropy loss func-
tion for all models (binary cross entropy for movie re-
view data, categorical cross entropy for Amazon Kin-
dle reviews, Stack Overflow and 20 Newsgroup). We
kept all of these hyper-parameters consistent in order
to conduct a fair experiment in comparing these mod-
els, so that our results are only dependent on the ar-
chitecture of our network.

Our first model is CNN. The details of each layer
are presented in Figure 2. We have included the in-
put shape and number of parameters according to our
movie review data because of the input shape and
number of parameters in the embedding layer change
according to the data. As a result, we do not include

Lifting Sequence Length Limitations of NLP Models using Autoencoders

231



Figure 2: CNN Model.

Figure 3: LSTM Model.

the embedding layer parameters in our model’s to-
tal parameters count, as it is the same for all mod-
els, and it varies based on data. Our CNN model
has 123,601 total parameters to be trained, with two
one-dimensional convolutional layers, both with 100
filters of size 5 and stride 1, and with RELU as the
activation function. Both max-pooling layer window
sizes are 2.

Our LSTM model has 128 nodes and 117,377 pa-
rameters ignoring the embedding layer weights, as
shown in Figure 3. The original output of this layer
has the shape of (?,950,128) but we only send the last
output data to the next layer which has the shape of
(?,128) instead of the full sequence of data (the ques-
tion mark in the shapes represents batch size). We
have used backward LSTM due to the fact that most
of the sentences are padded with zero at the end, and if
we do not use backward LSTM, the zeroes will cause
the system to forget important information.

The final model we describe is our encoder-LSTM
model, which uses the two encoder layers specified
before and then uses an LSTM to predict according

Figure 4: Encoder-LSTM Model.

to the encoder-shortened text. The first part of this
model is identical to our CNN model; we just re-
moved the flatten layer and added a 128-node LSTM
layer before the dense layer. Notice that the last layer
of these models is fully connected with a single output
node and sigmoid activation function. When applied
to the multi-class datasets, the number of output nodes
is increased to be equal to the number of classes, ac-
tivated with the softmax function.

3.4 Testing Encoder on BERT

In order to check the efficiency of our encoder in
BERT, we created an implementation of BERT from
scratch and then inserted the encoder in the proper
place. As the original base BERT has many param-
eters, and it takes it several weeks to pre-train on a
huge amount of data, we created a smaller version of
BERT and tested and compared its performance with
and without an encoder. In order to create a smaller
BERT, we reduced the hidden layer size from 768 to
200, the intermediate size from 3072 to 800, and the
number of hidden layers from 12 to 6. The implemen-
tation details of Base BERT, Small BERT and Small
BERT with encoder can be observed in Table 1.

After creating the small BERT, we inserted the en-
coder after the embedding preprocessing and just be-
fore post-processing. The original BERT has a max-
imum sequence length limitation of 512, which re-
mains the same in the small BERT. Small BERT is
much faster than the original Base BERT as it has re-

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

232



duced the number of parameters by 65% but the per-
formance was not affected significantly. It helped us
to develop and test models much faster. Even after in-
troducing the encoder into the model, the number of
parameters just increased by around 1%. As we did
not have access to the original data that BERT was
pre-trained on, which was a mixture of book corpora
and Wikipedia, we trained our small BERT models
on a much smaller dataset consisted of 50 book texts.
Both decreasing the size of the model and size of the
pre-training data have affected our accuracy a little,
but it was not important to our hypothesis. We used
small BERT as an environment to check the efficiency
of our encoder.

We trained the small BERT with encoder and
without encoder on 50 books data for 2,000 epochs
and then used these two pre-trained models as the
baseline for our fine-tuning tasks. We fine-tuned these
models on two sets of data: the IMDb and Stack
Overflow datasets. The Amazon Kindle and and 20
Newsgroup datasets were sufficiently dissimilar to the
training corpus used by the small BERT network that
they did not provide useful results. Each fine-tuning
was done with 3 epochs. We also downloaded the
original pre-trained base BERT model and fine-tuned
it on the same data to compare the results.

4 EXPERIMENTAL RESULTS

4.1 Performance on LSTM

After training our models on the training sets for 20
epochs, we evaluated each of them with test sets. We
ran each model on each data set twice, once with em-
bedding layer training and once with untrainable em-
beddings to check the effect. Table 2 shows their
test accuracy over our four different datasets. For
the movie reviews, the random prediction baseline is
50% (as it is a binary classification), whereas it is
20% (5 classes) in the Amazon review dataset and

Table 1: BERT models comparison.

BERT version Base Small
Small with

Encoder

Hidden size 768 200 200

Intermediate size 3072 800 800

Attention heads 12 10 10

Hidden layers 12 6 6

Use encoder No No Yes

Pre-train data
Book Corpus
+ Wikipedia

50
Books

50
Books

Total Parameters 178,566,653 81,326,847 81,927,447

Figure 5: Stack Overflow dataset test accuracy.

5% (20 possible tags) in both the Stack Overflow and
20 newsgroup datasets. The Stack Overflow and 20
newsgroup datasets only contain texts of 128 words
or longer. Out of all of the experiments performed,
our encoder-LSTM model achieves better accuracy in
seven out of eight cases (a CNN works better in one
instance).

Figures 5, 6 and Table 2 show an interaction effect
between the model and the embedding. In 9 cases out
of 12, the models work better with embedding layer
training. In addition, there is a huge main effect from
the model factor. The LSTM network does not add
much accuracy, while in comparison to the CNN, it
takes much longer for the LSTM to be trained. On
the other hand, when we are using our encoder with
LSTM, it increases the accuracy.

4.2 Performance on BERT

We used the IMDb and Stack Overflow datasets to test
the efficiency of our encoder in the BERT model. We
tested all datasets on three models: the original base
BERT, the small BERT that we created and the small

Table 2: LSTM accuracy comparison.

Data set Embedding CNN LSTM
encoder
LSTM

Stack
Overflow

Trainable 64.90 65.38 67.17
Untrainable 64.51 63.82 67.55

Movie
Review

Trainable 86.26 85.50 87.02
Untrainable 86.27 86.02 83.81

Amazon
Review

Trainable 53.07 53.22 53.37
Untrainable 50.13 50.91 51.69

20 News
group

Trainable 48.32 38.29 50.23
Untrainable 42.26 35.12 45.84

Lifting Sequence Length Limitations of NLP Models using Autoencoders

233



Figure 6: 20 newsgroup dataset test accuracy.

Table 3: BERT accuracy comparison.

Data set
Max

Length
Base

BERT
Small
BERT

Small
BERT -
encoder

IMDB 512 84.98% 78.16% 76.26%
StackOverflow 128 10.49% 10.59% 25.20%
StackOverflow 512 81.08% 19.61% 27.65%

BERT with encoder. The test accuracy of these mod-
els is reported in Table 3. In the IMDb dataset, the
random prediction baseline is 50%, but in the Stack
Overflow dataset, it is 5% as we have 20 possible
classes.

Table 3 shows that introducing the encoder into
BERT does not affect the accuracy significantly in
IMDb dataset. Certainly the performance of small
BERT compared to original BERT is significantly
lower, but that was expected due to the fact that small
BERT is both a much smaller model (discussed in the
technical description) and is pre-trained on a much
smaller dataset. The small BERT helped us to check

Figure 7: Effect of encoder on BERT accuracy in Stack
Overflow dataset.

if the encoder can be inserted into BERT or not.
In our Stack Overflow dataset, when the maxi-

mum length is set to 128, the performance of the orig-
inal base BERT and our small BERT are identical (see
Table 3 and Figure 7), but we have a significant im-
provement after introducing our encoder. This is due
to the fact that this dataset contains some very long
texts. Also the problem is more complicated than a
normal sentiment analysis as we need to find the best
tag among 20 possible labels. When the maximum
length is set to 512, the performance of the original
base BERT is very high; on the other hand, our en-
coder still improves the performance of small BERT.

4.3 Result Analysis

According to the experiment results presented in this
paper, we have shown that our encoder can be used
as a tool for any type of NLP model to overcome the
maximum sequence length limitation. We have tested
our encoder on two popular NLP models, LSTM and
BERT, and observed that if the dataset does not con-
tain long texts, inserting the encoder into these mod-
els does not affect accuracy. However, if the corpus
contains longer textual data, it will improve accuracy
significantly. In addition to that, as the number of pa-
rameters in these models increases very little (around
1%), it does not affect running time. Each encoder
layer reduces the sequence length approximately to
half of its original size (the exact value can be calcu-
lated by Equation 1); if we need to decrease it further,
we can use more encoder layers stacked on top of each
other (in the LSTM experiment we used two layers of
encoder while for BERT we used just one layer).

5 CONCLUSION AND FUTURE
WORKS

LSTMs were designed to overcome some of the lim-
itations that RNNs encounter with time-series data,
and they usually succeed in outperforming the older
architecture. BERT achieved a huge improvement in
all types of textual data problems by using transfer
learning. These two are among the best models de-
signed for NLP tasks, but both share a maximum se-
quence length limitation. In other words, neither is
capable of appropriately processing long texts. We
have devised a technique to overcome this limitation
by creating an encoder layer that will reduce the di-
mensionality of the input. Results showed that it pro-
vides us with the ability to process longer texts and
improve accuracy.

ICPRAM 2021 - 10th International Conference on Pattern Recognition Applications and Methods

234



We are planning to investigate different encoder
architectures and initializations to determine which is
most beneficial. In addition, we want to use the same
technique on other types of time-series data and mea-
sure the usefulness of the encoder technique in length
reduction for non-textual data.

REFERENCES

Beltagy, I., Peters, M. E., and Cohan, A. (2020). Long-
former: The long-document transformer. arXiv
preprint arXiv:2004.05150.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of the Association for Computa-
tional Linguistics, 5:135–146.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry,
G., Askell, A., et al. (2020). Language models are
few-shot learners. arXiv preprint arXiv:2005.14165.

Collobert, R., Weston, J., Bottou, L., Karlen, M.,
Kavukcuoglu, K., and Kuksa, P. (2011). Natural lan-
guage processing (almost) from scratch. Journal of
machine learning research, 12(Aug):2493–2537.

Conneau, A., Schwenk, H., Barrault, L., and Lecun, Y.
(2016). Very deep convolutional networks for text
classification. arXiv preprint arXiv:1606.01781.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.

Goldberg, Y. (2016). A primer on neural network models
for natural language processing. Journal of Artificial
Intelligence Research, 57:345–420.

Hirschberg, J. and Manning, C. D. (2015). Advances in
natural language processing. Science, 349(6245):261–
266.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.

Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015).
From word embeddings to document distances. In
International conference on machine learning, pages
957–966.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.

Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y.,
and Potts, C. (2011). Learning word vectors for sen-
timent analysis. In Proceedings of the 49th annual
meeting of the association for computational linguis-
tics: Human language technologies-volume 1, pages
142–150. Association for Computational Linguistics.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and
Dean, J. (2013). Distributed representations of words

and phrases and their compositionality. In Advances in
neural information processing systems, pages 3111–
3119.

Mitchell, T. (1999). The 20 newsgroup dataset.
Pennington, J., Socher, R., and Manning, C. (2014). Glove:

Global vectors for word representation. In Proceed-
ings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–
1543.

Sainath, T. N., Vinyals, O., Senior, A., and Sak, H. (2015).
Convolutional, long short-term memory, fully con-
nected deep neural networks. In 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 4580–4584. IEEE.

Sun, C., Qiu, X., Xu, Y., and Huang, X. (2019). How to
fine-tune bert for text classification? arXiv preprint
arXiv:1905.05583.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. In Advances in
neural information processing systems, pages 5998–
6008.

Venugopalan, M. and Gupta, D. (2015). Exploring sen-
timent analysis on twitter data. In 2015 Eighth In-
ternational Conference on Contemporary Computing
(IC3), pages 241–247. IEEE.

Wang, J., Yu, L.-C., Lai, K. R., and Zhang, X. (2016).
Dimensional sentiment analysis using a regional cnn-
lstm model. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 225–230.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.,
and Le, Q. V. (2019). Xlnet: Generalized autoregres-
sive pretraining for language understanding. arXiv
preprint arXiv:1906.08237.

Yin, W., Kann, K., Yu, M., and Schütze, H. (2017). Com-
parative study of cnn and rnn for natural language pro-
cessing. arXiv preprint arXiv:1702.01923.

Zhu, Y. and Zabaras, N. (2018). Bayesian deep convolu-
tional encoder–decoder networks for surrogate mod-
eling and uncertainty quantification. Journal of Com-
putational Physics, 366:415–447.

Lifting Sequence Length Limitations of NLP Models using Autoencoders

235


