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Abstract: 3D object classification often requires extraction of a global shape descriptor in order to predict the object class.
In this work, we propose an alternative part-based approach. This involves automatically decomposing objects
into semantic parts, creating part graphs and employing graph kernels on these graphs to classify objects based
on the similarity of the part graphs. By employing this bottom-up approach, common substructures across
objects from training and testing sets should be easily identifiable and may be used to compute similarities
between objects. We compare our approach to state-of-the art methods relying on global shape description
and obtain superior performance through the use of part graphs.

1 INTRODUCTION

Classifying objects based on their shape and appear-
ance is essential to many applications such as au-
tonomous vehicles, assistive robots and scene un-
derstanding. For example in robotics, it is crucial
for 3D shape classification algorithms to make cor-
rect predictions about what class an object belongs
to. Driven by the trend of 2.5D- and 3D-devices be-
coming cheaper, the focus on 3D vision tasks has in-
creased recently. State-of-the-art methods (Qi et al.,
2017b; Kanezaki et al., 2018) usually treat the ob-
ject as a whole, reduce the global shape to a global
3D feature - explicitly or implicitly encoded - and
employ classification techniques such as Multi-Layer-
Perceptrons (Qi et al., 2017a), single Fully-Connected
layer (Li et al., 2018; Kanezaki et al., 2018) or Sup-
port Vector Machines (SVMs) (Yang et al., 2017; Su
et al., 2015; Yu et al., 2018; Wang et al., 2019a)
to learn distinguishing different object classes. This
global approach fails to make explicit use of seman-
tic substructures of the objects: their parts. Object
concepts like tables often consist of parts, i.e. a
tabletop and a few legs. Decomposing objects into
their parts and reasoning about the object classes us-
ing these parts might show much better generalization
than standard techniques that only use global 3D de-
scriptors. Substructures already seen in the training
set can be exploited to increase the certainty that the
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object belongs to a specific class. For instance, dur-
ing training time only table instances with four table
legs may be seen, the test set may consist of tables
with many more legs. In this case, systems that make
use of part graphs are able to identify common struc-
tures in the tables from the training and the test set
and associate these instances from the same class eas-
ily, whereas classical methods may fail.

In his theory of Recognition-by-Components
(Biederman, 1987), Biederman theorizes that humans
perceive objects as compositions of volumetric primi-
tives - geons - and recognize objects based on them
in a bottom-up manner. Following this theory, we
present a pipeline to classify 3D shapes by first de-
composing an object into its parts, creating attributed
part graphs and finally classifying these graphs to pre-
dict the shapes’ classes.

Figure 1: Objects are automatically segmented and part
graphs are created. Shape descriptors of parts serve as node
attributes in the graph. Relying on this, graph kernels can
be used to estimate similarity of objects.
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Figure 2: Overview for global descriptor pipeline and the
part graph pipeline. For the former, global descriptors are
extracted from the input shapes (here either VFH, ESF
or FoldingNet), which are fed to the SVM. For the part
graph pipeline, the input shape is first decomposed into its
parts, using groundtruth- or automatic segmentation. Sub-
sequently, the part graph is created and the parts’ descriptors
are extracted (again, either VFH, ESF or FoldingNet de-
scriptors). Finally, graph kernels (ShortestPath, GraphHop-
per or Wasserstein Weisfeiler-Lehman) are used to compute
the kernel matrix between all graphs to train a SVM.

2 METHOD OVERVIEW

For the decomposition of objects into parts, various
segmentation algorithms already exist that try to find
part boundaries on the surface to result in a part clus-
tering of the object. Afterwards, a graph is created
where nodes represent part instances of the object

and edges indicate spatial adjacency of these part in-
stances. This process is illustrated in Fig. 2. Differ-
ent objects may contain a different number of parts,
therefore it is not straightforward how to compute
similarities between the obtained part graphs. In this
work we employ graph kernels to solve this problem.
Furthermore, we compare ground truth segmentations
and automatic segmentations that result in different
part-graphs and employ various 3D shape descriptors
in order to benchmark our approach against classical
classification methods as k-Nearest-Neighbor (kNN)
and Support Vector Machines on the global shape de-
scriptors.

The underlying hypothesis of this work is that an
explicit decomposition into parts helps in identifying
untypical objects. Our contributions are:

• A comparison of different graph kernels on part
graphs,

• the identification of useful node attributes (3D de-
scriptors) for the part graphs,

• a benchmark against global shape descriptor clas-
sifiers.

• and the estimation of the potential of this method
when an optimal segmentation is present.

3 RELATED WORKS

3.1 Classical 2D Image Classification

Object classification is one of the central problems
in Computer Vision. Given a set of possible classes
and a query object, the task is to decide which class
the object belongs to. Most traditional image classi-
fiers start by extracting features such as SIFT (Lowe,
1999) or SURF (Bay et al., 2006) from the image. In
different images, a varying amount of keypoints and
patches may be detected and reduced to their feature
vectors, making it non-trivial to compare two sets (of
different sizes) of feature vectors extracted from dif-
ferent images. The Bag-of-visual-words (Sivic and
Zisserman, 2003) method tackles this issue by iden-
tifying codewords (cluster centroids of the feature
vectors found in the training set). All feature vec-
tors detected inside an image are then classified as
codewords and the image can be reduced to the his-
togram of codewords present inside. A classifier, e.g.
an SVM (Cortes and Vapnik, 1995) can then be em-
ployed to classify a query image based on its fixed
size feature histogram.
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3.2 3D Shape Classification

Ideas and concepts from 2D classification have been
widely adopted in 3D shape classification.

In (Bronstein et al., 2011), a set of 3D feature
descriptors were used to create bag-of-visual-words
for shape classification and retrieval, analogous to 2D
image classifiers (Sivic and Zisserman, 2003; Fei-Fei
and Perona, 2005).

Maturana et al. (Maturana and Scherer, 2015) use
a 3D CNN to classify voxelized representations of 3D
shapes. Their method suffers from discretization of
the input shapes and long training times due to the
additional dimension compared to 2D CNNs.

The Multi-view method in (Su et al., 2015) ren-
ders the 3D object from different views and applies a
CNN on these input images. The activations from the
different views are merged by using a max-pool op-
eration and sent to the second CNN. At testing time,
activations in the last layer of the first CNN for all
different views are evaluated and each is fed to a one-
vs-rest linear SVMs. The predictions of the SVMs
are summed up and the highest scoring class is used
as the final class prediction. This multi-view method
leads to highly accurate classifiers in many cases, of-
ten surpassing performance of pure 3D methods (Qi
et al., 2016).

Another popular 3D object classification method
is the Deep Neural Network architecture PointNet (Qi
et al., 2017a). PointNet transforms the input point
cloud into a high dimensional feature space and ap-
plies Max-Pooling to reduce the point set to a global
feature vector, followed by a Multi-Layer-Perceptron
(MLP) to predict the final object class.

3.3 3D Descriptors

Classical 3D feature descriptors include Viewpoint
Feature Histogram (VFH) (Rusu et al., 2010), En-
semble of Shape Functions (ESF) (Wohlkinger and
Vincze, 2011), Signature of Histograms of Orienta-
tions (SHOT) (Tombari et al., 2010), and the Spher-
ical Harmonic Shape Descriptor (SPH) (Kazhdan
et al., 2003). These descriptors capture several prop-
erties of the shape as e.g. pairwise distances of points
or angles between their normal vectors and encode
this information in histograms.

In the recent past, more methods started to use
Deep Neural Networks to extract global 3D features
from shapes. Neural Networks are trained on classi-
fication (Su et al., 2015) or reconstruction (Wu et al.,
2016; Achlioptas et al., 2017; Yang et al., 2017) tasks.
After training, a forward pass in the network for any
new query 3D shape can be used to extract the ac-

tivations inside the last hidden layer of the network
to obtain the global 3D shape feature. It is impor-
tant to note that the resulting descriptors may contain
negative elements and the values of the individual el-
ements are not bounded, whereas in classical 3D his-
togram descriptors, values between 0 and 1 are ob-
tained, usually summing up to 1 if histograms are nor-
malized.

3.4 3D Segmentation

In recent years, 3D mesh data became more accessible
and 3D benchmark datasets were released for tasks
such as classification and part segmentation (Chen
et al., 2009; Wu et al., 2015; Chang et al., 2015;
Yi et al., 2016). In (Chen et al., 2009), the au-
thors compare various automatic and manual segmen-
tation approaches on a set of meshes. The meshes
are clean and do not contain any background or clut-
ter. The challenge of the dataset is to segment a given
object into its parts. Additionally, the authors pro-
vide human-annotated segmentations of the meshes
and suggest metrics to measure segmentation perfor-
mance.

The Randomized Cuts method, proposed by
Golovinskiy and Funkhouser (Golovinskiy and
Funkhouser, 2008) clusters the 3D shape multiple
times such that edges, where clusters meet, can be
identified as segmentation boundaries if enough clus-
terings voted for these boundaries. The shape diam-
eter function in (Shapira et al., 2008) is used to es-
timate the local diameter of the objects’ volume at
various locations to cluster the shape into regions of
varying diameters. In (Lien and Amato, 2007), shapes
are decomposed into roughly convex subgroups re-
sulting in a partitioning of the object. Apart from clas-
sic approaches, data-driven methods (Qi et al., 2017a;
Kalogerakis et al., 2010; Le et al., 2017; George et al.,
2018) were developed. These methods are usually
trained to identify part boundaries (Le et al., 2017)
in order to cluster the object or to densely classify all
vertices/faces of the object into specific part classes
(Qi et al., 2017a; George et al., 2018; Kalogerakis
et al., 2010).

3.5 3D Shape Classification using
Graphs

Graph Convolutional Networks (GCN) (Kipf and
Welling, 2016) were explored as a way to general-
ize deep neural networks to graphs. Due to the in-
herent representation of surface meshes as connected
vertices, GCNs can easily be used on these 3D shapes
(Monti et al., 2017; Hanocka et al., 2019). Even
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on unorganized point clouds, methods emerged that
create adjacencies between the points to create such
graph structures and make it possible to use graph
convolutions on these structures (Wang et al., 2019b).
In all these works, the nodes of the graphs that are
processed represent low-level entities, usually points
of the point cloud or vertices of the mesh. In our work,
nodes represent parts - geometric and semantic enti-
ties that capture entire substructures of the objects.

The work most similar to methods in this pa-
per is from Schoeler (Schoeler and Wörgötter, 2015).
In their work, artificially created 3D pointclouds of
household tools are classified to determine their af-
fordances (e.g. hit, poke, sieve, cut, contain, etc.).
Objects are first segmented by an automatic seg-
mentation method and multi-class SVMs are trained
on descriptors from parts to predict object class
and affordances. To compare part graphs at testing
time, Schoeler defines custom distance measures be-
tween part- and pose-signatures. The dataset used in
(Schoeler and Wörgötter, 2015) is quite small (144
objects) and partially homogeneous (objects only
consisting of volumetric cuboids, cylinders, cones
and spheres). Furthermore, the work in (Schoeler and
Wörgötter, 2015) lacks an analysis of different graph
kernels and shape descriptors from deep neural net-
works.

4 METHOD

4.1 Overview

Our proposed method tries to tackle the task of ob-
ject classification in a bottom-up manner. First, the
object is decomposed into its parts by using the auto-
matic 3D mesh segmentation algorithm proposed by
Au et al. (Au et al., 2011). In the remainder of this
article, we call this method automatic segmentation to
distinguish it from ground truth segmentation. Using
this decomposition, a part graph is created for each
object by connecting parts via edges when they are
spatially close to each other. For each node, a 3D fea-
ture descriptor is extracted on the underlying part. Fi-
nally, similarities between all graphs are computed to
create a kernel matrix and train an SVM, as shown in
Fig. 1. We constrain our analysis to SVMs which have
shown State-of-the-art results recently (Wang et al.,
2019a). This work features a comparison of different
descriptors.

4.2 Object to Part Decomposition

In order to decompose objects into parts, we rely on
the algorithm from (Au et al., 2011). The segmen-
tation algorithm assumes a 2-Manifold, that contains
no defects as vertices or edges occupying the same
space, as input. The idea is to define fields on the
surface with high field variation in concave surface
regions and less in planar and convex regions. A field
is defined by a source and a sink vertex, drawn from
the set of extreme points on the mesh. These ex-
treme points are ”mesh vertices located at prominent
parts” (Au et al., 2011), usually at extremities. From
the created fields, isolines are drawn and a subset of
these lines is selected as hypothetical part-boundaries.
Using this algorithm, we obtain segmented (decom-
posed) objects.

4.3 3D Descriptors

Our methods allows using any feature descriptor. In
this work, we use three different descriptors: VFH,
ESF and FoldingNet-Descriptor. Viewpoint Feature
Histogram (VFH) (Rusu et al., 2010) and Ensemble
of Shape Functions (ESF) are classical 3D descrip-
tors working on pointclouds without any further re-
quirements, whereas FoldingNet is a neural network-
based descriptor, which requires training on an exter-
nal dataset.

4.3.1 Ensemble of Shape Functions (ESF)

ESF (Wohlkinger and Vincze, 2011) combines three
descriptors, namely D2, D3 and A3, covering dis-
tances, angles and area of point pairs or triplets sam-
pled from the point cloud. These statistics can be nor-
malized and binned to create histograms. For each
of the three descriptors, three histograms are cre-
ated (by categorizing each sampled pair/triplets into
inside/outside/in-between the surface). An additional
modification of the D2 histogram is appended, result-
ing in 10 histograms, each having 64 bins. Thus, the
final shape descriptor has a length of 640 and the ele-
ments are between 0 and 1, summing up to 10 in total
due to the normalization of the histograms.

4.3.2 Viewpoint Feature Histogram (VFH)

VFH extends the popular Fast Point Feature His-
togram (FPFH) (Rusu et al., 2009) descriptor that cap-
tures histograms for angular features. We used the
VFH implementation from the Point Cloud Library
(PCL) (Rusu and Cousins, 2011). This implementa-
tion also contains an additional histogram that covers
the distances between the centroid and the individual
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points of the point cloud. The final descriptor has 308
elements, all between 0 and 1.

4.3.3 FoldingNet

The FoldingNet descriptor (Yang et al., 2017) is
trained in a autoencoder-like manner. During train-
ing, the autoencoder learns to represent pointclouds
by a fixed-size vector (1024 elements). The encoder
part reduces the point cloud to such a vector and the
decoder reconstructs the pointcloud. As reconstruc-
tion loss, the Chamfer distance is used. We train the
autoencoder on classes of the ShapeNet dataset that
are not inside the subset of the 16 here selected classes
and augment the data by applying random rotations.
After 200 epochs, we stop the training procedure and
use the encoder part of the network to generate Fold-
ingNet descriptors for the objects. All input point
clouds during training and testing are centered at the
origin and scaled to a unit sphere.

All these three description methods permit com-
puting local descriptors for the individual object
parts as well as global descriptors for entire shapes.
The global descriptor is combined with classification
methods (kNN and SVM) but also appended to each
local part descriptor in order to capture local as well
as global properties inside the part graph.

4.4 Graph Kernels for Part-graph
Classification

Given object segmentations, part graphs may be cre-
ated by representing object parts as nodes and adja-
cency of parts by edges inside the graph. Segmen-
tations may be provided by automatic methods such
as the concavity-aware method in Section 4.2 or by
human annotations of the object parts. Since each
node is attributed to a 3D descriptor of the part it is
representing, in the following we will focus on meth-
ods for continuous attributes only and dismiss dis-
crete label attributes. In fact, we append the global
shape descriptor of an object to each node inside its
part graph. Thus, nodes have attributes of length 616
(VFH), 1280 (ESF) or 2048 (Foldingnet).

In our experiments we consider different graph
kernels for continuous attributes : ShortestPath (Borg-
wardt and Kriegel, 2005), GraphHopper (Feragen
et al., 2013) and Wasserstein Weisfeiler-Lehman
(Togninalli et al., 2019). Graph kernels are used to de-
termine similarity between two graphs. A tuple (V,E)
of a set of vertices V and edges E ⊆ {{u,v} ⊆V |u 6=
v} is considered a graph G. In order to compute the
similarity of two graphs, graph kernels often break
down the two graphs into substructures as e.g. sub-

graphs, paths, walks, nodes or edges. On pairs of such
substructures, another kernel may be directly used to
compute a measure of similarity (Kriege et al., 2020).
In the following paragraphs, we showcase the three
graph kernels that are employed in our experiments.
For further information about graph kernels we refer
to Kriege et al. (Kriege et al., 2020) who compiled a
survey paper including many more graph kernel meth-
ods.

4.4.1 ShortestPath Graph Kernel (SP)

For the ShortestPath graph kernel, graphs are de-
composed into shortest paths, which can be com-
pared against each other whether paths have the same
length. First, the graphs have to be transformed into
shortest path graphs. The set of nodes stays un-
changed, but edges in the shortest path graph S are
created between all nodes that are connected by a
path in the original graph G. The edges in S are la-
beled by the distances of the shortest paths they repre-
sent. Computing shortest paths for all pairs of vertices
is usually accomplished by using the Floyd-Warshall
algorithm (Floyd, 1962). Having transformed two
graphs Gi,G j into their shortest path graphs Si,S j, the
shortest path kernel is defined as:

k(Si,S j) = ∑
ei∈Ei

∑
e j∈E j

kpath(ei,e j), (1)

where Ei,E j are the sets of edges inside Si,S j.

kpath(ei,e j) = kv(vi,v j)∗ ke(ei,e j)∗ kv(ui,u j)+

kv(vi,u j)∗ ke(ei,e j)∗ kv(ui,v j), (2)

where ei = {vi,ui} and e j = {v j,u j}. For the im-
plementation of the edge kernel ke, the Dirac function
is used to compare the lengths of the two edges. For
kv, we used different node kernels for the descriptors,
either a linear kernel (in case of the FoldingNet de-
scriptor):

kv(u,v) = uT ∗ v, (3)

or the histogram-intersection (in case of VFH &
ESF):

kv(u,v) =
m

∑
k=1

min(uk,vk). (4)

The ShortestPath kernel can be calculated be-
tween all graphs at training time. The results are nor-
malized as:

k(Gi,G j)√
k(Gi,Gi)k(G j,G j)

. (5)

The resulting matrix can be used by an SVM to
find decision boundaries between each pair of classes
(”OVO”) or one class vs. the rest of classes (”OVR”).
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During testing time, the new ShortestPath kernel be-
tween the new graph and all graphs inside the training
set is calculated to result in a feature vector that can
be classified by the SVM to obtain a class prediction.

4.4.2 GraphHopper (GH)

The GraphHopper (Feragen et al., 2013) kernel con-
siders the length of the path as well as distances be-
tween visited nodes’ attributes along the path.

k(Gi,G j) = ∑
π∈P

∑
π∈P′

kpath(π,π
′), (6)

with sets of shortest paths P, P′ from Gi and G j. Path
kernel kpath is only calculated if the length of both
paths is identical:

kpath(π,π
′) =

{
∑
|π|
j=1 kv(π( j),π′( j)), if |π|= |π′|,

0, otherwise.
(7)

Here, kv is the node kernel. In (Feragen et al., 2013),
the authors show that this GraphHopper kernel can
be efficiently implemented, such that the computa-
tional complexity is considerably lower compared to
the ShortestPath kernel.

4.4.3 Wasserstein Weisfeiler-Lehman (WWL)

The recently developed Wasserstein Weisfeiler-
Lehman (WWL) graph kernel (Togninalli et al., 2019)
makes use of two existing concepts: the Weisfeiler-
Lehman Framework (Shervashidze et al., 2011) and
the Wasserstein metric (Vaserstein, 1969). The
Wasserstein distance, also known as the earth mover’s
distance can be seen as the minimum cost to turn
probability distribution P into probability distribution
Q, when interpreting them as piles of dirt and consid-
ering moving amounts of dirt a cost.

The Weisfeiler-Lehman (WL) algorithm can be
applied iteratively to a graph by substituting the origi-
nal node labels of each of the nodes by creating a mul-
tiset label for each of them by appending neighboring
labels in a sorted manner to the original node label.
Subsequently, the resulting multiset label is reduced
to a novel label and the next iteration may begin.
The Weisfeiler-Lehman subtree kernel can be used on
labeled (non-attributed) graphs. It compares shared
subtrees between two graphs by using the WL algo-
rithm explained above. In (Togninalli et al., 2019),
the authors provide a novel approach to extending the
WL subtree kernel to continuous attributes. Further-
more, Togninalli et al. (Togninalli et al., 2019) sug-
gest a graph embedding based on the concatenation of
all nodes across all WL iterations. Using this graph

embedding, distances between (continuous) nodes or
graphs can be defined. The authors chose the eu-
clidean distance for node features and the Wasser-
stein distance for calculating distances between entire
graphs such that kernel matrices can be constructed.

5 EXPERIMENTS

5.1 Object Classification

We are comparing the classification performance of
various graph kernels on automatically segmented ob-
jects as well as groundtruth segmentations and com-
pare this with global shape classifiers.

Experimental Setup. For the experiments, a sub-
set of the ShapeNet dataset is used. The dataset
from (Kalogerakis et al., 2017) provide consistent
groundtruth part annotations, such that this oracle-
segmentation can be compared to the automatic seg-
mentation explained in 4.2. The used dataset con-
tains objects from 16 different classes. We used a
smaller subset (40-55 instances per class) in order
to speed up the experiments. The segmentation al-
gorithm in 4.2 requires the objects to be individ-
ual separated components. However, the majority of
shapes in the ShapeNet dataset consists of multiple
connected components. Thus, a preprocessing step
to generate 2-Manifolds from the set of all shapes
is used (Huang et al., 2018). 100 random splits of
the objects were created, each consisting of 20% Test
Data and 80% Training Data. For the ShortestPath
and GraphHopper kernels, we use the implementation
from the GraphKernelLibrary (”GraKeL”) (Siglidis
et al., 2018), for the WWL graph kernel, we use the
official Python implementation of the authors.

Table 1 shows the classification performance un-
der different settings. For each of the three descriptors
VFH, ESF and FoldingNet, eight different classifica-
tion methods were trained. The latter are grouped into
global description-based and graph-based.

• kNN (global): a k-Nearest-Neighbor classifier
with distance metric `1 and k = 10, using the fea-
ture descriptor obtained from the global shape.

• SVM (global): a linear C-SVM classifier using
the feature descriptor obtained from the global
shape.

• SP and GH, automatic segmentation: a C-SVM
using the kernel matrix obtained from apply-
ing the ShortestPath/GraphHopper Graph-Kernel
to the dataset of part graphs generated by the
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Table 1: Classification accuracy of tested methods. The columns refer to different descriptors.

Classifier VFH ESF FoldingNet

Global descriptor-based Pipeline

kNN 62.26 ± 2.86 73.73 ± 2.95 92.43 ± 1.87
SVM 65.32 ± 3.46 79.89 ± 2.92 95.84 ± 1.58

Graph-based Pipeline

GH automatic seg. 71.96 ± 3.00 78.32 ± 3.04 95.43 ± 1.57
SP automatic seg. 75.38 ± 3.13 78.68 ± 3.12 92,81 ± 1.82
WWL automatic seg. 76.86 ± 2.85 82.46 ± 2.82 96.49 ± 1.41

GH groundtruth seg. 82.31 ± 2.78 85.88 ± 2.51 96.60 ± 1.41
SP groundtruth seg. 84.16 ± 2.28 85.67 ± 2.76 94.86 ± 1.48
WWL groundtruth seg. 84.33 ± 2.77 89.26 ± 2.58 97.38 ± 1.11

concavity-aware automatic segmentation method
from (Au et al., 2011).

• SP and GH, groundtruth segmentation: a C-SVM
using the kernel matrix obtained from applying
the ShortestPath/GraphHopper graph kernel to the
dataset of part graphs generated by the annotated
groundtruth segmentations provided in (Kaloger-
akis et al., 2017).

• WWL, automatic segmentation: a Krein SVM
(Loosli et al., 2015) using the kernel matrix ob-
tained from applying the Wasserstein Weisfeiler-
Lehman graph kernel to the dataset of part graphs
generated by the concavity-aware automatic seg-
mentation method from (Au et al., 2011).

• WWL, groundtruth segmentation: a Krein SVM
using the kernel matrix obtained from applying
the Wasserstein Weisfeiler-Lehman graph kernel
to the dataset of part graphs generated by the
annotated groundtruth segmentations provided in
(Kalogerakis et al., 2017).

For VFH and ESF, only the kNN classifier is used
in the original papers (Rusu et al., 2010). Since the
graph classification is using SVMs after calculating
the kernel matrix, we included the global descriptor
SVM to have a more similar baseline. For all SVMs,
grid search was applied to optimize the parameter C
individually.

The performance of the kNN classifier is low
for all three descriptors, compared to the global de-
scriptor SVM and the graph kernel SVMs. Table 1
also shows that classification accuracy is much higher
when employing the graph kernels using automatic
segmentation, in comparison to a global descriptor
SVM classifier for the two histogram descriptors VFH
and ESF. For the FoldingNet descriptor, only GH and
WWL graph kernels show better performance than
the global descriptor SVM baseline. The WWL graph

kernel performance is - in all cases - higher than SP
and GH, both for the automatic, as well as for the
groundtruth segmentations.

Furthermore, employing the graph kernels on
groundtruth segmentations of objects always shows
improvements over part graphs from automatic seg-
mentations. The results of the groundtruth segmenta-
tion may be seen as an upper bound of what would be
possible to achieve by using good automatic segmen-
tation algorithms.

5.2 Object Classification on
Out-of-Distribution Objects

We created 50 artificial objects in total from three dif-
ferent object classes (chairs, mugs, tables) depicted
in Figure 4. These objects are designed to be pecu-
liar and hence differ from the objects in the original
ShapeNet dataset: mugs now have more than one han-
dle (up to four) and chairs and tables contain more
than four legs (up to 10).

With this experiment we want to assess the gener-
alization performance of both classical classifiers us-
ing global shape features and the graph kernel meth-
ods. As training set, all objects from the first exper-
iment are used. For the test, the 50 newly created
objects are used.

The results in Table 2 show that the FoldingNet
descriptor generalizes well to the new shapes, con-
trary to VFH and ESF. All three graph kernel meth-
ods improve the accuracy of the classification com-
pared to the global descriptor SVM in case of the
FoldingNet descriptor. The ShortestPath kernel sur-
passes the global 3D feature SVM in all three cases,
whereas the GraphHopper classifier only shows su-
perior results in case of VFH and FoldingNet. The
WWL kernel outperforms all other methods only for
the ESF descriptor and achieves the same accuracy as
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Figure 3: Qualitative classification results of global clas-
sifiers and graph classifiers based on automatic segmenta-
tions using the VFH descriptor. Groundtruth segmentation
is shown for comparison of segmentations. Note, GH, SP
and WWL predictions are based on automatic segmentation
from (Au et al., 2011), not groundtruth segmentations.

Figure 4: Artificial Object examples.

Table 2: Classification accuracy of tested methods on artifi-
cial objects. The columns refer to different descriptors.

Method VFH ESF Folding-
Net

Global descriptors

SVM 72 80 84

Graph-based

GH, autom. seg. 78 76 96
SP, autom. seg. 90 84 98
WWL, autom. seg. 76 88 98

ShortestPath on the FoldingNet descriptor. These re-
sults may indicate that the graph kernel methods make
better use of substructures in order to predict the final
object classes. Thus, these graph kernel methods are
recommended to boost classification performance.

6 CONCLUSIONS

This work investigated the utility of representing ob-
jects in terms of their substructures. To this end,
a comparison on three different graph kernels op-
erating on automatically extracted object parts was
conducted. Furthermore, three 3D feature extrac-
tors that describe these parts were analyzed regard-
ing their suitability for object classification. A com-
parison against global (whole-object) descriptors sug-
gests that this part-based approach indeed improves
performance, especially if the Wasserstein Weisfeiler-
Lehman kernel is used. Our results on part graphs
using groundtruth segmentations indicate further po-
tential for improvement by making use of better seg-
mentation algorithm (as soon as this is available). We
confirmed the finding of parts being useful with an
even stronger effect on a novel dataset of peculiar ob-
jects that deviate from standard object class concepts.

Since our approach comes with additional pro-
cessing steps (mesh cleanup, segmentation, individ-
ual descriptor extraction for each object part), the use
of this pipeline is recommended in cases where clas-
sification accuracy is required to be maximized and
additional computation cost is less critical.

REFERENCES

Achlioptas, P., Diamanti, O., Mitliagkas, I., and Guibas,
L. (2017). Representation learning and adversar-
ial generation of 3d point clouds. arXiv preprint
arXiv:1707.02392.

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

424



Au, O. K.-C., Zheng, Y., Chen, M., Xu, P., and Tai, C.-
L. (2011). Mesh segmentation with concavity-aware
fields. IEEE Transactions on Visualization and Com-
puter Graphics, 18(7):1125–1134.

Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In Leonardis, A., Bischof,
H., and Pinz, A., editors, Computer Vision – ECCV
2006, pages 404–417, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Biederman, I. (1987). Recognition-by-components: a the-
ory of human image understanding. Psychological re-
view, 94(2):115.

Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path
kernels on graphs. In Fifth IEEE International Confer-
ence on Data Mining (ICDM’05), pages 8–pp. IEEE.

Bronstein, A. M., Bronstein, M. M., Guibas, L. J., and Ovs-
janikov, M. (2011). Shape google: Geometric words
and expressions for invariant shape retrieval. ACM
Transactions on Graphics (TOG), 30(1):1–20.

Chang, A. X., Funkhouser, T. A., Guibas, L. J., Hanra-
han, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., Xiao, J., Yi, L., and Yu, F. (2015).
Shapenet: An information-rich 3d model repository.
CoRR, abs/1512.03012.

Chen, X., Golovinskiy, A., and Funkhouser, T. (2009). A
benchmark for 3D mesh segmentation. ACM Trans-
actions on Graphics (Proc. SIGGRAPH), 28(3).

Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273–297.

Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical
model for learning natural scene categories. In 2005
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05), volume 2,
pages 524–531. IEEE.

Feragen, A., Kasenburg, N., Petersen, J., de Bruijne, M.,
and Borgwardt, K. (2013). Scalable kernels for graphs
with continuous attributes. In Advances in neural in-
formation processing systems, pages 216–224.

Floyd, R. W. (1962). Algorithm 97: shortest path. Commu-
nications of the ACM, 5(6):345.

George, D., Xie, X., and Tam, G. K. (2018). 3d mesh
segmentation via multi-branch 1d convolutional neu-
ral networks. Graphical Models, 96:1–10.

Golovinskiy, A. and Funkhouser, T. (2008). Randomized
cuts for 3d mesh analysis. In ACM SIGGRAPH Asia
2008 papers, pages 1–12. ACM New York, NY, USA.

Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman,
S., and Cohen-Or, D. (2019). Meshcnn: a network
with an edge. ACM Transactions on Graphics (TOG),
38(4):1–12.

Huang, J., Su, H., and Guibas, L. (2018). Robust water-
tight manifold surface generation method for shapenet
models. arXiv preprint arXiv:1802.01698.

Kalogerakis, E., Averkiou, M., Maji, S., and Chaudhuri, S.
(2017). 3d shape segmentation with projective convo-
lutional networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 3779–3788.

Kalogerakis, E., Hertzmann, A., and Singh, K. (2010).
Learning 3d mesh segmentation and labeling. In ACM
SIGGRAPH 2010 papers, pages 1–12. Citeseer.

Kanezaki, A., Matsushita, Y., and Nishida, Y. (2018). Ro-
tationnet: Joint object categorization and pose estima-
tion using multiviews from unsupervised viewpoints.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5010–5019.

Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. (2003).
Rotation invariant spherical harmonic representation
of 3 d shape descriptors. In Symposium on geometry
processing, volume 6, pages 156–164.

Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.

Kriege, N. M., Johansson, F. D., and Morris, C. (2020). A
survey on graph kernels. Applied Network Science,
5(1):1–42.

Le, T., Bui, G., and Duan, Y. (2017). A multi-view recurrent
neural network for 3d mesh segmentation. Computers
& Graphics, 66:103–112.

Li, J., Chen, B. M., and Lee, G. H. (2018). So-net: Self-
organizing network for point cloud analysis. arXiv
preprint arXiv:1803.04249.

Lien, J.-M. and Amato, N. M. (2007). Approximate con-
vex decomposition of polyhedra. In Proceedings of
the 2007 ACM symposium on Solid and physical mod-
eling, pages 121–131.

Loosli, G., Canu, S., and Ong, C. S. (2015). Learning svm
in kreı̆n spaces. IEEE transactions on pattern analysis
and machine intelligence, 38(6):1204–1216.

Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Proceedings of the seventh
IEEE international conference on computer vision,
volume 2, pages 1150–1157. Ieee.

Maturana, D. and Scherer, S. (2015). Voxnet: A 3d con-
volutional neural network for real-time object recog-
nition. In 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 922–
928. IEEE.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J.,
and Bronstein, M. M. (2017). Geometric deep learn-
ing on graphs and manifolds using mixture model
cnns. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5115–
5124.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017a). Point-
net: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 652–660.

Qi, C. R., Su, H., Nießner, M., Dai, A., Yan, M., and
Guibas, L. J. (2016). Volumetric and multi-view cnns
for object classification on 3d data. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 5648–5656.

Qi, C. R., Yi, L., Su, H., and Guibas, L. J. (2017b). Point-
net++: Deep hierarchical feature learning on point sets
in a metric space.

3D Object Classification via Part Graphs

425



Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (fpfh) for 3d registration. In 2009
IEEE international conference on robotics and au-
tomation, pages 3212–3217. IEEE.

Rusu, R. B., Bradski, G., Thibaux, R., and Hsu, J. (2010).
Fast 3d recognition and pose using the viewpoint
feature histogram. In 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2155–2162. IEEE.

Rusu, R. B. and Cousins, S. (2011). 3d is here: Point cloud
library (pcl). In 2011 IEEE international conference
on robotics and automation, pages 1–4. IEEE.

Schoeler, M. and Wörgötter, F. (2015). Bootstrapping the
semantics of tools: Affordance analysis of real world
objects on a per-part basis. IEEE Transactions on
Cognitive and Developmental Systems, 8(2):84–98.

Shapira, L., Shamir, A., and Cohen-Or, D. (2008). Con-
sistent mesh partitioning and skeletonisation using
the shape diameter function. The Visual Computer,
24(4):249.

Shervashidze, N., Schweitzer, P., Leeuwen, E. J. v.,
Mehlhorn, K., and Borgwardt, K. M. (2011).
Weisfeiler-lehman graph kernels. Journal of Machine
Learning Research, 12(Sep):2539–2561.

Siglidis, G., Nikolentzos, G., Limnios, S., Giatsidis, C.,
Skianis, K., and Vazirgiannis, M. (2018). Grakel:
A graph kernel library in python. arXiv preprint
arXiv:1806.02193.

Sivic, J. and Zisserman, A. (2003). Video google: A text
retrieval approach to object matching in videos. In
null, page 1470. IEEE.

Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E.
(2015). Multi-view convolutional neural networks for
3d shape recognition. In Proceedings of the IEEE
international conference on computer vision, pages
945–953.

Togninalli, M., Ghisu, E., Llinares-López, F., Rieck, B., and
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