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Abstract: Measuring users trust with psychophysiological signals during interaction (real-time) with autonomous 
systems that incorporates artificial intelligence has been widely researched with several psychophysiological 
signals. However, it is unclear what psychophysiological is most reliable for real-time trust assessment during 
user’s interaction with an autonomous system. This study investigates what psychophysiological signal is 
most suitable for assessing trust in real-time. A within-subject four condition experiment was implemented 
with a virtual reality autonomous vehicle driving game that involved 31 carefully selected participants, while 
electroencephalogram, electrodermal activity, eletrocardiogram, eye-tracking and facial electromyogram 
psychophysiological signals were acquired. We applied hybrid feature selection methods on the features 
extracted from the psychophysiological signals. Using training and testing datasets containing only the 
resulting features from the feature selection methods, for each individual and multi-modal (combined) 
psychophysiological signals, we trained and tested six stack ensemble trust classifier models. The results of 
the model’s performance indicate that the EEG is most reliable, while the multimodal psychophysiological 
signals remain promising. 

1 INTRODUCTION 

1.1 Motivation 

Artificial intelligence technologies are becoming 
more ubiquitous. As their applications and presence 
cuts across a broad spectrum of activities and task in 
modern societies (Siau, 2017). 

For instance, autonomous vehicles (AV’s) have 
been developed to transport people from one place to 
another without human driver intervention in the civil 
transportation industry. Besides, robot assisting 
surgery (RAS) has been developed in the medical 
sector to help surgeons carry out high precision 
surgical procedures.  

The emergence of AI technologies makes it 
imperative to foster collaborative interaction between 
users and AI based systems. This is due to the fact 
that AI-based systems operate autonomously and 
user’s delegates/take-over task/control to/from AI 
based systems during interaction. For instance, users’ 
interactions with autonomous vehicles involve giving 
over navigational control to the vehicle AI controller. 
Also, doctors interact with RAS during surgical 

procedures by giving over control of processes (e.g., 
surgical incision) to the RAS.  

Prior efforts aimed at fostering users-AI-based 
systems (e.g. AV) teaming utilized the principle of 
traded controls that requires the driver to take control 
in case of failure or limited capability over certain 
conditions (also referred to as to as disengagement) 
(Dixit et al., 2016). During this transition, user’s 
timely, accurate and appropriate response is required. 
However, without trust, such human technology 
teaming is bound to fail. For instance, the Tesla AV 
crash which led to the death of its driver was blamed 
on the driver streaming video during the incident 
(Beer et al., 2014). 

The importance of trust is further emphasized in 
the study conducted by Litman (2017), during which, 
data from eight AV companies suggests that there are 
more than one disengagement in every 5,600 miles an 
AV travelled in 2017. Therefore as AVs’ 
disengagement is inevitable, so is the need for 
successful users-AVs’ teaming, and this requires trust 
between users and AVs’. Furthermore, trust between 
users and AVs’ is influenced by prior failure 
experience of AI algorithms that controls the AVs’. 
This is further exacerbated by the fact that user’s lack 
understanding of how AI algorithms that controls the 
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AV operates, due to its design complexity (e.g. how, 
when and why it decides to turn left or right) 
(Parasuraman and Riley, 1997). 

Hence, as Hurlburt (2017) quotes that ”any 
tendency to put blind faith in what in effect remains 
largely untrusted technology can lead to misleading 
and sometimes dangerous conclusions”,  there is no 
doubt that trust will play a significant role in users 
interactions with AI-based technologies (Gefen et al., 
2003; Li et al., 2008; Saiu et al., 2004). As trust has 
been shown to influence users behaviour (e.g., 
reliance), perceived usefulness, pleasantness, and 
overall acceptance of AI-based technologies such as 
autonomous vehicles (Hergeth et al., 2016; Payre et 
al., 2016; Rajaonah et al., 2006; Sollner & Leimeister 
2013). 

In order to foster users trust in AI-based systems 
and enhance positive users experience, ensuring that 
both user’s and AI technologies (AVs’) can jointly 
plan, decide, or control a system (vehicle/device) by 
sharing control is imminent (Abbink, et al., 2018). 
Hence, some researchers suggest effective calibration 
of users trust to avoid overtrust 1  or under trust 2 

(Fallon et al., 2010; Hoffman et al., 2013; Lee & See 
2004; Mirnig et al., 2016; Pop et al., 2015). Other 
researchers suggests that making the AI-based system 
explain” what, why and how it operates” to users 
could enhance users trust (Glass et al., 2008; Pu & 
Chen 2006). Although, Pieters (2011) suggests that 
explanation should be provided until trust is 
established, these approaches fail to address when 
explanation should be provided. 

However, since trust is dynamic and constantly 
changes over time, calibration or explanation would 
be most meaningful after effective assessment of 
users trust levels in these AI based technologies (e.g. 
AV’s) is achieved. However, measuring trust 
continues to remain a challenge (Hurlburt, 2017). We 
believe, this challenge should be first addressed 
before moving onto what next after trust level is 
accurately assessed. 

The widely used self-reporting trust assessment 
tools such as those develop by Gulati et al., (2019) are 
not suitable in this context because they can only be 
administered after interaction, The use of behavioural 
data such as users decision to rely or not rely on AI-
based system during interaction are highly dependent 
on the interaction, context and artefact. Hence leaving 
the use of psychophysiological signal a viable method 
for development of real-time trust assessment tools, 
provided that the psychophysiological correlates of 
trust is known. 

Therefore, making it imperative to develop tools 
that can assess users trust level in AI technologies 
(AVs’) in real-time using psychophysiological 
signals.  A real-time trust assessment tool could 
enable algorithms that AI controls technologies such 
as AVs’ learn about users trust state and adapt its 
operations accordingly (Ajenaghughrure et al., 2019). 
As cognitive states (such as trust) can be used as 
feedback to the system in order to correct mistakes or 
inform the refinement of a learned control policy 
(Perrin et al., 2011). A potential application of real-
time trust assessment tool is presented in Fig. 1  
 

 

Figure 1: Typical use-case of real-time trust assessment. 

 
1 when a user trust a faulty or unreliable automated system 2 when a user does not trust a reliable or non-faulty automated 

system 3i.e biofeedback e.g. brain computer interface 
applications 
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below, a user interacting with an autonomous vehicle 
during a road trip-(1) the car detects an obstacle ahead 
using its sensor data. (2) The car uses its inbuilt 
machine learning model to determine its best 
navigational strategy. (3) The users trust state is 
assessed with the help of the trust classifier model that 
received as input the users’ physiological signal data 
(EEG) pre-processed in real-time. The car provides 
the user with appropriate feedback–”e.g., when trust 
is low: I understand that you are concerned about my 
ability to drive you through the obstacle ahead 
without involving in any crash, however I am 100% 
capable of navigating the obstacle ahead without any 
crash, kindly sit back and enjoy the ride”. 

In addition, the same could be applied in the 
context of e-commerce where users trust could be 
measured during checkout and if found to be low, 
appropriate feedback such as “hello we understand 
that you are concerned about purchasing product xyz, 
hence the merchant has agreed that you will not be 
charge until you receive and use the product for six 
months. If satisfied, then you will be charged.” 

Further, in the context of   doctors-RAS 
interaction, a realtime trust assessment tool could 
help foster cooperation between doctors and RAS 
during surgical procedure (Shafiei, et al., 2018). 

1.2 Problem Statement 

Although the use of psychophysiological signals for 
assessing users trust has been equally investigated by 
quiet a number of researchers, the question of what 
psychophysiological signal could be most reliable or 
should multi-modal psychophysiological signals be 
used to assess trust remains unattended. 

Consequently, it is unclear which 
psychophysiological signal is most reliable for 
assessing users trust.  

For instance, given that the psychophysiological 
correlates of trust were found in multi-modal 
psychophysiological signals  such as the combination 
of  eye-tracking combined with ECG by 
Leichtenstern et al., (2011), the psychophysiological 
correlates of trust in single psychophysiological 
signals has equally been found. For example, EEG 
was used by Oh et al., (2017) and Wang et al., (2018). 
Audio/voice and ECG was used by Elkins & Derrick 
(2010) and Watz et al., (2014). Eye tracking was used 
by Hergeth et al., (2016). However, it remains unclear 
which psychophysiological signals correlates better 
with users varying trust levels. 

Furthermore, researchers investigating users trust 
assessment in real-time (i.e., during interaction) using 
single (electroencephalogram (EEG), functional near 
infrared spectroscopy (FNIRS), and electrodermal 

activity (EDA)) and multi-modal  ( EEG+EDA, 
audio/speech+ photoplethysmography + video ) 
psychophysiological signals  has developed  fairly 
accurate classifier models that are capable of 
detecting users trust state from psychophysiological 
signals during interaction with AI-based systems. 
(Ajenaghughrure et al., 2019; Hirshfield et al., 2011;  
Shafiei et al., 2018; Lochner et al., 2019;  Akash et 
al., 2018; Hu et al., 2016;). 

It also remains unclear what psychophysiological 
signal is most suitable for developing real-time trust 
assessment tools? Further reinforced by the fact that 
there is dominance of features from one signal over 
the other(s) in studies where multimodal 
psychophysiological signals were utilized. For 
instance, Hu et al., (2016), despite extracting 108 
features from the psychophysiological signals (EEG 
105, EDA 3), the model utilized more EEG features 
(8) and less EDA features (2). Also, Akash et al., 
(2018), despite extracting 147 EEG features and 2 
EDA features, both models (general and customized) 
used more EEG features (11 and 10) than EDA 
features (1 and 2). Furthermore, though the resulting 
model developed by Khalid et al., (2018) utilized 
features extracted (facial action code units, 
photoplethysmography (video-heart rate), 
audio/speech) from video and audio/speech 
psychophysiological signals, no details of the 
numbers of selected features per signal was provided. 

1.3 Goals and Contribution 

The goal of this study is to investigate what 
psychophysiological signal is most suitable for 
assessing users trust in real-time through developing 
and comparing stack ensemble trust classifier 
models, taking into account five psychophysiological 
signals (EEG: electroencephalogram, ECG: 
electrocardiogram, eye tracking, EDA: 
electrocardiogram, and facial EMG: 
electromyogram). These signals were considered 
because they are have been used in prior studies. In 
addition, we demonstrate the effectiveness of virtual 
reality technique for eliciting users trust dynamics 
during user’s interactions with AI technologies that 
are otherwise expensive to acquire for conducting 
user experience studies. 

2 METHODOLOGY 

Virtual reality offers both the opportunity to immerse 
users in virtual environment where they experience 
products synonymously to real-world and the ability 
to assess user’s experience (e.g., cognitive states such 
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as trust and/or effective states such as emotions) 
(Rebelo et al., 2012). 

Therefore, following game theoretic approach 
similar to prior research investigating trust 
(Ajenaghughrure et al., 2019), we developed an 
autonomous vehicle (AV) driving game. The game 
affords participants the opportunity to experience an 
AV under four categories of risk conditions that are 
directly mapped onto the automotive safety integrity 
levels (ASIL), also known as ISO-26262.  

Elicitation of varying levels of risk through the 
game was motivated by the fact that risk is one (1) of 
the main factors that influences users’ trust in 
technology (Gulati et al., 2019). ASIL classifies the 
inherent safety in automotive systems into four 
categories (A,B,C,D) based on the combination of 
severity of accident, likelihood of accident and 
exposure to accident (i.e. ASIL = Severity ∗  ( 
Exposure ∗ Likelihood )) (Kinney and Wiruth, 1976). 

Hence, a within subject 4 condition (very-high 
risk, high risk, low risk, no risk) experiment design 
was implemented as a game that tasked participants 
to stay safe. During the game, we captured 
participants trust dynamics through recording 
participants psychophysiological responses (EEG, 
EDA, ECG, facial EMG and eye tracking signals) 
during interactions with the AI technology (a 
simulated AV game) under various risk conditions. 

2.1 Apparatus 

Hardware: An MSI core i7 high performance 
gaming computer was used for the experiment. In 
addition, a 30inch LCD monitor was used to enhance 
visual display. Also, a Keyboard and mouse was 
provided to allow participants complete the trust in 
technology questionnaire (Gulati et al., 2019). In 
addition, a joystick was provided to participants to 
enable them to control the car when needed. 
Software: Lab-stream layer software was used for 
aggregated recording of event markers from the game 
and all other psycho-physiological signals (EEG, 
ECG, EMG (facial) and EDA) into a single file in xdf 
format. In addition, using unity and C# programming 
language, we developed a hybrid fully autonomous 
vehicle (AV) driving game. More details about the 
game is described in (Ajenaghughrure et al., 2020). 
Also, Google hangout video call session running on a 
computer equipped with high definition camera 
installed in the experiment room was used to enable 
remote monitoring of participants during the 
experiment. 
 
 

2.2 Participants 

Invitation was sent through university mailing list, 
and printed handbills, with the help of an assistant.  

Upon acceptance of the invitation, participants 
were asked to complete a google form to help us 
ascertain that each participant are right handed, free 
from any health condition that prevents them from 
driving, and are at least 18years and above.  All 
participants that satisfied the above criteria were 
administered the driving habit questionnaire (DHQ) 
and behavioural inhibition / behavioural activation 
system questionnaire (BIS/BAS).  Finally, only thirty 
one (31) healthy and right-handed participants 
(26.7% female, 73.3% male) aged 18 and above (M= 
27.93333333, SD=5.607466287) participated in this 
study. This age range was considered based on prior 
studies which did not find any significant difference 
in psychophysiological responses when user aged 18 
and above exhibit varying trust behaviour (Lemmers-
Jansen et al., 2017). Furthermore, based on the 
responses recorded from the DHQ and BIS/BAS 
questionnaire (Owsley et al., 1999; Carver and White 
1994), all participants had prior driving experience 
and symmetric personality traits with high BIS and 
BAS score (mean BIS>=2.5, mean BAS>=2.5, BIS 
score>=19, BAS score >= 40). In addition, order 
effect was avoided by grouping participants into two 
equal groups, each group is assigned to the four main 
game condition in reverse order. 

2.2.1 Experiment Procedure 

Upon arrival, participants were introduced to the 
experiment as a game involving test riding a 
prototype fully autonomous SUV vehicle intended for 
the future. Thereafter, participants completed and 
sign the informed consent form. 

After that, an 8-channel wireless EEG recorder 
(G.tech Gmbh Austria.) was affixed to participants 
scalp. In addition, using bitalino wireless bio-signal 
acquisition systems, we affixed EDA sensor 
electrodes (2) to participants left hand palm area, 
EMG sensor electrodes (3) were placed on 
participants left and right eye sides to obtain 
horizontal EOG (Electrooculography), ECG sensor 
electrodes were placed on participant chest (left and 
right collar bone, and below the left chest area). Also, 
eye tracking data calibration with Miramatrix eye 
tracker was performed. 
Thereafter, participants played the test game session 
to acquaint themselves to the available joystick 
(Logitech 3D Pro) controls that applies to the 
autonomous vehicle without any obstacles. At the end 
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of the demo game session, participants completed the 
trust in technology questionnaire adopted from Gulati 
et al., (2019) to obtain participants initial trust levels. 
This is followed with a 45seconds (game sessions 
loading time) relaxation acting as a baseline 
correction for the psychophysiological signals being 
recorded. After that, the experimenter exits the 
experiment room as participants began the main game 
session. After completing a game session (i.e. 13 
trials), participants completed the trust in technology 
questionnaire adapted from Gulati et al., ( 2019) to 
obtain participants trust perception. In addition, the 
game logs consist of participants trust related 
behaviour (number of times AI was relied upon vs 
number of times joystick was relied upon). After 
completing the four game sessions, all 
psychophysiological sensors were removed following 
vendor guidelines. Finally, participants were 
debriefed and thanked with a gift card voucher worth 
10EUR irrespective of the final score obtained at the 
end of the game (<75 or >=75points). 

 

Figure 2: Experiment Procedure. 

2.3 Data Collection and Pre-processing 

Multimodal psychophysiological signals were 
recorded using labstream layer software and API for 
the respective physiological sensors. 

The continuous EEG data was recorded using a 
wireless 8channel (Cz, Fz, C3, C4, F3, F4, P7 and P8 
based on 10-20system) electrode amplifier from 
G.Tech Gmbh Austria. The sampling rate was 250Hz 
and impedance was <20kohm. Electrolyte gel was 
applied to each electrode to ensure proper 
conductivity and data quality. In addition, we used 
75% metabolic spirit fluid to wipe the right ear lobe 
before affixing the ground electrode. Low pass filter 
of 120hz, high pass filter of 0.10Hz and notch filter 
of 50hz were used to remove sharp spikes, low-
frequency drift noise and high-frequency sinusoidal 
power line noise respectively. The ground reference 
electrode was placed on the right earlobe, in addition 
to common ground.  

 

Figure 3: Participant during experiment. 

Also, the continuous ECG, EDA and Facial-EMG 
signals were recorded at a sampling rate of 1000hz. 
The EDA signals were acquired with two (2) gel 
prefilled electrodes that were placed on the left palm 
area of participant’s. Using ledalad software, the 
EDA signals were: down-sampled to 50hz to reduce 
the computation cost (time) and denoised using 
adaptive smoothing to remove noise related with 
movements (Benedek and Kaernbach 2010). 

In addition, the facial EMG signals were acquired 
with three gel prefilled electrodes attached to the left 
and right eye sides, and above the left eye brow, to 
obtain horizontal EOG signals. In addition, hand 
sanitizer applied to wipes were first used to wipe the 
areas before affixing the facial EMG prefilled gel 
electrodes. 

Further, the ECG signals were acquired with three 
gel prefilled electrodes that were placed on the left 
(black electrode) shoulder, right shoulder (white 
electrode) and below the left chest (red electrode) 
area. In addition, hand sanitizer applied to wipes were 
first used to wipe the areas before affixing the ECG 
prefilled gel electrodes. Also, the ECG signals were 
downsampled to 50hz to reduce the computation cost 
(time) and filtered using neurokit python library 
(Makowski, 2016). 

Furthermore, participants trust perception was 
measured subjectively using the trust in technology 
questionnaire adopted from Gulati et al., (2019). It 
consists of fourteen (14) items (question measuring 
risk perception, general trust, benevolence, 
reciprocity, and competence) measured on a scale of 
one (1) to five (5). Participants trust score was 
obtained by summing up the total response. This 
instrument was chosen because of its empirical 
nature. 

In addition, participants non reliance (i.e., take-
over: disengagement of AI control to manual control) 
on the AV was measured by aggregating the total 
joystick activation (0=not moved, 1=moved) 
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beginning from the onset of an obstacle until an 
obstacle is past for all 52 trials. 

 

Figure 4: User non-reliance (joystick activation). 

3 DATA ANALYSIS 

3.1 Subjective Trust Perception and 
Objective Behavioural Trust 
Assessment 

The result of the one way repeated measure ANOVA 
performed on the trust scores obtained from the 
participants before the playing the game and after 
playing each game sessions revealed that users trust 
before beginning the game (initial trust) was higher 
with statistical significant difference when compared 
to users trust during the very high risk and high risk 
game session were lower (difference in mean trust 
score 14,581 and 15,355 respectively, sig (0.00) 
<0.05). Further, although users trust before beginning 
the game (initial trust) was higher but was not 
statistically significant when compared to users trust 
during the low risk and no risk game session 
(difference in mean trust score 4,355 and 2,226 
respectively, sig (0.220 and 1.00)>0.05 respectively). 

In addition, users trust during the high risk game 
session is lower with statistical significant difference 
when compared to users trust during the low risk and 
no risk game session (Mean difference -11,000 and -
13,129 respectively, sig (0.001) <0.05). Also, users 
trust during the very high risk game session is lower 
with statistical significant difference when compared 
to users trust during the low risk and no risk game 
session (difference in mean trust score -12,355 and -
13,129 respectively, sig (0.001) <0.05). 

However, there was no statistical significant 
difference between users trust during the very high 
risk and high risk game session. Same applies to the 
low risk and no risk game session. 

Furthermore, users non-reliance (joystick usage) 
during the very high risk and high risk game session 
were higher with statistical significant difference 

when compared to user non-reliance (joystick usage) 
during the no risk game session (difference in mean 
trust score 624,258 and 612,742 respectively, sig 
(0.002 and 0.000 respectively) <0.05). Also, though 
users non-reliance (joystick usage) during the very 
high risk and high risk game session are higher when 
compared to users non-reliance (joystick usage) 
during the low risk game session (difference in mean 
trust score 402,129 and 390,613 respectively, sig 
(0.320 and 0.138) <0.05), it was not statistically 
significance, probably because users do not 
differentiate risk as low or high but present or absent. 

These results suggests perceived risk during 
interaction with autonomous technologies influences 
users trust and overall reliance on autonomous 
technologies. In particular as risk increases trust and 
overall reliance decreases. Thereby reinforcing the 
need for real-time trust assessment tools. 

 

Figure 5: Users trust by game sessions. 

3.2 Feature Extraction 

The continuous EEG, EDA, ECG, eye tracking and 
facial EMG data were first divided into 4s epoch. 
Each epoch begins from the obstacle onset and ends 
4s after. This time window was chosen because the 
average response time (i.e. the time from obstacle 
onset until first joystick movement) in cases where 
participants trust was low was four (4) seconds. Each 
epoch was labelled as high trust (coded as 2, if the 
joystick was not used during a trial) or low trust 
(coded as 1: if the joystick was used during a trial). 

3.2.1 EEG 

Using customised python script implementing python 
libraries from Python MNE (Gramfort et al., 2013) 
and MNE-feature extraction (Schiratti, et al., 2018), 
we extracted 160 exhaustive features from both time 
and frequency domain. The time domain features 
extracted for each EEG channel(i.e. 8 times 10) are 
the mean, variance, kurtosis, peak to peak amplitude 
(ptp amp), skewness, standard deviation (std), 
spectral entropy (spect entropy), singular value 
decomposition fisher information (svd fisher info), 
singular value decomposition entropy (svd entropy) 
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and decorrelation time (decorr time). Further, the 
frequency domain features extracted from five 
frequency bands (alpha. beta, theta, gamma and delta) 
and each channel (i.e. 5 times 8 times 2) are the power 
spectrum (pow freq bands) and the band energy 
(energy freq bands). However, Only 30 participants 
data were included for further analysis, as one 
participants EEG epoch data were too noisy 
rendering all its epoch data invalid. 

3.2.2 Facial EMG 

Mean and peak to peak amplitude features were 
extracted from all 31 participants epoch facial-emg 
data using a customized python script implemented 
with python MNE libraries and MNE-feature 
libraries (Gramfort et al. 2013; Schiratti, et al., 2018 
). Therefore only two features were extracted from 
the facial EMG signal. 

3.2.3 EDA 

Using mathlab and ledlab software (Beer  & 
Kaernbach, 2014), we extracted 12 EDA features 
from all 31 participants epoch and pre-processed 
EDA signals. Amongst which includes seven 
continuous phasic/tonic features using continuous 
decomposition analysis (CDA) based on standard 
deconvolution, three standard trough-to-peak (TTP) 
features, and two global measures (see Beer  & 
Kaernbach, (2014), for detailed description of the 
features) 

3.2.4 Eye Tracking 

All 31 participants epoch eye tracking data were 
further pre-processed for feature extraction by 
computing the mean of each default features provided 
by the open-eye api (Hennessey & Duchowski, 
2010). Therefore, the mean of each of the forty 
features outlined provided by the openeye api were 
computed (Hennessey & Duchowski, 2010). 

3.2.5 ECG 

Using customized python script implementing 
neurokit library (Makowski, 2016), we extracted 
three features (clean raw ecg, ecg rate, and ecg peak) 
from the epoch ECG psychophysiological signal data 
(aggregated from all 31 participants). 

3.3 Ensemble Trust Classifier Model 

Based on previous study (Ajenaghughrure et al., 
2020), we selected five most promising algorithms 
(multi-layer perception (MLP), linear support vector 
machine (LSVM), regularised support vector 

machine algorithm (RBF-SVM), linear discriminant 
analysis algorithm (LDA), quadratic discriminant 
analysis algorithm (QDA)). These algorithms offers 
diverse characteristics that compliments the 
limitation of one another, thereby reducing the 
resulting classifier model biases and increasing its 
generalizability. Also, these algorithms has been 
successfully applied in brain computer interface 
research previously (Lotte et al., 2007). Our 
implementation of the ensemble trust classifier model 
was therefore achieved by combining all five 
algorithms through a technique known as classifier 
stack ensemble method (Lotte et al., 2007; Pedregosa 
et al., 2011). Ensemble of several algorithms aims to 
reduce classification error as suggested by prior 
research (Ajenaghughrure et al., 2019; Hu et al., 
2016). Also, stack ensemble method was preferred 
over all other method because prior study has 
demonstrated that it is most superior when compared 
to other ensemble methods (e.g. voting, bagging, 
boosting) and unsupervised method such as deep 
neural network (Ajenaghughrure et al., 2020). 

3.4 Feature Selection 

We used hybrid feature selection method to select 
features from each individual and combined (multi-
modal) psychophysiological signal epoch data-sets 
(i.e. EEG, EDA, ECG, EMG, and eye tracking). The 
choice of hybrid feature selection method was 
informed by prior study which has demonstrated that 
the resulting features from such method yields the 
most optimum ensemble trust classifier model 
performance (Ajenaghughrure et al., 2020). Hybrid 
feature selection method entails the combination of 
different feature selection method (e.g. filter and 
wrapper method). 

The hybrid feature selection process applied to 
each individual and combined psychophysiological 
signal is detailed as follows: (1) Divide the epoch data 
samples into training and test samples (80% and 20% 
respectively). (2) Apply relieff filter feature selection 
method on subset of the training data sample, to 
identify model independent features. Relieff is an 
automated process that has been successfully applied 
in previous trust studies (Hu et al., 2016). Our 
implementation of the relieff feature selection 
method was achieved through a customised python 
script that implemented the relieff algorithm python 
library (Urbanowicz, et al., 2018). (3) Obtain model 
dependent features that promises optimum 
performance of the trust classifier model by applying 
wrapper feature selection (sequential forward 
floating feature selection method (SFFFS)) method 
on the subsets of the training samples containing only 
features obtained from step2. Our implementation of 
the wrapper feature selection method was achieved 
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through a customised python script that implemented 
mlxtend python library (Raschka et al., 2018). This 
method evaluates our stack ensemble trust classifier 
model performance on various combinations of the 
model independent features to identify the most 
relevant feature for the specific model. 

3.4.1 Multi-modal Psychophysiological 
Signal Feature Selection 

The entire epoch multi-modal psychophysiological 
data (aggregated from 30 participants one participant 
EEG data epochs was corrupted.) containing 217 
feature vector was first subjected to step1. Thereafter, 
step2 was applied on subset of the training epoch data 
(multi-modal psychophysiological signals) samples, 
and this process identified 30 model independent 
feature vectors (Urbanowicz, et al., 2018). 
Furthermore, applying step3 to subsets of the training 
epoch data (multi-modal psychophysiological 
signals) samples containing only features selected in 
step2 identified 14 relevant model dependent features 
that promises the utmost performance of the trust 
classifier model. Amongst which include: the global 
mean of the EDA signal, svd entropy from four EEG 
channels (c3, c4, f3, cz), svd fisher info from four 
EEG channels (c3, p7, f3 and cz), skewness from two 
EEG channels (p7 and cz), gamma power frequency 
band from EEG channel f3 and gamma energy 
frequency bands from two EEG channels (p8, and 
c3). 

3.4.2 EEG 

After excluding one participant data due to bad 
epochs, we applied step1 to the epoch EEG data 
samples containing 160 features. Thereafter, we 
applied step2 to subsets of the training epoch data 
(EEG) samples which resulted to top 15 model 
independent features being selected. Furthermore, we 
applied step3 to subsets of the training epoch data 
(EEG) samples containing 15 features selected in 
step2. The result of step3 is 10 model dependent 
features that promises optimum performance of the 
trust classifier model. The feature selected are the 
gamma energy frequency bands from two EEG 
channels (cz and c4), svd fisher info from six EEG 
channel (p7, p8, f3, f4, c3, c4), and svd entropy from 
two EEG channels (p6 and c4). 

3.4.3 ECG 

The epoch ECG psychophysiological signal data 
(aggregated from all 31 participants) samples 
containing all three features were first subjected to 
step1. Thereafter, we applied step2 to subset of the 
training epoch data (ECG) samples. The result of 

step2 is the selection of the top 2 model independent 
features. Furthermore, step3 was applied to subset of 
the training epoch data (ECG) samples containing 
only the two features selected in step2. This resulted 
to selecting only one model dependent feature (i.e., 
the clean raw epoch ECG signal) that promises 
utmost model performance. 

3.4.4 EDA 

Step1 was first applied to the epoch EDA 
psychophysiological signal data samples (aggregated 
from all 31 participants) containing the twelve 
features we extracted, and subset of the training 
epoch data (EDA) samples were further subjected to 
step2 process. The result of step2 is five model 
independent features selected. Furthermore, we 
applied step3 on subset of the training epoch data 
(EDA) samples containing only the five features 
sleeted in step2. The result of step3 is four model 
dependent features, amongst which includes: two 
CDA features (CDA.nSCR: Number of significant 
skin conductance response within response window 
(wrw), and CDA.Tonic: Mean tonic activity wrw of 
decomposed tonic component), one standard trough 
to peak feature (TTP.nSCR:Number of significant 
skin conductance response within response window 
(wrw)) and one global measure feature 
(Global.MaxDeflection: Maximum positive 
deflection wrw). 

3.4.5 EMG 

Step1 was applied to the epoch EMG 
psychophysiological signal data (aggregated from all 
31 participants) containing the two feature extracted 
and further subjected to step2 which utilizes subset of 
the training epoch data (EMG) samples. The result of 
step3 are two model dependent features (mean, and 
peak-to-peak amplitude). Here we skipped step2 
because we had extracted only two features. 

3.4.6 Eye Tracking 

Step1 was applied to epoch eye tracking 
psychophysiological signals data (aggregated from 
all 31 participants) samples containing the forty 
feature vectors and subset of the training epoch 
data(eye tracking) samples were further subjected to 
step2 process which selected seven model 
independent features. Furthermore, we applied step3 
to subset of the training epoch data samples 
containing only the seven model independent features 
and this resulted to six model dependent features 
(RPUPILD: float right eye pupil diameter (mm), 
RPV: right eye pupil image valid, FPOGID: fixation 
number, REYEX: right eye position in X -left/+right 
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(cm), CS: cursor button state, RPOGV: right point-
of-gaze valid) that promises optimum performance of 
the trust classifier model. 

3.5 Model Training and Validation 

Using each psychophysiological signals (individual 
signals and multimodal signal) training data-sets 
(80%) containing the final features selected with 
SFFS method, we trained six stack ensemble trust 
classifier model outlined below: 

 The first stack ensemble trust classifier model 
(V1) was trained with training data sets that 
consists of only multi-modal 
psychophysiological signals selected features. 

 The second stack ensemble trust classifier 
model (V2) was trained with training data sets 
that consists of only EEG psychophysiological 
signal selected features. 

 The third stack ensemble trust classifier model 
(V3) was trained with training data sets that 
consists of only eye tracking 
psychophysiological signal selected features. 

 The fourth stack ensemble trust classifier 
model (V4) was trained with training data sets 
that consists of only EDA psychophysiological 
signals selected features. 

 The five stack ensemble trust classifier model 
(V5) was trained with training data sets that 
consists of only ECG psychophysiological 
signals selected features. 

 The sixth stack ensemble trust classifier model 
(V6) was trained with training data sets that 
consists of only facial-EMG 
psychophysiological signal selected features. 

Each model was trained using the stratified three-fold 
cross validation method. This method first divides the 
training data (80% of the entire data samples) into 
specified partitions (three in this case) containing 
equal percentage of each class samples, then trains 
the given model on some data partition(given 
partition minus one, i.e. two) and evaluates the given 
model on the reserved data partition 

The results of each model performance (accuracy 
minimum, maximum, and mean) based on the cross 
validation is outlined in table 1. 

The stack ensemble trust classifier model V1 
achieved an accuracy of 78.4% (minimum) for some 
samples, while for other samples, it achieved an 
accuracy of 82.0%. Also, its mean accuracy is 80.0%.  

Also, the stack ensemble trust classifier model V2 
achieved an accuracy of 80.4% (minimum) for some 
samples, while for other samples, it achieved an 
accuracy of 87.8%. Also, its mean accuracy is 83.4%. 

In addition, the stack ensemble trust classifier 
model V3 achieved an accuracy of 50.2% (minimum) 
for some samples, while for other samples, it 
achieved an accuracy of 57.6%. Also, its mean 
accuracy is 53.9%. Also, the stack ensemble trust 
classifier model V2 achieved an accuracy of 51.0% 
(minimum) for some samples, while for other 
samples, it achieved an accuracy of 58.8%. Also, its 
mean accuracy is 54.8%. 

Furthermore, the stack ensemble trust classifier 
model V2 achieved an accuracy of 51.4% (minimum) 
for some samples, while for other samples, it 
achieved an accuracy of 53.4%. Also, its mean 
accuracy is 52.0%. Also, the stack ensemble trust 
classifier model V2 achieved an accuracy of 59.2% 
(minimum) for some samples, while for other 
samples, it achieved an accuracy of 64.9%. Also, its 
mean accuracy is 61.8%. 

Therefor these results suggest that all the 
ensemble trust classifier models, irrespective of the 
psychophysiological signal utilized during their 
development, are stable. Considering that the 
minimum accuracy’s ranges from 50.2% to 80.4%, 
the maximum accuracy’s ranges between 53.9% to 
82.9%, and the mean accuracy’s ranges from 53.4% 
to 87.8%. Also, no model had accuracy below 50% 
for any given sample. 

However, with regards to performance, the 
stacked ensemble trust classifier model (V2) 
developed with EEG psychophysiological signal 
attained the most performance. The stack ensemble 
trust classifier model (V1) developed with multi-
modal psychophysiological signals attained the 
second most optimum performance.  

With regards to all other stacked ensemble trust 
classifier models (V3, V4, V5, V6), the model (V6) 
developed with facial-EMG psychophysiological 
signal is the next most optimum model, followed by 
the model (V4) developed with EDA 
psychophysiological signal, and next is the model 
(V3) developed with eye tracking 
psychophysiological signal. The least optimum is the 
model (V5) developed with ECG 
psychophysiological signal. 

The implication of these results is that EEG is the 
most relevant psychophysiological signals for 
assessing trust. While multimodal 
psychophysiological signal is equally promising, but 
more research is still required. In addition, facial 
EMG is equally a promising psychophysiological 
signal for assessing trust. However, the performance 
of both EDA, ECG, and eye tracking 
psychophysiological signals were not too 
encouraging. 

 
 
 

Psychophysiological Modelling of Trust in Technology: Comparative Analysis of Psychophysiological Signals

169



Table 1: Models CV performance (Accuracy(%) minimum. 
maximum, mean). 

SN Model Mean Min Max Stability

1 Multimodal 0.800 0.784 0.820 0.036 

2 EEG 0.834 0.804 0.878 0.074

3 Eye-Tracking 0.539 0.502 0.576 0.074

4 EDA 0.548 0.510 0.588 0.078

5 ECG 0.520 0.514 0.534 0.02

6 Facial EMG 0.618 0.592 0.649 0.057 

3.6 Model Validation/ Evaluation 

Considering that the validation during cross 
validation and training could have some leaked data 
samples present in both the validation and training 
data partitions, and consequently results to model 
over-fitting as argued by some scholars (Lotte et al., 
2007). Therefore, we further tested each ensemble 
trust classifier model with reserved test data (i.e. 20% 
of the entire data samples). 

As outlined in table 2 below, the stack ensemble 
trust classifier model (V1 and V2) developed with 
multi-modal psychophysiological signals and EEG 
psychophysiological signal yielded the most 
optimum performance (accuracy 80.5% and 79.8% 
respectively). However, the performance difference 
(0.7%) between both models (V1 and V2) is quiet 
low. Furthermore, the stack ensemble trust classifier 
model (V6) developed with Facial EMG 
psychophysiological signals is the next most 
performing model with an accuracy of 61.6%. 

In addition, the stack ensemble trust classifier 
models (V4 and V5) developed with EDA and ECG 
psychophysiological signals performance(accuracy 
56.7% and 56.5% respectively) were below the 
performance of the stack ensemble trust classifier 
models(V1, and V2) developed with EEG and 
multimodal psychophysiological signal. Although, 
the stack ensemble trust classifier models(V4 and 
V5) developed with ECG and EDA 
psychophysiological signals appears to be more 
promising than the stack ensemble trust classifier 
model developed with eye tracking 
psychophysiological signal which attained 55.4%, all 
three models performance are poor in comparison to 
the models developed with EEG and multi-modal 
psychophysiological signals. 

Therefore these results implies that EEG and 
multimodal psychophysiological signals are the most 
reliable psychophysiological signals for developing 
stacking ensemble models for assessing users trust 
during interaction with technology. Although, facial 
EMG seems promising, there is still room for more 
research using facial EMG, in order to understand its 
scope better. Also, 

Table 2: Models test performance. 

SN Models Accuracy Recall Precision 
ROC-
AUC

1 Multim
odal

0.805 0.805 0.843 0.805 

2 EEG 0.798 0.787 0.846 0.800

3 Eye 
tracking

0.554 0.948 0.563 0.493 

4 EDA 0.567 1.000 0.567 0.500

5 ECG 0.565 1.000 0.565 0.500

6 Facial 
EMG

0.616 0.954 0.601 0.563 

3.7 Discussion and Implication for HCI 
Researchers Investigating Trust 

The results of this study clearly identified EEG 
psychophysiological signal as the most reliable 
psychophysiological signal for assessing users trust 
in technology. Although this result is reinforced by 
the fact that the trust classifier model (V2) developed 
with EEG psychophysiological signal outperformed 
the other models (v3, v4, v5, v6) developed with 
other psychophysiological signals, the 
comprehensive review by the authors in 
(Ajenaghughrure et al, 2020) identified EEG as the 
most frequently used psychophysiological signals in 
studies assessing trust with psychophysiological 
signals. One reason for this result could be because 
EEG has high temporal resolution, compared to the 
other psychophysiological signals. 

In addition, the models (v3,v4,v5,v6) developed 
with the other psychophysiological signals (eye 
tracking, ECG, EDA, facial-EMG) performing 
poorly could be as a result of the data epoch time 
window (4s) that was chosen based on the average 
response time in this study, and the context being a 
time sensitive context. Probably when longer epoch 
time window is used in other context (e.g. e-
commerce) that are not time sensitive, these other 
psychophysiological signals could perform better. 
Therefore, future research could examine epoch 
duration. Hence the result of this study is not entirely 
applicably across all technical artefact context, but 
subject to further investigation. 

Furthermore, though the model (v1) developed 
with multimodal psychophysiological signal 
outperforms the model (v2) developed with EEG 
signal during validation, it is worth pointing out the 
majority of the selected features in the multimodal 
model (v1) are EEG psychophysiological signal 
features, and just a single EDA psychophysiological 
signal feature was selected. This leaves an important 
question on why such occurrence, and how best to 
perform feature selection for multi-modal 
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psychophysiological signals. Hence, the subject of 
multimodal psychophysiological for assessing trust 
remain largely unclear and requires further 
investigation. 

Further, like prior studies, we have performed an 
offline model development and evaluation. However, 
it is unclear how these models will perform when 
applied in real-time context.  

In addition, though the maximum accuracy 
reported in this study and most prior studies _+/- 80% 
or more, therefore, when these models are deployed 
in realtime context with adaptive feedback based on 
users trust important questions about how wrongly 
estimated trust level and corresponding feedback 
would affect users trust and overall experience would 
emerge. 

Although, the current study result suggests EEG 
is most optimum, the implementation of AV’s has 
neither explored the current concept of real-time trust 
assessment with adaptive feedback. Hence, another 
important dimension that future research could 
examine is the application of real-time trust 
assessment with adaptive feedback in the wild. 
Though EEG systems are available in various form 
factors with cost ranging from less a 100USD to 
several thousands, dealing with noise and other 
physical activity that could impair the signal quality 
is another issue that future research must address. In 
addition to exploring non-invasive signals such as 
voice/audio. 

The significance of this study result for future 
HCI researchers and designers investigating realtime 
trust assessment in AI-based systems is in the aspect 
of eliciting and informing the choice of 
psychophysiological signal to utilize during the 
development of a trust state classifier model that can 
automatically classify users trust state (users 
experience) based on psychophysiological signals. 
Our result generally shows that it is feasible to assess 
users trust state during interaction (real-time) with an 
autonomous system and the most reliable signal to 
use at the moment is EEG. 

4 CONCLUSION 

In conclusion, a user study involving autonomous 
vehicle in virtual. In addition, as we transition into the 
era of AI technologies, creating a symbiotic 
interactive atmosphere that guarantees successful 
user’s technologies (e.g. AV’s) teaming is 
imperative. Hence, trust researchers have attempted 
the development of ensemble trust classifier models 
that can assess users trust in technology during 
interaction from psychophysiology. 

However, due to the fact that there are plethora of 
psychophysiological signals, the choice of what 
psychophysiological signals to employ when 
developing real-time trust assessment tools and its 
dependent components such as trust classifier 
models, is solely researchers discretion. 
Consequently, it is unclear what psychophysiological 
signal is most reliable for assessing users trust during 
interaction with AI-based systems (e.g., AV). 

Hence motivating this study which investigated 
what psychophysiological signal is most reliable for 
assessing trust. The results of six ensemble trust 
classifier models we developed with individual (i.e. 
EEG. ECG, EDA, facial EMG, eye tracking) and 
multimodal psychophysiological signal features 
extracted through hybrid feature selection methods. 
The result indicates that the EEG and multimodal 
psychophysiological signal led to the most optimum 
ensemble trust classifier models (V2, and V1). 

Although these results are obtained in offline 
model development and evaluation mode, future 
research will examine the model performance in real-
time mode. Depending on how successful this 
becomes a new research line inquiring into the 
direction of identifying relevant feedback modalities. 
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