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Abstract: We propose the use of continuous residual modules for graph kernels in Graph Neural Networks. We show
how both discrete and continuous residual layers allow for more robust training, being that continuous residual
layers are applied by integrating through an Ordinary Differential Equation (ODE) solver to produce their
output. We experimentally show that these modules achieve better results than the ones with non-residual
modules when multiple layers are used, thus mitigating the low-pass filtering effect of Graph Convolutional
Network-based models. Finally, we discuss the behaviour of discrete and continuous residual layers, pointing
out possible domains where they could be useful by allowing more predictable behaviour under dynamic times
of computation.

1 INTRODUCTION

Graph Neural Networks (GNNs) are a promising
framework to combine deep learning models and
symbolic reasoning. Whereas conventional deep
learning models, such as Convolutional Neural Net-
works (CNNs), effectively handle data represented in
euclidean space, such as images, GNNs generalise
their capabilities to handle non-Euclidean data, such
as relational data with complex relationships and in-
terdependencies between entities.

Recently, deep learning techniques such as pool-
ing, dynamic times of computation, attention, and ad-
versarial training, which advanced the state-of-the-art
in conventional deep learning (e.g. in CNNs), have
been investigated in GNNs as well (Battaglia et al.,
2018; Kipf and Welling, 2017; Velickovic et al., 2018;
Xu et al., 2019). Discrete residual modules, whose
learned kernels are discrete derivatives over their in-
puts, have been proven effective to improve conver-
gence and reduce the parameter space on CNNs, sur-
passing the state-of-the-art in image classification and
other applications (He et al., 2016). Given their effec-
tiveness, the technique has been applied in many dif-
ferent areas and meta-models of deep learning to im-
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prove convergence and reduce the parameter space.
Unfortunately, it has been shown that Graph Neural
Networks (GNN) often “fail to go deeper” (Li et al.,
2018; Wu et al., 2019), with some work already ar-
guing for residual connections (Bresson and Laurent,
2017; Kipf and Welling, 2017; Huang and Carley,
2019) to improve or alleviate this issue.

Further, there has been recent work in producing
continuous residual modules (Chen et al., 2018) that
are integrated through Ordinary Differential Equation
(ODE) solvers. They have shown how these models
can be used to replace both recurrent and convolution-
residual modules for small problems such as recognis-
ing digits from the MNIST dataset, regressing a tra-
jectory and generating spirals from latent data. Fur-
ther work has already explored generative models
(Grathwohl et al., 2018), using adversarial training
for generating both data from synthetic distributions
as well as producing high-quality samples from the
MNIST and CIFAR-10 datasets.

In this paper we investigate the use of both dis-
crete and continuous residual modules in learning ker-
nels that operate on relational data, providing im-
provements over their non-residual counterparts in
semi-supervised learning. We also perform a com-
parative analysis of the benefits and issues of apply-
ing these techniques to graph-structured data. The re-
mainder of this paper is organised as follows: Sec-
tion 2 presents a brief survey on Deep Learning mod-
els and formalisations for relational data – which we
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amalgamate under the GNN framework. In Section 3,
we provide information on how to rework graph-
based kernels into residual modules, to be used in the
context of continuous-residual modules, and discuss
their possible advantages and disadvantages. In Sec-
tion 4, we provide the experimental results we col-
lected from converting graph modules to work resid-
ually and compare them to their non-residual coun-
terparts. Finally, in Sections 5 and 6 we interpret the
results, discuss related work, and point out directions
for future research.

2 GRAPH NEURAL NETWORKS

In this section we describe the basics of well-known
Graph Neural Network models. We do so by present-
ing some models which have been widely used in re-
cent applications. For more comprehensive reviews
of the field, please see e.g. (Battaglia et al., 2018;
Gilmer et al., 2017; Wu et al., 2019).

One of the first formalisations of GNNs (Gori
et al., 2005) provided a way to assemble neural mod-
ules over graph-like structures which was later ap-
plied to many different domains including ranking
webpages, matching subgraphs, and recognising mu-
tagenic compounds. In this model, the state xn of each
node n is iteratively updated through the application
of a parametric function fw, which receives as input
both the node’s label ln as well as the state and la-
bel from the nodes in its neighbourhood N(n), and
updates the state of a node in iteration t + 1 as in
Equation 1. This model would, as the authors first
envisioned, update the nodes’ states until they reach
a fixed point, and use the states for the solution after-
wards.

xt+1
n = fw(ln,xt

N(n), lN(n)) (1)

This model was then later generalised to support dif-
ferent types of entities and relations (Scarselli et al.,
2009), which makes it general enough to be seen as
a the first full realisation of GNNs’ potential. There
have been two main viewpoints used to describe
GNNs in the literature recently: that of message-
passing neural networks and that of convolutions on
graphs. In this paper we focus on the graph convo-
lutional viewpoint, more specifically on the one pre-
sented by Kipf and Welling (Kipf and Welling, 2017).
We do not specify any equations for the MPNN view-
point as this is trivially transferable from what is pre-
sented here.

The idea of allowing convolutions over relational
data stems from the concept that discrete spatial con-
volutions, widely used in the context of images, are
themselves a subset of convolutions in an arbitrary

relational space, such as a graph or hypergraph, only
being restricted to the subset of grid-like graphs (Wu
et al., 2019). This idea gave rise to many different for-
malisations and models that applied convolutions over
relational data, which are classified (Wu et al., 2019)
into spectral-based and spatial-based. Here, we refer
to spectral-based approaches as graph convolutional
networks (GCNs). The model proposed in (Kipf and
Welling, 2017) defines approximate spectral graph
convolutions and apply them to build a layered model
to allow the stacking of multiple convolutions, as de-
fined in Equation 2 below, where ˜D(i,i) = ∑ j

˜A(i, j) is
a normalisation component that divides the incoming
embedding for each vertex in the graph by its degree,
Ã = A+ IN is the adjacency matrix (with added self-
connections to allow the node to keep its own infor-
mation) σ is any activation function, and W l is the
weight kernel for layer l.

H l+1 = σ(D̃−
1
2 ÃD̃−

1
2 H lW l) (2)

Such model is a simple, yet elegant, formalisation of
the notion underlying graph convolutions. It allows
one to stack multiple layers, which has been argued
as one of the ways to improve model complexity and
performance in deep learning (He et al., 2016), but
it has been shown that stacking more layers can de-
crease performance on GCNs (Li et al., 2018), which
was one of the main motivators for applying continu-
ous residual modules in this paper.

3 DESIGNING RESIDUAL
GRAPH KERNELS

The main idea behind Residual Networks is to make
the network learn a residual function instead of a
whole transformation (He et al., 2016; Greff et al.,
2017). This way, a module which would work as
in Equation 3 is then transformed as in Equation 4,
where H l denotes the input tensor and W l the func-
tion parameters at layer l in the neural network.

H l+1 = f (H l ,W l) (3)

H l+1 = f (H l ,W l)+H l (4)

While this idea can seem too simplistic to bring any
benefits, it has been proven to improve performance
in many different meta-models (He et al., 2016; Kim
et al., 2017; Wang and Tian, 2016), and has been
used to allow one to build CNNs with more layers
than traditionally. As stated in Section 2, we wanted
to be able to benefit similarly from residual connec-
tions with graph data. One way to visualise how
this change can help is that the function learned by
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the model is as an Euler discretisation of a contin-
uous transformation (Chen et al., 2018; Haber and
Ruthotto, 2017; Lu et al., 2018; Ruthotto and Haber,
2018). So instead of learning a full transformation of
the input, it learns to map the derivative of the input,
as shown rearranged in Equation 5 below1.

f (H(l),W (l), l) =
H(l +1)−H(l)

(l +1)− l
≈ δH(l)

δl
(5)

3.1 Residual Modules on Canonical
CNNs

One of the first successes of this technique has been
the use of such a kernel in the context of convolu-
tional neural networks applied over image data (He
et al., 2016). It has been argued that this technique
allows the networks to increase in depth while main-
taining or reducing the parameter space, since each
module has to learn only the transformation to be ap-
plied to the input instead of both the transformation
and the application of such transformation. In the
same vein, the residual connections create shortcuts
for the gradients to pass through, reducing the explod-
ing/vanishing gradient problem for larger networks.
All this helps accelerating convergence and improves
the overall performance of the model, while still al-
lowing one to perform more complex operations on
data.

Many different modules have been proposed and
tested with this technique. One caveat, however, is
that both the input and output of a residual module
must either have the same dimensionality, or be ex-
panded/contracted with arbitrary data to match the di-
mensionality of each other.

3.2 Discrete Residual Modules on GCNs

One of the easiest GNN models from which we
can extend the idea of a Residual block is the one
based on graph convolutions. Here, we focus on the
model proposed in (Kipf and Welling, 2017) and ex-
plained in Section 2. For our experiments, we use
a slightly modified version, which does not perform
symmetric normalisation, computing D̃−1Ã instead of
D̃−

1
2 ÃD̃−

1
2 , which will be used as the baseline for this

technique in Section 4. We also did experiments repli-
cating the paper more closely, and the difference in

1We use function notation for the continuous residual
modules and their derivations to make the derivative more
explicit, however there are other interpretations of residual
connections, such as Veit et al.’s (Veit et al., 2016), who
interpret residual networks as ensembles.

the normalisation was not the most crucial part for
replicating the original results.

We argue that the GCN model is the easiest to re-
frame into a Residual block since it is both based on
the notion of convolution and provides as output a ten-
sor with the same number of nodes as the input values
– i.e. does not reduce the number of elements to be
processed in the next feature map’s shape. The trans-
formation of such a module into a residual one can
be achieved by simply engineering it to contain the
residual input, such as in Equation 6.

H(l +1) = H(l)+σ(D̃−1ÃH(l)W (l)) (6)

3.3 Continuous Residual Modules for
Graphs

Recently, Chen et. al. (Chen et al., 2018) proposed
a model which approximates a continuous-time (or
continuous-layer) derivative function which can be
efficiently integrated through parallel ODE solvers.
These models are generated by taking the approxima-
tion presented in Equation 5 and using ODE solvers
to integrate them as needed, effectively learning a
Lipschitz-continuous function that can be efficiently
evaluated at specified points for producing results re-
garding to those points.

In terms of residual layers, the learned derivative
function can be seen as producing a function that is
continuous in the layer-space – that is, they produce a
continuous equivalent of the non-residual layer. Fur-
thermore, they provide a way to generate a continu-
ous function on the layers themselves, tying nearby
layer weights to each other while allowing for differ-
ent transformations to be applied in each of them. If
one sees these as recurrent functions, they can also
be seen as producing recurrent networks that work
in continuous spaces, instead of needing to use dis-
cretely sampled application of the recurrent network
one can simply evaluate it at the required times.

This idea can easily be applied to graph convolu-
tional layers by producing a continuous equivalent of
Equation 6, as shown in Equation 7. With this, one
arranges the graph convolutional modules in different
graph configurations and solve the differential equa-
tions given this structural format.

δH(l +1)
δl

= σ(D̃−1ÃH(l)W (l)) (7)

Since, in the problem we consider, the graph struc-
ture is independent of the layer-space, we can set this
part of the function (D̃−1Ã) as fixed on every batch
and through each pass in the ODE solvers. With this,
the learned function continues to be free of the graph
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structure for its application, using it only as a struc-
ture to propagate information accumulated in the re-
peated neural modules for each node. A simple way to
visualise this is to imagine a mass-spring system ex-
pressed as a graph: The model will then learn the dy-
namics of the mass-spring system for many different
configurations, being useful in differently sized and
arranged systems. This mass-spring intuition is the
same used to explain Interaction Networks (Battaglia
et al., 2016) and the Graph Network formalisation
(Battaglia et al., 2018).

3.4 Multiple Layers in
Constant-Memory

Chen et. al. (Chen et al., 2018) argue that the tech-
nique of allowing continuous-layer2 residual layers
makes it possible to build a many-layered model in
constant space instead of quadratic. That is, instead
of stacking k layers with d× d dimensions for each
kernel, one could build a single residual layer with
(d + 1)× (d + 1) dimensions, with the extra dimen-
sion being the layer component of the model. The in-
tuition behind this is that the model parameter space
will become dependent on the layer-space, with this
it can behave differently when evaluated on a point
in the layer-space. This can be visualised in the dif-
ference between Equations 8 and 9. In Equation 8
the learned kernel W has a dimension d× d, and we
would need to stack k of such layers to produce k
different transformations, whereas in Equation 9 the
kernel W ′ has (d + 1)× (d + 1) dimensions. These
continuous pseudo-layers can then be evaluated in
as many points as warranted in the ODE solver, ef-
fectively allowing a dynamic number of layers to be
computed instead of a singular discrete composition.

f (H(l)) = H(l)W (l) (8)

f (H(l), l) = concat(H(l), l)W ′(l) (9)

This technique, however, enforces that those pseudo-
layers behave similarly for close points in the layer-
space, effectively making them continuous. This con-
straint both forces the learned transformations to be
closely related in the layer space as well as makes it
so that the composition of these various layers is rel-
atively well-behaved. Thus, we can expand the num-
ber of evaluated layers dynamically by choosing more
points to integrate in. And even if we fix the start and
end-points for the integration over the layer-space, the

2In the remainder of this paper we refer only to layers
and layer-space for the CNN viewpoint, but one could re-
interpret this as time in a recurrent neural networks.

learned network can be integrated in many points be-
tween these to provide an answer with the accuracy
required from the ODE solver.

Whenever we apply continuous residual layers in
this work, we make use of this technique to allow
the ODE solver to change the layer transformation
slightly between each point in the layer-space. Thus,
one could consider that the ODE-solved models we
present in the results have more layers than reported,
for this we argue that this difference is at most lin-
ear when the residual layers consists of only a sin-
gle residual GCN application, since the GCN lay-
ers themselves are single-layered and the additional
layer-space value provided as input can only inter-
fere in this linear application through its weights in
the kernel matrix multiplication. We also believe a
similar technique could, in theory, be applied without
the use of an ODE-solver to integrate through the lay-
ers, but one would lose the benefits of the ODE solver
being able to define by itself which points need to be
evaluated.

4 EXPERIMENTAL RESULTS

In this section we evaluate the transformations dis-
cussed in Section 3 to small adaptations of GCN neu-
ral modules described in (Kipf and Welling, 2017).
The task of interest is semi-supervised classification
in citation networks, where nodes are scientific pa-
pers and edges are citation links, and only a small
fraction of the nodes is labelled. The experiments
are as in (Kipf and Welling, 2017), with the same
train/test/evaluation split (inherited from (Yang et al.,
2016)) in Cora, Citeseer and Pubmed citation net-
works. They have 6, 7 and 3 classes, respectively.

To capture the difference in performance and sta-
bility due to applying residual blocks to GNNs, we
adapted the Pytorch code of the original GCN paper
3 (Kipf and Welling, 2017), changing the initialisa-
tion, degree normalisation, and removing dropout on
the input features in our GCN kernels. The code for
our experiments, as well as code for unfinished exper-
iments can be found at https://github.com/phcavelar/
graph-odenet.

3See https://github.com/tkipf/pygcn for the model
and https://github.com/tkipf/gcn for the datasets and
test/train/evaluation splits. The code we used was slightly
different but we managed to replicate their results in other
experiments by having dropout in the input.
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4.1 Three-layered Models

In these experiments, we built neural networks with
three graph convolutional layers whose feature di-
mensionalities were (h,h,c), with h being an hyper-
parameter of the model and c the number of classes
in the dataset. We initially evaluated five models,
and run subsequent experiments for the best three.
The initially tested models use either dropout (Hinton
et al., 2012), group normalisation (Wu and He, 2018)
(or both), and L2 normalisation of the parameters, as
follows:

GCN-3. A model with the GCN layer as made avail-
able by (Kipf and Welling, 2017), with dropout
applied between each pair of layers.

GCN-norm-3. Equivalent to GCN-3, but with
dropout applied between the first and second layer
and group normalisation applied between the sec-
ond and the third.

RES-3. A model with a residual GCN kernel as de-
fined in Equation 6 instead of a normal GCN on
the second layer, with dropout applied between
each pair of layers.

RES-norm-3. Equivalent to RES-3, but with dropout
applied between the first and second layer and
group normalisation applied between the second
and the third.

ODE-norm-3. A model with a continuous residual
module as defined in Equation 7 instead of a nor-
mal GCN on the second layer, dropout before the
ODE-solved layer and group normalisation as part
of the ODE-solved layer, applied to its input. The
ODE-solved layer use the technique described in
Section 3.4 to allow the learned continuous trans-
formation to be dependent on the time parameter
evaluations.

Having constructed the networks above, we ran the
experiments of (Kipf and Welling, 2017) for semi-
supervised classification in the Cora, Citeseer and
Pubmed citation networks, using the same train-
validation-test splits, over 2500 runs in the discrete
models and 250 in the continuous ones, averaging the
results to minimise the influence of random parame-
ter initialisation. All models were trained with h= 16,
as per the original code (more features did not seem
to improve performance (Velickovic et al., 2018)), a
learning rate of 0.01, 50% dropout and L2 normalisa-
tion on the weights, scaled by 5× 10−4. All learned
kernels weights and biases are initialised with the uni-
form distribution U(−

√
k,
√

k), where k = 1
out features .

Table 1 shows the average, standard deviation,
best (max) and worst (min) values over all the runs
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Figure 1: 50-bin histogram of the accuracies, comparing the
models on the Citeseer dataset.
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Figure 2: 50-bin histogram of the accuracies, comparing the
models on the Cora dataset.
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Figure 3: 50-bin histogram of the accuracies, comparing the
models on the Pubmed dataset.

for accuracy as well as average loss and runtime.
The residual models have a consistently better perfor-
mance, as well as less variance. The residual modules
heavily benefited from group normalisation, however
they were slowed by this addition. The continuous
GCN model achieved the best average accuracy in
Cora and Pubmed, and was close to the best in Cite-
seer. However, it was much slower, partly due to the
group normalisation inside the integrated function.

We tried to train an ODE model with dropout in
the integrated function or without any normalisation,
but it failed to converge in the first case and severely
overfitted in the second. Even if we consider only the
best over all runs, RES-norm-3 performed better than
any GCN-3 variant, and ODE-norm-3 was less sensi-
tive to weight initialisation, by showing a consistently
lower standard deviation.

To further validate these results, we ran statisti-
cal tests on the accuracies to see whether the differ-
ences between non-residual and residual layers were
statistically significant, the p-values for the Mann-
Whitney U-test and Kruskal-Wallis H-test were both
lower than 10−10 in the Pubmed dataset, and even
lower in the other two, when comparing a resid-
ual (RES, RES-norm and ODE, ODE-norm) module
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Table 1: Comparison of the performance in the experiments
with 3-layered networks, aggregated as explained in the
text. The best model (except the original) is marked in bold
for each metric.

Model Acc (%) Loss
Avg Std Min Max Avg

Citeseer

Kipf & Welling 70.30 - - - -
GCN-3 61.70 3.32 37.20 68.80 1.3344

GCN-norm-3 61.66 3.29 38.60 68.70 1.3356
RES-3 65.87 1.46 58.10 70.10 1.1069

RES-norm-3 70.08 0.79 67.40 72.30 1.0132
ODE-norm-3 70.04 0.72 67.50 71.80 1.0163

Cora

Kipf & Welling 81.50 - - - -
GCN-3 76.01 2.59 56.70 81.50 0.8554

GCN-norm-3 75.95 2.68 56.70 81.70 0.8554
RES-3 78.98 1.32 70.60 82.20 0.7114

RES-norm-3 81.06 0.72 78.70 83.20 0.7275
ODE-norm-3 81.08 0.67 78.60 82.70 0.7333

Pubmed

Kipf & Welling 79.00 - - - -
GCN-3 77.19 1.01 68.10 79.30 0.7378

GCN-norm-3 77.19 0.99 67.70 79.30 0.7375
RES-3 77.45 0.77 74.20 79.20 0.7081

RES-norm-3 78.13 0.44 76.10 79.50 0.5602
ODE-norm-3 78.18 0.34 77.20 79.20 0.5602

with a non-residual module (GCN, GCN-norm). The
performance of the discrete and continuous residual
modules was statistically similar, with p-values higher
than 5% for all datasets. Figures 1, 2 and 3 show the
histograms of the accuracies over these runs for each
“norm” model, and can help in visualising that the
residual ones are significantly better in average.

4.2 K-layered Models

For the second battery of tests, we present the results
for the Pubmed dataset, since it is the best case for the
baseline non-residual model, as per Figure 3. The “K”
models work in the same way as the “3” models from
Section 4.1, except that they have K layers instead of
3. The residual modules with connections every two
layers had a residual connection on the last layer if
the number of layers is odd. The ODE-solved mod-
ules with residual connections every two layers used
a time component as input to both layers, appended
to every node’s feature vector. All ODE models are
solved using the adjoint method described in (Chen
et al., 2018).

To assess the convergence of the models, we mea-
sure how long it takes for them to meet accuracy and
loss targets, in the validation sets, during training.
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Figure 4: Average number of iterations that the models hit
the early stopping criteria in the Pubmed dataset, stopping
at a maximum of 200 epochs.
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Figure 5: Ratio of models that hit the early stopping criteria
in the Pubmed dataset.

In our early stopping criteria, the target accuracy is
69.47%, which is 90% of the lowest accuracy in Ta-
ble 1, in the Pubmed dataset, whereas the target loss
is 0.78496, which is 110% of the highest test loss ob-
tained in that same test. These targets give the chance
for all models to converge as we know that all of them
could reach those values, when trained with 3 lay-
ers. The reason for using a loss threshold alongside
the accuracy on the validation set is that we wanted
the models to be confident enough about its predic-
tions and not only accurate. We say that a model did
not converge if it does not stop earlier than the maxi-
mum of 200 training epochs (as proposed in (Kipf and
Welling, 2017)).

Figure 5 shows that the many-layered non-
residual models often failed to converge before the
defined maximum number of epochs. Furthermore,
they had a worse performance when compared to the
residual models. Figure 4 shows that the residual
models hit the early stopping criteria at less than half
the maximum number of iterations, while also some
also show to be more immune or even benefit from
more layers to converge faster. We also ran this ex-
periment for more training iterations and deeper net-
works: the non-residual models were all prone to
overfitting while the residual models were more or
less immune to it, achieving good test accuracy even
the earlier stopping criteria was not met.

5 RELATED WORK

Kipf and Welling (Kipf and Welling, 2017) presented
the original GCN formalisation and experimented
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with residual connections, showing that they allow
deeper GCNs. However, experiments with continuous
residual GCN layers, which are the main contribution
of this paper, were not performed. Other papers also
explored the role of residual connections in GNNs,
such as (Bresson and Laurent, 2017; Huang and Car-
ley, 2019), but neither study continuous residual mod-
ules. The application and study of discrete resid-
ual learning over other meta-models has been already
explored in, for example, (Greff et al., 2017; Kim
et al., 2017; Kipf and Welling, 2017; Wang and Tian,
2016; Zilly et al., 2017). Furthermore, the application
of continuous residual learning has been explored in
(Chen et al., 2018; Grathwohl et al., 2018; Haber and
Ruthotto, 2017; Lu et al., 2018; Ruthotto and Haber,
2018), here we found no work applying this tech-
nique to graph-structured data. Independently from
our work a very similar framework, with an almost
equivalent formalisation, was shown in (Poli et al.,
2019) with different results from here, and providing
a complement to this paper.

Many other papers have tried to improve over
(Kipf and Welling, 2017). For example, (Xu et al.,
2019) shows that allowing multiple-layered convolu-
tional kernels improve the expressiveness of the GCN
model, and that the neighbour aggregation method of
the model also impacts on the number of graphs it
can tell apart, proving that a sum aggregation should
be preferred over a mean or max aggregation. Other
work allows attentional pooling of each node’s neigh-
bours (Velickovic et al., 2018), and also show an
improvement in performance. Hamilton, Ying and
Leskovec (Hamilton et al., 2017) experiment with dif-
ferent aggregation/pooling functions for a GCN, and
(Gilmer et al., 2017) uses an edge-annotated pool-
ing in his MPNN. Preliminary experiments with these
models did not yield promising results and thus we
left them for future work, focusing here on the canon-
ical GCN model of (Kipf and Welling, 2017) as our
baseline.

Some models in the GNN literature also employ
methods that can be seen as similar to residual con-
nections. For example, one could interpret the LSTM
and GRU modules, which are often applied in GNNs
(Gilmer et al., 2017; Li et al., 2016; Selsam et al.,
2018), as providing a similar feature to residual con-
nections (Greff et al., 2017), since they may allow in-
formation to pass along time-steps unchanged if the
network learns to do so. Also, (Palm et al., 2018; Xu
et al., 2019) compute the output function in many or
all the layers of their GNN model to perform gradient
descent, instead of performing it only from the end of
the network. This in some sense also allows the gra-
dients to reach specific parts of the network without

being polluted with further transformations. These
models allow many-layered networks to be effectively
learned and could be seen as having a similar effect to
residual modules, however this is more computation-
ally expensive than allowing residual connections.

6 DISCUSSION

In this paper we provide, to the best of our knowl-
edge, the first application of continuous-depth in a
Graph Neural Network. We engineer such a network
by fixing the input graph topology before perform-
ing the integral through an ordinary differential equa-
tion (ODE) solver. This creates a ODE system to be
solved with the input graph’s shape, without using the
matrix as a input parameter to the ODE solver, which
drastically reduces the memory usage. With this, the
learned residual layer applies a continuous operation
through the layer-space, which can behave better than
using discrete transformations on the input.

Although the results we present here do not make
such a strong case for the ODE-solved layers, we be-
lieve this to be mostly due to the problem the origi-
nal GCN paper was applied to and to how the GCN
model itself may act as low-pass filter (NT and Mae-
hara, 2019). The GCN model performed best with
only two layers, which indicates that the datasets may
not need, and may even be penalised by using, the
information of a larger neighbourhood. We nonethe-
less wanted to present our first results with the GCN
model and using the same dataset as the original
paper for two reasons: First, the GCN model pro-
vides and easy-to-bridge intuition between convolu-
tions and GNNs, which helps understand the model
given that the ODE model was also applied to con-
ventional CNNs (Chen et al., 2018), and we wanted
to provide results in the same dataset to provide an
even footing. To achieve an even foooting, however,
we utilised 3-layered models as to allow the resid-
ual modules to learn features intrinsic to their feature
space.

The main advantage we believe that continuous
residual layers can provide on graph-structured data
would be to allow a more predictable behaviour on the
learned functions, as was shown to be the case in other
meta-models in (Chen et al., 2018; Grathwohl et al.,
2018). This would allow complex systems to be mod-
elled as ordinary differential equations, which have a
vast literature of theoretical analysis that could greatly
benefit the Deep Learning community. A prime ex-
ample for such an application would be, for exam-
ple, implementing continuous Interaction Networks
(Battaglia et al., 2016), which would work natively
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in continuous-time and could be used to better model
physical systems without the errors incurred by sam-
pling.
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APPENDIX

Detailed Model and Experiments

Experiments

The experiments we run are the same as those pre-
sented in (Kipf and Welling, 2017). We use the same
train/test/evaluation split as they use, which was in-
herited from (Yang et al., 2016).

Models

For our experiments we used a slightly different ver-
sion of the proposed GCN model, which follows
Equation 10 instead of the original one. Similarly, the
discrete residual module follows Equation 11, and the
continuous one approximates Equation 12.

H l+1 = σ(D̃−1ÃH lW l) (10)
H l+1 = σ(D̃−1ÃH lW l) (11)

δH(l)
δl

= σ(D̃−1ÃH(l)W (l)) (12)

All the tested models use either dropout (Hinton et al.,
2012), group normalisation (Wu and He, 2018) (or
both), and L2 normalisation of the parameters are de-
scribed as follows:
GCN-3. A model with the GCN layer as made avail-

able by the author, with dropout applied between
each pair of layers.

RES-3. A model with a residual GCN kernel as de-
fined in Equation 11 instead of a normal GCN on
the second layer, with dropout applied between
each pair of layers.

GCN-norm-3. A model with the GCN layer as made
available by the author, with dropout applied be-
tween the first and second layer and group nor-
malisation applied between the second and the
third.

RES-norm-3. A model with a residual GCN ker-
nel as defined in Equation 11 instead of a nor-
mal GCN on the second layer, with dropout ap-
plied between the first and second layer and group
normalisation applied between the second and the
third.

RES-fullnorm-3. A model with a residual GCN ker-
nel as defined in Equation 11 instead of a normal
GCN on the second layer, with group normalisa-
tion applied between each pair of layers.

ODE-norm-3. A model with a continuous residual
module as defined in Equation 12 instead of a nor-
mal GCN on the second layer, dropout before the
ODE-solved layer and group normalisation as part
of the ODE-solved layer, applied to its input. The
ODE-solved layers use the technique described in
Subsection 3.4 to allow the learned continuous
transformation to be dependant on the time pa-
rameter evaluations.

ODE-fullnorm-3. A model with a continuous resid-
ual module as defined in Equation 12 instead of a
normal GCN on the second layer, group normal-
isation both before the ODE-solved layer and as
part of the ODE-solved layer, applied to its in-
put. The ODE-solved layers use the technique
described in Subsection 3.4 to allow the learned
continuous transformation to be dependant on the
time parameter evaluations.

All models use 16 features in all their hidden dimen-
sions, which was kept from the original code as the
default, since (Velickovic et al., 2018) showed that
increasing the number of features did not seem to im-
prove performance on the GCN. All learned kernels
weights are initialised with the uniform distribution
U(−

√
k,
√

k), where k = 1
out features and their biases

are also initialised from the same distribution.
The “K” models work in the same way as the “3”

models, only that they have K layers instead of 3,
with the normalisation between the first and second
layer being the same, and on the other layers being
the same as the normalisation between the second and
third layer in the “3” model. All models had ReLU ac-
tivations after every layer but the last, applied before
the normalisation. On the last layer all models had a
log softmax applied to each node’s output. The resid-
ual modules with connections every two layers had a
residual connection on the last layer if the number of
layers is odd. The ODE-solved modules with residual
connections every two layers used a time component
as input both layers, appended to every node’s feature
vector. All ODE models are solved using the adjoint
method described in (Chen et al., 2018).

To perform neighbourhood aggregation we ran
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Pytorch’s sparse matrix multiplication (torch.spmm)
between the degree-normalised adjancency matrix
and the nodes features, essentially doing a weighted
sum through all the neighbours, with all weights set
to 1/dn where dn is the degree for node n.

Additional Results

Full Results for 3-layered Models

In this section we present the full results of the ex-
periments done in the corresponding section of the
paper. For implementation notes on the models look
at Appendix 6. Table 2 shows the average, standard
deviation and the best and worst values over all the
runs for accuracy as well as average loss and run-
time. There one can see that the residual models have
a consistently better performance, as well as less vari-
ance in the range of possible accuracies. The mod-
els trained in this work are, as stated in the provided
source, “subtly different” from the ones presented in
the original paper, and the author stated that the code
we adapted does not fully reproduce the results in the
paper.

We made statistical tests to with the null-
hipothesis of a pair of models being similar, the p-
values for the Mann-Whitney U-test and Kruskal-
Wallis H-test were both lower than 10−10 in the
Pubmed dataset, and even lower in the other two,
when comparing a residual (RES, RES-norm and
ODE, ODE-norm) module with a non-residual mod-
ule (GCN, GCN-norm). When comparing the two
residual modules the null hypothesis was not rejected,
with p-values higher than 5% for all datasets. Fig-
ures 7, 6 (Also presented in the paper) and 8 show
the histograms of the accuracies over these runs for
each “norm” model, and can help in visualising that
the residual ones are significantly better in average.

K-layered Models and Discussion

For the second battery of tests, we present the re-
sults for the Cora dataset in Figures 9, 10, 11, for
the Pubmed dataset in Figures 12, 13, 14, and the
additional figure for the Citeseer dataset in Figure
15. One of the points which caused degradation with
the stacking of more layers is that we also put a loss
threshold in the early stopping, causing some of the
models to overfit the data. The reason for using a
loss threshold along the accuracy on the validation set
is that we wanted our model to be confident enough
about its predictions and not only accurate. We also
ran this experiment for a larger number of layers and
the results seemed stable throughout, we chose to
present here only from layers 3 through 5 since in this

Table 2: Comparison of the performance in the reproduction
of the experiments done in (Kipf and Welling, 2017). The
experiments were run 2500 times for the non-continuous
models (those that don’t start with “ODE”), and 250 times
for the continuous ones. The results shown here are the av-
erage, standard deviation, minimum and maximum of these
runs to minimise the effect of the variables’ random initiali-
sation. Runtime isn’t comparable with different setups, and
is presented for the original paper only for completeness.
GCN (Paper) represents that the results were taken from
(Kipf and Welling, 2017).

Model Acc (%) Loss Time (s)
Avg Std Min Max Avg Avg

Citeseer

GCN (Paper) 70.30 - - - - 7
GCN-3 61.70 3.32 37.20 68.80 1.3344 1.4325

GCN-norm-3 61.66 3.29 38.60 68.70 1.3356 1.4399
RES-3 65.87 1.46 58.10 70.10 1.1069 1.4480

RES-norm-3 70.08 0.79 67.40 72.30 1.0132 2.2851
RES-fullnorm 16.17 4.99 7.70 23.10 1.7918 3.1579
ODE-norm-3 70.04 0.72 67.50 71.80 1.0163 69.7444

ODE-fullnorm-3 18.28 2.59 16.00 23.10 1.7918 61.0533

Cora

GCN (Paper) 81.50 - - - - 4
GCN-3 76.01 2.59 56.70 81.50 0.8554 1.3841

GCN-norm-3 75.95 2.68 56.70 81.70 0.8554 1.3944
RES-3 78.98 1.32 70.60 82.20 0.7114 1.3888

RES-norm-3 81.06 0.72 78.70 83.20 0.7275 2.0943
RES-fullnorm 15.07 8.87 6.40 31.90 1.9459 2.7927
ODE-norm-3 81.08 0.67 78.60 82.70 0.7333 62.2312

ODE-fullnorm-3 14.09 6.49 6.40 31.90 1.9458 54.8411

Pubmed

GCN (Paper) 79.00 - - - - 38
GCN-3 77.19 1.01 68.10 79.30 0.7378 5.6163

GCN-norm-3 77.19 0.99 67.70 79.30 0.7375 5.6146
RES-3 77.45 0.77 74.20 79.20 0.7081 5.6194

RES-norm-3 78.13 0.44 76.10 79.50 0.5602 10.5187
RES-fullnorm 32.82 11.11 18.00 41.30 1.0986 15.4539
ODE-norm-3 78.18 0.34 77.20 79.20 0.5602 346.6378

ODE-fullnorm-3 36.40 9.20 18.00 41.30 1.0986 289.2936

range the performance degradation of non-residual
GCNs is already visible.

Note that all the experiments we’ve done here,
with 3-layered networks, perform slightly worse than
a 2-layered network in most datasets. The original
paper already shows that this seems to be the opti-
mal number of layers for this dataset, and in the orig-
inal paper they used a different kernel initialization
method. The main point of our experiments was to
show the immunity of the residual networks to the
number of layers and initial parameter intialisation.
We trained a 2-layered discrete residual network, tak-
ing only a slice of the output of the layer as the fi-
nal features4, this model performed similarly to the
non-residual module, and achieved performance near
to the one presented in the original paper. Also, the
two-layered networks couldn’t take advantage of the
group normalisation technique, and were slightly less
scientifically interesting to analyse because of this.

4This was done so that the layer has the same number of
in and out features.
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Figure 6: 50-bin histogram of the accuracies, comparing the
models on the Citeseer dataset.
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Figure 7: 50-bin histogram of the accuracies, comparing the
models on the Cora dataset.
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Figure 8: 50-bin histogram of the accuracies, comparing the
models on the Pubmed dataset.

Other Experiments on the Citation Networks

We also preliminarly trained GCNs on the Cora
dataset, using sum neighbour aggregation instead of
mean aggregation. These performed slightly worse
than mean aggregation. Furthermore, the residual lay-
ers suffered in their performance without group nor-
malisation for many-layered networks when sum ag-
gregation was used. With this in mind, we disregarded
the use of sum aggregation for GCNs for our exper-
iments. We used MLPs instead of linear layers for
the convolutional kernels, but the performance did not
seem to increase as well.

Another difference between what we present here
and the results originally published (one of the parts
where the code we used was “subtly different” from
the one which produced the published results) is that
the original paper used a different kernel initialisa-
tion, using the Xavier/Glorot initialisation described
in (Glorot and Bengio, 2010). We tested the mod-
els with the Glorot initialisation, the results of which
can be seen in Table 3, where we ran the models for
only 100 runs. Still, the models we trained seemed to
slightly underperform the results shown in the origi-
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Figure 9: Average final test accuracy of the models in the
Cora dataset.
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Figure 10: Average number of iterations that the models hit
the early stopping criteria in the Cora dataset, stopping at a
maximum of 200 epochs.
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Figure 11: Ratio of models that hit the early stopping crite-
ria in the Cora dataset.
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Figure 12: Average final test accuracy of the models which
hit the early stopping criteria in the Pubmed dataset.
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Figure 13: Average number of iterations that the models hit
the early stopping criteria in the Pubmed dataset, stopping
at a maximum of 200 epochs.

nal paper. We also experimented using dense matrices
for the adjacencies which did not provide any perfor-
mance boost.
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Figure 14: Ratio of models that hit the early stopping crite-
ria in the Pubmed dataset.

1 2 3 4 5
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Co
nv

er
ge

nc
e 

Ra
tio

GCNK
RESK1
RESK2
RESK1norm
RESK2norm
ODEK1
ODEK2

Figure 15: Ratio of models that hit the early stopping crite-
ria in the Citeseer dataset.

Table 3: Comparison of the performance in the reproduction
of the experiments done in (Kipf and Welling, 2017). The
experiments were run 100 times for all models. The results
shown here are the average, standard deviation, minimum
and maximum of these runs. GCN (Paper) represents that
the results were taken from (Kipf and Welling, 2017).

Model
Acc (%) Loss

Avg Std Min Max Avg

Citeseer

GCN (Paper) 70.30 - - - -
GCN-3 65.18 1.78 61.40 69.80 1.1817

GCN-norm-3 65.33 1.93 56.40 70.10 1.1728
RES-3 66.46 1.41 62.70 69.70 1.1190

RES-norm-3 70.15 0.67 68.10 71.60 0.9908

Cora

GCN (Paper) 81.50 - - - -
GCN-3 78.87 1.40 75.30 82.00 0.7391

GCN-norm-3 78.44 1.36 74.10 80.90 0.7557
RES-3 79.19 1.24 75.40 81.80 0.7159

RES-norm-3 80.98 0.73 79.00 83.10 0.7022

Pubmed

GCN (Paper) 79.00 - - - -
GCN-3 77.15 0.77 75.00 78.60 0.7474

GCN-norm-3 77.25 0.88 74.30 79.00 0.7467
RES-3 77.38 0.83 75.20 78.80 0.7314

RES-norm-3 78.05 0.42 76.80 78.90 0.5577

Having done this, we tried following the paper as
closely as possible, using the Xavier/Glorot initiali-
sation (Glorot and Bengio, 2010), dropout in the in-
put. The results for this can in Table 4, where we ran
the models for only 100 runs. The 2-layered GCN
model achieved the same performance as in the orig-
inal paper and the null hypothesis was rejected when
comparing the GCN model to the ODE model, with
the ODE model being slightly inferior than the GCN
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Figure 16: Average final test accuracy of the models which
hit the early stopping criteria in the Cora dataset by follow-
ing the paper more closely.
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Figure 17: Average number of iterations that the models hit
the early stopping criteria in the Cora dataset by follow-
ing the paper more closely, stopping at a maximum of 200
epochs.

Table 4: Comparison of the performance in the reproduction
of the experiments done in (Kipf and Welling, 2017). The
experiments were run 100 times for all models. The results
shown here are the average, standard deviation, minimum
and maximum of these runs.

Model
Acc (%) Loss

Avg Std Min Max Avg

Citeseer

GCN-3 65.71 2.04 55.60 69.10 1.1202
GCN-norm-3 65.49 1.98 56.50 69.30 1.1306

RES-3 66.78 1.39 63.10 69.80 1.0776
RES-norm-3 70.75 0.85 68.50 73.00 1.0433
ODE-norm-3 69.51 1.09 67.30 72.10 1.0616

Cora

GCN-3 79.41 1.52 75.80 82.80 0.6776
GCN-norm-3 79.59 1.46 75.70 82.20 0.6748

RES-3 80.33 1.21 77.90 82.80 0.6469
RES-norm-3 81.87 0.70 80.10 83.50 0.7710
ODE-norm-3 81.52 0.75 79.20 83.10 0.7841

Pubmed

GCN-3 77.49 0.78 75.20 79.00 0.7063
GCN-norm-3 77.41 0.88 75.30 79.00 0.7121

RES-3 77.59 0.87 75.30 79.20 0.6924
RES-norm-3 79.11 0.60 77.20 80.10 0.5679
ODE-norm-3 78.50 0.47 77.20 79.80 0.5904

model. One can also look at Figures 16, 17, and 18
for results similar to the ones discussed in the other
sections for the Cora dataset. These changes also in-
crease the number of layers the non-residual model
can be built with before its performance degrades too
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Figure 18: Ratio of models that hit the early stopping crite-
ria in the Cora dataset by following the paper more closely.
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