
Checking Contact Tracing App Implementations

Robert Flood1, Sheung Chi Chan2, Wei Chen1 and David Aspinall1,3
1LFCS, University of Edinburgh, Edinburgh, U.K.

2Department of Computer Science, Heriott-Watt University, Edinburgh, U.K.
3The Alan Turing Institute, London, U.K.

Keywords: Static Analysis, Covid-19, Contact Tracing, Android.

Abstract: In the wake of the COVID-19 pandemic, contact tracing apps have been developed based on digital contact
tracing frameworks. These allow developers to build privacy-conscious apps that detect whether an infected
individual is in close-proximity with others. Given the urgency of the problem, these apps have been devel-
oped at an accelerated rate with a brief testing period. Such quick development may have led to mistakes in
the apps’ implementations, resulting in problems with their functionality, privacy and security. To mitigate
these concerns, we develop and apply a methodology for evaluating the functionality, privacy and security of
Android apps using the Google/Apple Exposure Notification API. This is a three-pronged approach consist-
ing of a manual analysis, general static analysis and a bespoke static analysis, using a tool we’ve developed,
dubbed MonSTER. As a result, we have found that, although most apps met the basic standards outlined by
Google/Apple, there are issues with the functionality of some of these apps that could impact user safety.

1 INTRODUCTION

As governments around the world attempt to contain
the spread of the COVID-19 virus, the research area
of digital contact tracing has grown rapidly with sev-
eral methods being proposed to aid this cause. Digi-
tal contact tracing refers to the tracking of individuals
to determine potential exposure between an infected
patient and a user, using mobile technologies such as
QR codes, Bluetooth and GPS. Currently, the most ef-
fective strategy to control the outbreak is widespread
social-distancing and isolation of even healthy indi-
viduals. This has significantly impacted almost every
aspect of daily life, with profound economic and so-
cial drawbacks. Health authorities hope digital con-
tact tracing will allow for social-distancing measures
to be eased by automating the time-consuming pro-
cess of manual contact tracing, allowing more indi-
viduals to discover whether they are infected.

Such efforts may leave users vulnerable to secu-
rity and privacy flaws. Due to the urgency in develop-
ing contact tracing apps, many have been built at an
accelerated rate. It is unclear if measures were under-
taken to minimise the risk of security vulnerabilities.
As these apps need to be used by a large segment of
a country’s population to be effective, the integrity of
many people’s data and digital assets may be at risk.

So far, ensuring tracing frameworks maintain
strong privacy guarantees has been the focus of re-
search, with new privacy-preserving frameworks be-
ing designed by several parties (Google, 2020; Tron-
coso et al., 2020; Wan and Liu, 2020). However, lit-
tle research has investigated real-world implementa-
tions of these frameworks; the apps using these frame-
works can violate these privacy guarantees by shar-
ing additional information. As digital contact tracing
techniques involve the collection of sensitive medical
and location data in order to function, there are se-
vere privacy implications if this information is stolen
or improperly handled. For instance, the Bahraini
BeAware was linked to a televised game-show ‘Are
You At Home?’, where users of the app were called
and offered prizes if they were at home and shamed
otherwise. This show leveraged data collected from
the app such as the contestant’s name and phone num-
ber (Amnesty, 2020). Such misuse could have been
prevented by using a privacy-preserving framework,
provided the app did not retrieve further information.
Thus, it is important that a tracing app uses a privacy-
preserving framework, but also it does not share data
beyond what the framework allows.

As government bodies urge people to use tracing
apps, they are an enticing target for malicious ac-
tors. Malware claiming to be contact tracing software

or malicious, repackaged versions of contact tracing
apps exist (Anomali, 2020; ESET, 2020) and more
are likely to be discovered. Developers may also in-
troduce security problems via misuse of these frame-
works. Therefore, tracing frameworks have consid-
ered potential security issues in their design. For
instance, the Google/Apple Exposure Notifications
(GAEN) API acts as a security boundary, allowing
developers to access its functionality whilst shielding
them from its internal operation. However, previous
similar secure APIs have had faulty implementations
that led to fundamental issues, such as the PCKS 11
API of hardware security modules leaking their pri-
vate keys (Bortolozzo et al., 2010).

This paper introduces a methodology for
analysing the functionality, privacy and security of
COVID-19 contact tracing apps. We employ manual
and static analysis alongside a bespoke, customisable
static analysis tool. This bespoke tool, developed by
us and dubbed MonSTER, ensures apps adhere to the
requirements of a given framework, something im-
possible with an out-of-the-box tool, and can provide
repeatable, lightweight checks throughout an app’s
development and updates. We target apps using the
GAEN API. Our approach and analysis focus solely
on the implementation of the apps themselves and
assume the adopted contact tracing framework is well
defined and problem-free. This helps protect against
mistakes by app developers, as well as attacks and
infiltration by adversaries by discovering potential
security vulnerabilities. Ultimately, work like this
may help assuage public concerns of using these apps
and increase uptake, helping to better contain the
spread of COVID-19.

The contributions of this paper are as follows:
• We design a methodology with three stages, man-

ual analysis, off-the-shelf static analysis and be-
spoke static analysis, to evaluate the functionality,
privacy and security of contact tracing apps.

• We develop MonSTER, a configurable,
lightweight static analysis tool to verify an
app’s adherence to API usage requirements.

• We collect a set of 12 contact tracing apps us-
ing the GAEN API and, where necessary, rebuild
the apps from their source code to obtain a non-
obfuscated APK. We have released these apps as
a public dataset 1.

• We obtain results demonstrating that, although the
majority of apps tested functioned correctly, there
were implementation problems in some apps that
impacted their functionality. Namely, we found
apps may incorrectly inform users contact tracing

1https://github.com/glo-fi/GAEN-Contact-Tracing-
Apps

is enabled when it is in fact disabled during rea-
sonable usage.
The structure of the rest of this paper is as follows.

Section 2 provides background information, includ-
ing security and privacy concerns, and an overview
of the GAEN API. Section 3 describes our method-
ology, including our lightweight static analysis tool
MonSTER (Monoid-based Static Analyser). Section 4
describes the process we undertake for our manual,
static, and MonSTER analysis in more detail. Sec-
tion 5 shows the results of this analysis. Section 6
discusses the effectiveness of our approach alongside
a brief discussion on contact tracing app designs. Sec-
tion 7 summarises the related work. Section 8 con-
cludes and discusses ongoing and future steps.

2 BACKGROUND

Due to privacy concerns surrounding the collection
of user location data by governments, decentralised
approaches to digital contact tracing are promoted.
Decentralised approaches trace contacts with minimal
interaction with a central database; several have been
proposed, including TCN (TCN, 2020), DP3T (Tron-
coso et al., 2020) and the Google/Apple Exposure No-
tification protocol or GAEN for short (Google, 2020).
They are similar in design, using Bluetooth Low
Energy (BLE) to measure distance between users.
The effectiveness of BLE tracking has been criti-
cised (Leith and Farrell, 2020), but tracking can be
augmented with the use of QR-code registrations, and
even a partially successful approach may help.

In this section, we discuss details of the GAEN
Framework and potential security/privacy problems.

2.1 Google/Apple Exposure Notification

This framework is developed by Apple and Google
for their mobile operating systems, each providing
the same set of API calls. The major features of the
GAEN Framework are divided into three stages. For
each stage, we summarise the responsibilities of the
app developers, the communication of the servers and
the underlying APIs. We focus our research on ver-
sion 1.3 of the framework.

Contact Exchange. When first setting up the app,
the device generates a Temporary Exposure Key
(TEK) using a cryptographically secure random
number generator. Every 24 hours, a new TEK is
generated. Two further keys are generated using
this key via HKDF, a Rolling Proximity Identifier
Key and an Associated Encrypted Metadata Key.
These keys are in turn used to generate two BLE

payloads: the Rolling Proximity Identifier (RPI)
and the Associated Encrypted Metadata (AEM).
These consist of a byte string acting as an iden-
tifier and a payload that can be later decrypted to
reveal the user’s TEK, both encrypted using AES-
128. The phone alternates between the Bluetooth
client and host modes, continuously broadcasting
the RPI and AEM when in client mode and seek-
ing such broadcasts from nearby phones when in
host mode, storing any received payloads. Fig-
ure 1 shows a sequence diagram for this stage.

Figure 1: Contact Exchange Sequence Diagram.

Infection Report. If a user tests positive with
COVID-19, they can choose to upload their TEK
history, extending back 14 days, to a Diagnosis
Server, alongside a timestamp to describe when
their validity started. These are referred to as Di-
agnosis Keys and only leave the device if the user
tests positive. The contact tracing app is responsi-
ble for verifying a diagnosis report from an autho-
rised medical provider. The apps are responsible
for protecting this information during the upload-
ing process. Identifiers over 14 days old are con-
sidered no longer useful as infected user would
have likely recovered in that time. Thus, identi-
fiers are deleted from both the device and central
server 14 days after being first created. Figure 2
shows a sequence diagram for this stage.

Exposure Update. To determine if a user was ex-
posed to an infected person, users routinely down-
load the list of newly added Diagnosis Keys from
the Diagnosis Server. As RPIs are derived from
TEKs, each client can then derive a series of RPIs
from these Diagnosis Keys. These derived iden-
tifiers can then be matched with the list of stored

Figure 2: Infection Report Sequence Diagram.

identifiers discovered over BLE scanning. If any
of the derived identifiers match a stored identifier
then the user has come into contact with some-
one infected with COVID-19 and the app should
notify them of this. The app should implement a
broadcast receiver to receive this information and
use an API call to retrieve further exposure sum-
mary information, notifying the users of this fact.
None of these steps should reveal the identity of
the infected person nor the notified users. Figure 3
shows a sequence diagram for this stage.

Figure 3: Exposure Update Sequence Diagram.

2.1.1 App Responsibilities

To aid the development of these apps, Google and
Apple provided the GAEN API and documenta-
tion (Google, 2020) outlining its usage. They describe

the functionality the API provides and the functional-
ity app developers must provide. The API handles the
complex aspects of the protocol including the crypto-
graphic systems, the broadcasting and collection of
BLE data and the calculation of an ‘exposure risk
level’. The documentation states the app must:

1. Allow users to start and stop contact tracing.

2. Register a Broadcast Receiver to receive the
ACTION EXPOSURE STATE UPDATED intent

3. Poll the Diagnosis server to obtain keys.

4. Download Diagnosis Keys and provide them to
the API.

5. Upload TEKs after a positive test and the user has
provided permission.

6. Notify the user with medical information when
they have been exposed to an infected user.

These responsibilities are part of the API lifecycle
outlined in Section 2.1. To fulfill these, the GAEN
Framework provides developers with an API via
the ExposureNotificationClient class. In this
paper, we focus on the API methods start, stop,
isEnabled, getTemporaryExposureKeyHistory
(which retrieves the past two weeks of TEKs) and
provideDiagnosisKeys (which submits down-
loaded keys to the API).

2.2 Security Concerns

In developing our methodology for analysing the se-
curity, privacy and functionality of contact tracing
apps, we consider two attacker models.

For the first, we assume the developers attempted
to securely and faithfully adopt the GAEN framework
but failed, reducing user privacy or providing exploit
vectors for attackers. Although the GAEN API has
been designed with privacy and security in mind, apps
using this API must adhere to strict requirements in
order to maintain these properties. For instance, de-
velopers accidentally misusing the GAEN API may
build an app that retrieves and uploads the users’ TEK
history overly frequently. This results in the online
database resembling a centralised protocol, such as
BlueTrace, damaging user privacy. These functional-
ity failings may lead to numerous security and privacy
violations: exposure of a user’s identity; their address;
their employer; their infection status; the identities
of their contacts; their location and the loss of secu-
rity of their device, which may lead to other potential
data exposures. Even if the GAEN API is correctly
utilised, the app may contain vulnerabilities impact-
ing user security, such as misconfigured webviews or
exported components.

For the second, we consider the case where the
app is malware purporting to perform contact tracing,
perhaps as a repackaged version of a legitimate app.
Such apps have already been discovered, including
backdoors (Anomali, 2020) and ransomware (ESET,
2020). In this situation, the fact that the malware
claims to be a contact tracing app is incidental to its
true behaviour. Nevertheless, any systematic review
of the security of contact tracing apps needs to con-
sider this possibility.

The two attack models discussed above concen-
trate on the wrongful adoption of the GAEN API, ei-
ther accidental or intentional; both result in possible
security and privacy problems which leak user infor-
mation. Although such security problems can occur
in the GAEN framework, our approach focuses on the
adoption of the framework. Thus, our attack models
consider the security concerns of only the implemen-
tation of the contact tracing apps.

We discuss how these models inform our method-
ology for analysing contact tracing apps in Section 3.

2.3 Static Analysis Tools

There are many static analysis tools for Android soft-
ware. However, these tools know little about the
context in which they are applied. Many tools used
for Android code analysis are primarily Java analysis
tools, such as Error-Prone (Sadowski et al., 2018) and
FindBugs (Ayewah et al., 2008), and are unaware of
any potential problems specific to the Android plat-
form or any particular details of the app. Many secu-
rity vulnerabilities are the result of faulty implemen-
tation logic which cannot be divorced from the app’s
utility. As such, there are a wide-range of bugs that
general static analysis tools are incapable of finding.

Contact tracing apps are one domain where gen-
eral static analysis is lacking and implementation
bugs may arise. Prior to March 2020, there were
no tracing apps developers could base their apps on,
and disparate teams are developing apps with little
guidance. The challenges faced by tracing apps are
unique, and it is unlikely general static analysis solu-
tions could detect functionality issues or missing fea-
tures, such as notifying the user when an exposure oc-
curs. It would be extremely beneficial to have a static
analysis tool that ensures an app is adhering to neces-
sary standards during its development and release.

3 METHODOLOGY

In this section, we discuss our methodology, together
with the static analysis tool MonSTER (Monoid-based

Static Analyser) developed to identify problematic
patterns in Android apps which may pose security,
privacy or functionality concerns. In this paper, we
use this methodology to verify the apps studied in
Section 3.1 adhere to the basic requirements needed
to function as contact tracing tools, based on the re-
sponsibilities discussed in Section 2.1.1.

Although we apply this three-pronged methodol-
ogy, consisting of manual, general static and bespoke
static analysis, to contact tracing apps, we stress this
methodology is highly customisable and can be ap-
plied to many domains. The manual analysis acts as a
research stage, providing us with an understanding of
the inner workings of a set of related apps. During the
general static analysis stage, we screen the apps for
common vulnerabilities that could occur in any do-
main. We also ensure the app is not malware. We
then apply the knowledge gained during our manual
analysis to our bespoke analysis stage, allowing us to
search for design vulnerabilities that are unique to the
domain in a repeatable, automated manner.

3.1 Collection of Apps

We chose a set of Android apps using the GAEN
framework with open-source code, with the exception
of Protect Scotland which is partially open-source.
Table 1 shows a list of the apps, their country of ori-
gin or developer, the analysed version, the primary
language used and the size of the code. These were
downloaded on the 28th July 2020, except for Stop-
COVID-19 and NHS Test & Trace, which were down-
loaded on the 12th August 2020, and Protect Scot-
land, which was downloaded on the 10th September
2020. SwissCovid is developed using the DP3T proto-
col: this is extremely similar to the GAEN framework
and uses the GAEN API as part of its design. We had
to build some apps from source and disable ProGuard
in order to generate unobfuscated APK files.

3.2 Manual Analysis

Having collected a series of apps, we began a manual
analysis process. First, we ran the apps and system-
atically iterated over all possible functionality, with
the exception of the later stages of the key submis-
sion process. Following this, we began a code re-
view, plotting out the general structure of each app
and noting how they interacted with the GAEN API.
We achieved this by finding where the app calls the
various GAEN API methods and following their re-
spective call flows through the application. Finally,
we reviewed any publicly released documentation.

3.3 General Static Analysis

We evaluated several Android static analysis tools as
options for conducting off-the-shelf static analysis as
might be used by a professional security analyst or
penetration tester. Many tools are available freely
and as commercial products; our point was to select
something typical which demonstrates the capability
of general static analysis tools in the context of our
methodology, rather than find some ”ultimate” best
possible tool. We looked on GitHub and considered
popularity as measured by GitHub stars. The most
popular tools were MobSF (Abraham et al., 2016)
and QARK (LinkedIn, 2015). Ultimately, we chose
MobSF, since QARK flagged many trivial issues.

MobSF flags many generic Android security prob-
lems, such as certificate issues, hard-coded API keys
and blacklisted malicious domains. It provides a use-
ful condensed overview of the app including mea-
surements such as the permissions used, the included
native code libraries and the number of components
— including exported components which extend an
app’s attack surface. Finally, MobSF summarises the
overall code quality with an app security score, rang-
ing from 0 to 100. We ran MobSF on all of our apps;
the results are summarised in Section 5.2.

3.4 Bespoke Static Analysis - MonSTER

Figure 4: MonSTER workflow.

MonSTER is a static analysis tool written in Haskell
and Python, using Androguard (Desnos et al., 2015).
It can be configured to detect patterns of method calls
in Android apps. These patterns are customisable
to ensure certain liveness and safety properties are
present in an app. It is intended to function as a tool to
aid the testing of apps during and after development,
using bespoke patterns to detect desirable or undesir-
able properties.

MonSTER uses a control-flow abstraction. A pro-
gram is a collection of recursive procedures f = e f
where f is a procedure identifier and e f is an expres-
sion in the grammar:

e ::= a | f | e1;e2 | e1?e2.

Here a is an atomic procedure, ; and ? are sequential
composition and non-deterministic branching.

Table 1: Contact tracing apps.

App Name Origin Version Language Code Size URL
ApturiCovid Latvia 1.0.47 Kotlin 313KB apturicovid.lv
Corona-Warn-App Germany 1.0 Kotlin 650KB coronawarn.app/
Covid Safe Paths MIT None TypeScript 2.4MB pathcheck.org
CovidShield Shopify None TypeScript 790KB covidshield.app
Covid Tracker App Ireland 1.0.4 TypeScript 430KB covidtracker.gov.ie
Immuni Italy 1.0.3 Kotlin 850KB immuni.italia.it
NHS Test & Trace UK 3.0 Kotlin 570KB github.com/nhsx/
Protect Scotland Scotland 1.0.0.30 TypeScript Unknown protect.scot
ProtegoSafe Poland 1.0 Kotlin 500KB gov.pl/web/protegosafe
Stop-Covid-19 Croatia 1.0 Java 230KB github.com/stop-covid-19-croatia
Stopp Corona Austria 1.2.0 Kotlin 860KB github.com/austrianredcross
SwissCovid Swiss 1.0.4 Java 520KB https://github.com/DP-3T/

MonSTER converts method calls from Dalvik
bytecode in an APK into this expression language.
Branch points are abstracted by considering exit
points of basic blocks as potential branches. Methods
whose body can be ignored — such as API calls or
those we aren’t interested in — are treated as atomic
methods and the rest are identifiers with definitions.
This gives a set of expressions defining the overall
program’s execution, called the call flow expression
form of the APK. Methods from this expression form
are lifted into a monoid, picking out ones of interest.

Consider the first GAEN check as an illustration.
For many of the analysed apps, before starting the
GAEN client, there is a check to see it is already run-
ning. If it is, the function exits gracefully. The GAEN
documentation is unclear as to what happens when
the API is started if already running and whether this
causes unexpected behaviour, such as the “resetting”
of the protocol, inhibiting its effectiveness. So we
treat the already-running check as good practice and
will use MonSTER to verify that it takes place.

data StartCheck = U | ENABLED | START

| ENABLED2START

| START2ENABLED

deriving (Eq, Ord, Show)

instance Mon StartCheck where

unit = U

mult c U = c

mult U c = c

mult ENABLED ENABLED = ENABLED

mult START START = START

mult START2ENABLED ENABLED = START2ENABLED

mult START _ = START2ENABLED

mult _ _ = ENABLED2START

lift "ENABLED" = ENABLED

lift "START" = START

lift _ = U

Listing 1: Monoid for Start Check.

We wish to verify that a call to isEnabled() is
followed by a call to start(). In Listing 1, the

monoid’s operator mult models method sequencing.
To keep the monoid’s policy clear and succinct, we
use keywords to stand for groups of methods — for in-
stance, every method considered to be a network sink
is modelled by SINK. In this case, we replace all ap-
pearances of the isEnabled() and start() methods
with the keywords ENABLED and START. When
parsing the call flow expression, these keywords are
embedded into the monoid using the lift operator
shown in Listing 1. Methods that are not of interest
are lifted to the monoid’s identity. By creating such
policies as monoids, we can define desirable or unde-
sirable patterns customised to an app or app type.

Once translated into the monoid, MonSTER gen-
erates a system of equations using the program’s call
flow expression, consisting of a type expression for
each procedure. MonSTER solves this system of
equations by calculating its least fixed point. We ex-
pect to see the element ENABLED2START appear
in the output of MonSTER only in cases where this
pattern occurs.

MonSTER is kept simple by design: it focuses
on an app’s call flow and ignores its data flow. But,
crucially, it can capture call flows for continually-
executing code in its model of mutually recursive
Büchi automata. So we can model the Android ac-
tivity lifecycle, including implicit invocations (e.g.,
onCreate() followed by onStart()) as well as
cycles (onStop() followed by onResume() then
onStart() again). Liveness and safety properties can
be ensured regardless of how the app is used, which
is useful for checking longer term API call sequences
such as used in GAEN. As Section 1 mentioned, se-
cure APIs can be vulnerable to API fuzzing attacks: a
string of API calls in a certain order leads to a security
issue. Such vulnerabilities, once discovered, could be
captured as custom rules in MonSTER.

4 MonSTER CHECKS

In this section, we outline the call flow patterns we
aim to discover, alongside the example in Section 3.4.
These patterns are intended to act as sanity checks,
allowing a developer to verify an app meets the API
requirements and is functional. Although we apply
these checks to contact tracing apps, the methodology
is highly customisable, allowing similar checks to be
performed on a wide variety of apps. We base these
checks around the necessary operations discussed in
Section 2.1.1. To ensure accuracy, we also test a mod-
ified version of the Google reference app 2 designed
to fail all of the checks.

4.1 Registration of Broadcast Receiver

The GAEN documentation states apps must reg-
ister a Broadcast Receiver that handles the
ACTION EXPOSURE STATE UPDATED intent. This
intent is broadcast when the user’s exposure sta-
tus has changed. The documentation contains a
recommended way of doing this, as seen in Listing 2.

public void onReceive(Context c, Intent i) {

...

if (ACTION_EXPOSURE_STATE_UPDATED.equals(action))

{

String token = i.getStringExtra(EXTRA_TOKEN);

workManager.enqueue(

new OneTimeWorkRequest.Builder(Update.class)

.setInputData(new Data.Builder()

.putString(EXTRA_TOKEN, token)

.build()).build());

}

}

Listing 2: Broadcast Receiver.

instance Mon BRCheck where

...

mult GSE GSE = GSE

mult OTWR OTWR = OTWR

mult BUILD BUILD = BUILD

mult ENQUEUE ENQUEUE = ENQUEUE

mult _ GSE_OTWR = GSE_OTWR

...

mult GSE_OTWR_BUILD ENQUEUE

= GSE_OTWR_BUILD_ENQUEUE

...

Listing 3: Monoid for Receiver Check.

We implement a check to verify whether apps
follow this recommendation. We identify the meth-
ods that compose this pattern: getStringExtra(),

2https://github.com/google/exposure-notifications-
android

OneTimeWorkRequest<init>(), build() and
enqueue() and replace them with the keywords
GSE, OTWR, BUILD and ENQUEUE. As we
are interested in a specific pattern, we do not need
to define our multiplication rules fully, treating
irrelevant situations as having no effect. Defining
the monoid this way, we produce an element that
represents the behaviour we are hoping to express:
GSE OTWR BUILD ENQUEUE. If this element
is in MonSTER’s output then the pattern is present in
the app.

4.2 Handling of Keys

We introduce another common sense check to ensure
the apps are correctly managing their keys. This con-
sists of two parts: the handling of the TEKs and the
handling of the Diagnosis Keys. For the TEKs, we
verify they are accessed only to be submitted to some
central server i.e retrieving the keys is always fol-
lowed by a network sink. Similarly, for the Diagnosis
Keys, we ensure they are downloaded from a central
server and then provided to the API i.e providing the
keys is always preceded by a network source. To do
this, we build a monoid consisting of the GAEN API
methods getTemporaryExposureKeyHistory(),
provideDiagnosisKeys() and all network sinks/-
sources. We encode these as RECENTKEYS,
PROVIDEKEYS and NETWORK. We also intro-
duce an element DOUBLE SHARE that allows us
to see if there are multiple paths through the app that
lead to TEK sharing.

instance Mon KeyCheck where

...

mult RECENTKEYS RECENTKEYS = RECENTKEYS

mult PROVIDEKEYS PROVIDEKEYS = PROVIDEKEYS

mult NETWORK NETWORK = NETWORK

mult NETWORK PROVIDEKEYS = SUBMIT

mult RECENTKEYS NETWORK = SHARE

mult SHARE SHARE = DOUBLE_SHARE

...

Listing 4: Monoid for Key Submission.

4.3 Notifying Users of Exposure

When a user becomes potentially infected after being
exposed to an infected passerby, the app should in-
form the user via a push notification. Again, we can
modify our tool in order to test whether this happens
across all of the apps tested.

We use the monoid displayed in Listing 5
to test whether a notification is created after
the ACTION EXPOSURE STATE UPDATED broadcast re-
ceiver is triggered. We introduce a fictional method

RECEIVE to the start of the broadcast receiver’s
onReceive() method in the call flow expression
form of each app. Furthermore, we replace any
methods that create a push notification — such as
NotificationCompat.Builder() — with the key-
word NOTIFY. In particular, we are hoping we see
the element RECEIVE NOTIFY in the output.

instance Mon NotifyCheck where

...

mult RECEIVE RECEIVE = RECEIVE

mult NOTIFY NOTIFY = NOTIFY

mult RECEIVE NOTIFY = RECEIVE_NOTIFY

mult NOTIFY RECEIVE = NOTIFY_RECEIVE

...

Listing 5: Monoid for User Notification.

4.4 Updating the UI Correctly

Although not mentioned in the GAEN documenta-
tion, ensuring the user interface accurately reflects the
state of the GAEN client is important. For instance,
if an app stopped sharing TEKs but failed to indicate
this, the user would reasonably assume they have a
greater level of protection against Covid-19 than in
reality. Similar problems may occur with privacy-
conscious users unwittingly sharing TEKs.

The UI should update regardless of the entrypoint
into the app. This problem can easily be represented
in MonSTER by encoding each stage of the Android
app lifecycle as a method. These methods can then
call the methods of other stages in the lifecycle that
are immediately reachable. This technique embeds
all potential paths through the Android app lifecycle
in the app’s call flow expression, allowing us to check
whether a property occurs in any possible path.

Following these preparations, we build our
monoid as before. We are hoping to see a call to
isEnabled() followed by a a call to any function
that changes the UI, which we treat as a single class
of methods. We replace these with ENABLED and
UI CHANGE respectively. The desired pattern is
represented by the element UPDATED.

instance Mon UICheck where

...

mult ENABLED ENABLED = ENABLED

mult UI_CHANGE UI_CHANGE = UI_CHANGE

mult ENABLED UI_CHANGE = UPDATED

mult UI_CHANGE ENABLED = UI2ENABLED

...

Listing 6: Monoid for UI Update.

5 RESULTS

In this section, we discuss the results of the three
stages of our analysis.

5.1 Manual Analysis

All of the apps tested could be described as wrappers
around the GAEN API of various sizes and complex-
ity, with the exception of Covid-Safe-Paths which has
a GPS tracing mode. Almost all the activities of these
apps are static and there are few ways the user can
input arbitrary data; users can often only enter a ran-
dom identification number to confirm they have been
tested. There is no link between the user’s identity
and the identification number, which is provided in
person at a medical centre.

5.1.1 Permissions & Services

In many of our apps, there is a failure to accurately
convey the services and permissions needed for the
GAEN client to operate. On Android, apps must re-
quest the Internet and Bluetooth permissions. They do
not need any location permissions. However, Android
requires Bluetooth, location and network services are
active for the GAEN to function. In Google Play re-
views, several users express confusion over this dis-
tinction, questioning why an app needs location ser-
vices when it claims not to be tracking users.

During our manual analysis, we found several
apps exacerbate this problem by failing to prop-
erly check whether the needed services are running
when turning on exposure notifications, namely Ap-
turi Covid, Corona-Warn-App, Covid Tracker App
and Protect Scotland. All of these apps indicate ex-
posure notifications are active when the GAEN client
is blocked at an OS level due to some services not run-
ning. Corona-Warn-App and Protect Scotland trigger
a notification asking the user to activate the required
services but this is unreliable and can be dismissed.
Otherwise, users are only informed of this problem
in their phone’s settings menu. This could easily im-
pact the effectiveness of the GAEN protocol and user
safety as user’s may be misinformed to their level of
protection against COVID-19.

5.1.2 Individual App Comments

Apturi Covid. If the user hands the responsibility of
managing the GAEN client from this app to another
app, Apturi Covid still indicates it is seeking nearby
keys when, in actuality, it isn’t. If the user then deac-
tivates exposure notifications in the other app, Apturi
Covid still indicates it is actively working, when no

exposure notifications are being sent. We think this is
a significant safety problem, as a user could be misled
into believing they were protected by the app when
nothing was happening. We notified the developers
of Apturi Covid of this and received a response stat-
ing they would fix this issue.
Corona-Warn-App. This is one of three apps whose
functionality was questionable. When a user switches
between contact tracing apps, this app throws a Java
exception error. The error states the GAEN API is
not active, although it actually is; it’s just not being
managed by Corona-Warn-App. Although minor, this
error together with other problems discussed in this
section may exacerbate confusion about the GAEN
client’s functionality.
Covid-Safe-Paths. This app has two distinct func-
tionalities, GPS tracing and BLE tracing. Therefore,
its attack surface is larger than other apps tested and it
collected more sensitive information. Although users
could delete their GPS location history from the app,
there was no way from within the app to turn off this
feature. An updated version of Covid-Safe-Paths has
split its functionality into two apps, a GPS tracing app
and a BLE tracing app.
Covid Tracker App. This app was donated to the
Linux Foundation Public Health group; modified ver-
sions of it may be developed for other countries. The
Linux Foundation will take care of the app’s main-
tenance. The app allows the user to supply a phone
number, but this number is stored on the phone and is
only shared with the health authority if the user tests
positive and provides permission. Covid Tracker App
collects anonymised metric data, such as whether the
user deleted the app during the onboarding process,
but users must opt-in to this service.
NHS Test & Trace (England/Wales). Unlike the
other apps here, this app allows users to scan QR
codes outside of public spaces to provide the app with
a rough user location. Our analysis was limited be-
cause a beta key was necessary to access the app’s
full functionality, which we did not get access to.
Stopp Corona. As with Apturi Covid, switching be-
tween apps causes problems with this app. As trac-
ing apps act passively in the background, we feel this
could be a significant problem as a user rarely inter-
acting with Stopp Corona app may be inadvertently
unprotected. We notified the developers of Stopp
Corona of this but received no response.
SwissCovid. SwissCovid is produced by the re-
searchers behind DP3T and can be seen as its refer-
ence implementation.We found the information and
notifications shown to the user to be of a high stan-
dard compared to other apps, even warning users of
the risk of linkage attacks when submitting their keys.

5.2 General Static Analysis

We outline the results of our MobSF scans in Table 2:
the number of exported components, the number of
potentially dangerous permissions requested, the cer-
tificate signing schemes used, the number of tracking
libraries used and the code score — a score MobSF
generates to surmise the code quality, ranging from 0
(worst) to 100 (best).

The OWASP Mobile Security Testing Guide
(MSTG) 3 suggests these checks are relevant:

• exported components form an attack surface that
may be exploited by malware. Thus, exported
components could cause future vulnerabilities;

• tracking libraries introduce potential privacy vio-
lations of user data;

• insufficient signing schemes prevent developers
from rotating their signing keys;

• additional permissions represent the capability for
the phone to access user data or undertake ”risky”
actions.

For the number of exported components, Covid
Safe Paths exceeds the other examples by some mar-
gin, demonstrating a concerning attack surface.

Due to the privacy-focus of these apps, most use
no tracking libraries. Of the apps that use tracking li-
braries, these consist of Google Crashlytics, Firebase
Analytics and, in the case of Stop-Covid-19, Google
Admob. All of these libraries allow for the harvesting
of information that is tangential to the operation of the
GAEN API and could harm user privacy.

For APKs downloaded from the Play Store, the
certificate signing schemes used are shown. MSTG
recommends using all three schemes in apps that tar-
get modern Android SDK levels. Only 3 apps do this.

For apps using GAEN, the minimum required per-
missions are Bluetooth and Internet; some apps re-
quest much more than is necessary, particularly Covid
Safe Paths and Stopp Corona. The version of Covid
Safe Paths analysed includes GPS tracking function-
ality, which accounts for GL, but the other permis-
sions seem unnecessary when contrasted with other
apps. Similarly, Stopp Corona requests the usage of
Bluetooth Admin, which is strongly discouraged by
the GAEN documentation, and location services and
is thus over-privileged. Permission creep is a well-
established problem in Android (Vidas et al., 2011)
and the principle of least privilege is considered good
practise by MSTG. Corona-Warn-App and NHS Test
& Trace require the use of the phone’s camera (CA)
as both of these apps utilise QR code scanning.

3https://github.com/OWASP/owasp-mstg/

Table 2: MobSF summary of Apps in Table 1.

App Name Components Additional Permissions Certificate Trackers Score
Apturi Covid 4 WL v1, v2 2 65
Corona Warn 3 WL CA v1, v2, v3 0 50
Safe Paths 11 WL NL GL DS AA DS AR AA ST AT None 1 5
CovidShield 4 WL AW None 0 45
Covid Tracker 4 None v1,v2 0 30
Immuni 3 WL v1, v2 0 35
NHS Test & Trace 6 WL CA v1,v2,v3 0 60
Protect Scotland 6 None v1, v2, v3 0 30
ProtegoSafe 5 WL v1, v2 2 70
Stop-Covid-19 3 WL v1,v2,v3 3 90
Stopp Corona 3 WL BA NL LB v1,v2 0 35
SwissCovid 3 WL v1,v2 0 45

Key: WL: Wake Lock / BA: Bluetooth Admin / CA: Camera / AW: Alert Window
NL: Network Location / GL: GPS Location / LB: Location in Background / DS: Device Sync

AR: Activity Recognition / AA: Account Authentication / ST: Device Storage / AT: Access OS Task List

As most functionality of the GAEN framework is
provided by the API, apps only need to be a wrap-
per around it, preferably as thin as possible. Any
additional functionality increases the risk of security,
privacy or functionality issues. This is reflected in
the code score of each app which, as can be seen by
cross-referencing Table 1 with Table 2, is inversely
correlated with the code size; Covid-Safe-Paths has
the worst score and is largest while Stop-Covid-19 has
the best score and is smallest.

5.3 Bespoke Static Analysis

The output of MonSTER is a list of tuples containing
a method name and the monoid elements that can be
reached from that method. We confirm the existence
of a pattern in an app’s source code by the existence
of the monoid element representing that pattern in the
output. We summarise our results in Table 3.
Check 1 - Starting Tracing in a Suitable Manner.
All apps tested met this requirement except for Pro-
tegoSafe and Stop-Covid-19, indicating neither app
checks whether the Exposure Notification client is
running before starting.
Check 2 - Registering a Broadcast Receiver. All
apps tested met this requirement, except Stop-Covid-
19. Of those that passed, all but one followed the im-
plementation listed in the Google documentation ex-
actly. The app that failed was Stop-Covid-19 which
registered a broadcast receiver but did not do so in the
manner described in the documentation.
Check 3 - Handling of Temporary Keys. We could
not perform this test on Covid Tracker App, Covid-
Shield and Protect Scotland as parts of this pro-
cess are coded in TypeScript. For all other apps,
we found all calls to getTemporaryExposureKeys()

are followed by a network sink and all calls to
provideDiagnosisKeys() are preceded by a net-
work source. We also ensure keys are sent to a sin-
gle sink when submitted. We surmise that if a user
is presented with the option to share their keys, all
apps tested submit them to only one Diagnosis Server.
Similarly, we conclude that after retrieving the Diag-
nosis Keys from the server, these apps correctly pro-
vide them to the API.
Check 4 - Notifying Users of Exposure. Again, we
could not run this check on CovidShield as it is largely
written in Typescript. Furthermore, the heavy use
of dependency injection in Immuni and ProtegoSafe
limits MonSTER’s ability to generate meaningful call
flow expressions which hinders its ability to analyse
these apps. Of the apps properly tested, only Covid-
Safe-Paths failed.
Check 5 - Updating the UI Correctly. Stopp Corona
and Apturi Covid failed this check. The logic for
updating the UI in these apps is handled in the
onCreate() method of the main landing page instead
of onResume(). Thus, one can activate exposure no-
tifications, close the app and turn them off — either
in the phone’s settings or using another contact trac-
ing app — and neither app will update the UI, instead
incorrectly informing the user that the app is contact
tracing. Manual testing confirmed this behaviour.

As seen from Table 2 and Section 5.2, the re-
sults generated by MobSF, although worthwhile from
a security perspective, reveal nothing about the us-
age of the GAEN framework. In contrast, our be-
spoke analysis with MonSTER allows us to generate
strong guarantees about the functionality of the apps
and their adherence to the GAEN requirements.

Although MonSTER requires more effort to pro-
duce customised checks, its advantages over general

Table 3: Results of our MonSTER checks.

App Name 1 2 3 4 5
Apturi Covid X X X X X
Covid Tracker App X X - X X
Corona-Warn-App X X X X X
CovidShield X X - - -
Covid Safe Paths X X X X -
Immuni X X X - X
Protect Scotland X X - X X
ProtegoSafe X X X - X
NHS Test & Trace X X X X X
Stop-Covid-19 X X X X X
Stopp Corona X X X X X
SwissCovid X X X X X
Misconfigured App X X X X X

static analysis are clear. MonSTER’s call flow check-
ing allows the user to fine-tune the properties to be
checked that are unique to a given app or set of
apps. Such properties can then be checked repeatedly
throughout the app’s development and release.

6 DISCUSSION

6.1 Limitations of Methodology

MonSTER is a prototype designed to explore our
methodology and thus has issues. One pitfall is scal-
ability; larger apps take far longer to analyse. We can
mitigate this problem by excluding irrelevant code
from the analysis. Moreover, we can only analyse
patterns that appear in the app’s bytecode i.e those
written using Java or Kotlin. Finally, some program-
ming constructs that rely on generated methods, such
as Dependency Injection libraries and coroutine sup-
port, limit MonSTER’s ability to build accurate call
flow expressions, requiring manual fixing.

6.2 Discussion of Contact Tracing Apps

When evaluating apps for this paper, we found few
we could properly analyse. Many tracing apps us-
ing the GAEN API are not open source and these all
used code obfuscation. We believe this is counter-
productive to the goals of the GAEN as the end-
user has little guarantee of the app’s capabilities and
whether it has faithfully implemented the protocol.
To instill greater trust in end-users that the apps are
working as intended, providing a public verification
method, such as open-source code or third-party au-
dits, would be advantageous. In these times, accu-
rately functioning contact tracing should take prece-
dence over intellectual property.

7 RELATED WORK

Unlike our work which focuses on correct imple-
mentation, most current research on contact tracing
apps focuses on the design of the underlying frame-
works, particularly with respect to privacy. Cho et
al. define three notions of privacy for contact tracing
apps: privacy from snoopers, contacts, and the au-
thorities (Cho et al., 2020). They note some informa-
tion will always be revealed and simple attacks can
always be performed; therefore an acceptable level of
privacy should be defined with respect to these three
parties. Gvili analyses privacy issues with the GAEN
framework and proposes attacks that would hinder its
effectiveness, such as relay and replay attacks (Gvili,
2020). Similarly, Magklaras et al. assess the weak-
nesses of published tracing frameworks(Magklaras
and Bojorquez, 2020). Some research does focus on
app implementations, but at a higher level compared
to us. Samhi et el. provide a categorisation of existing
apps on Google Play related to Covid-19, but do not
analyse apps individually (Samhi et al., 2020).

There are many static analysing tools for the An-
droid platform. Li et al. (Li et al., 2017) identified
over 100 such tools. Unlike MonSTER, the major-
ity of these tools establish an app is secure using a
generalised ruleset. For instance, the MobSF (Abra-
ham et al., 2016) and QARK (LinkedIn, 2015) work
by analysing decompiled code and flagging bad pro-
gramming practises that may lead to security issues,
such as the existence of logging or API keys. Some
tools are more specific but lacking the customisation
of MonSTER; for instance, taint analysis research has
led to tools such as FlowDroid (Arzt et al., 2014), de-
signed to ensure sensitive information cannot be ex-
filtrated from an app. MonSTER can also be seen
as a static analogue of dynamic analysis call tracing,
utilised by tools such as DroitMat (Wu et al., 2012)
and DroidTrace (Zheng et al., 2014). However, both
of these tools focus on identifying malware, rather
than functionality properties like MonSTER.

8 CONCLUSION

This paper presented an analysis into the functional-
ity, security and privacy of contact tracing apps us-
ing a methodology involving manual, general static
and bespoke static analysis. For the bespoke case,
we present MonSTER, a lightweight, static analysis
tool that can detect the existence of patterns of An-
droid app behaviour in a customisable way, as gen-
eral static analysis tools were not sufficient. Using
this process, we verified that many contact tracing

apps adhered to the GAEN API’s recommended us-
age. However, we found failings in tested versions of
some apps that could impact user safety or security,
namely Covid-Safe-Paths, which failed to adhere to
design practices that minimise user risk, Apturi Covid
and Stopp Corona, which failed to correctly inform
users of the status of the GAEN client. For future
work, we mention that MonSTER’s generation of call
flow expressions from an app’s bytecode could be im-
proved to capture more programming constructs, such
as coroutines.

ACKNOWLEDGEMENTS

We are grateful for support for this work from the Of-
fice of Naval Research ONR NICOP award N62909-
17-1-2065 and The Alan Turing Institute under the
EPSRC grant EP/N510129/1.

REFERENCES

Abraham, A., Schlecht, D., Dobrushin, M., and Nadal, V.
(2016). Mobile Security Framework (MobSF). https:
//github.com/MobSF.

Amnesty (2020). Bahrain, Kuwait and Norway Contact
Tracing Apps among Most Dangerous for Pri-
vacy. https://www.amnesty.org/en/latest/news/2020/
06/bahrain-kuwait-norway-contact-tracing-apps-
danger-for-privacy/. Accessed: 2020-08-04.

Anomali (2020). Anomali Threat Research Identifies Fake
COVID-19 Contact Tracing Apps Used to Download
Malware that Monitors Devices, Steals Personal Data.
https://www.anomali.com/blog. Accessed: 2020-09-
10.

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A.,
Klein, J., Le Traon, Y., Octeau, D., and McDaniel,
P. (2014). Flowdroid: Precise Context, Flow, Field,
Object-Sensitive and Lifecycle-Aware Taint Analysis
for Android Apps. Acm Sigplan Notices, 49(6):259–
269.

Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J. D.,
and Penix, J. (2008). Using Static Analysis to Find
Bugs. IEEE software, 25(5):22–29.

Bortolozzo, M., Centenaro, M., Focardi, R., and Steel, G.
(2010). Attacking and Fixing PKCS#11 Security To-
kens. pages 260–269.

Cho, H., Ippolito, D., and Yu, Y. W. (2020). Contact Tracing
Mobile Apps for COVID-19: Privacy Considerations
and Related Trade-offs.

Desnos, A. et al. (2015). Androguard. https://github.com/
androguard/androguard.

ESET (2020). New Ransomware Posing as
COVID-19 Tracing App Targets Canada.
https://www.welivesecurity.com/2020/06/24/. Ac-
cessed: 2020-09-10.

Google (2020). Exposure Notifications:
Android API Documentation. https:
//web.archive.org/web/20200603200341/
https://static.googleusercontent.com/media/
www.google.com/en//covid19/exposurenotifications/
pdfs/Android-Exposure-Notification-API-
documentation-v1.3.2.pdf. Accessed: 2020-08-
04.

Gvili, Y. (2020). Security analysis of the covid-19 contact
tracing specifications by apple inc. and google inc.

Leith, D. J. and Farrell, S. (2020). Coronavirus Contact
Tracing: Evaluating the Potential of using Bluetooth
Received Signal Strength For Proximity Detection.

Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S., Bar-
tel, A., Octeau, D., Klein, J., and Traon, L. (2017).
Static Analysis of Android Apps: A Systematic Liter-
ature Review. Information and Software Technology,
88:67–95.

LinkedIn (2015). Quick Android Review Kit (QARK).
https://github.com/linkedin/qark.

Magklaras, G. and Bojorquez, L. N. L. (2020). A Re-
view of Information Security Aspects of the Emerg-
ing COVID-19 Contact Tracing Mobile Phone Appli-
cations.

Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L.,
and Jaspan, C. (2018). Lessons from Building Static
Analysis Tools at Google. Communications of the
ACM, 61(4):58–66.

Samhi, J., Allix, K., Bissyandé, T. F., and Klein, J. (2020).
A First Look at Android Applications in Google Play
related to Covid-19.

TCN (2020). TCN coalition. https://www.covid19.nhs.uk/.
Troncoso, C., Payer, M., Hubaux, J.-P., Salathé, M.,

Larus, J., Bugnion, E., Lueks, W., Stadler, T., Pyrge-
lis, A., Antonioli, D., et al. (2020). Decentralized
Privacy-Preserving Proximity Tracing. arXiv preprint
arXiv:2005.12273.

Vidas, T., Christin, N., and Cranor, L. (2011). Curbing An-
droid Permission Creep. In Proceedings of the Web,
volume 2, pages 91–96.

Wan, Z. and Liu, X. (2020). ContactChaser: A Simple yet
Effective Contact Tracing Scheme with Strong Pri-
vacy. Cryptology ePrint Archive, Report 2020/630.
https://eprint.iacr.org/2020/630.

Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., and Wu,
K.-P. (2012). Droidmat: Android Malware Detection
through Manifest and API Calls Tracing. In 2012 Sev-
enth Asia Joint Conference on Information Security,
pages 62–69. IEEE.

Zheng, M., Sun, M., and Lui, J. C. (2014). DroidTrace: A
Ptrace Based Android Dynamic Analysis System with
Forward Execution Capability. In 2014 international
wireless communications and mobile computing con-
ference (IWCMC), pages 128–133. IEEE.

