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Abstract: This paper focuses on making optimal investment and operational recommendations for a Hybrid Renewable 
Energy System (HRES). For this purpose we develop a modular composite analytic performance model for 
HRES investment, which is based on an extensible library of atomic component models, including renewable 
sources such as solar and wind, power storage, power contracts, and programmable customer loads’ switches. 
The performance model formally expresses feasibility constraints and key performance indicators, including 
total tost of ownership, environment impact, and infrastructure resilience, as a function of investment and 
operational decision variables.  Based on the performance model, we design and develop a decision guidance 
system to enable actionable investment recommendations that optimize key performance indicators  subject 
to the operational constraints associated with the network.  Finally, we demonstrate the model in a case study 
based on a real world example for a municipal electric utility. 

1 INTRODUCTION 

1.1 Drivers for Renewable Energy 
Networks and Key Trends 

The focus of this paper is to provide a flexible 
framework that allows for modelling and optimizing 
the investment in resources for a Hybrid Renewable 
Energy System (HRES). 

The planning and management of power had 
undergone a significant transformation in the past few 
years. Developments in the technological and 
political-economic landscape have been driving 
significant changes and complexity to electric power 
networks, transforming the existing mechanisms for 
supplying energy to satisfy electricity demand. At the 
forefront, environmental concerns are causing a surge 
in motivation to integrate renewable energy sources 
into the power grid. Political factors intensify this 
trend, as there is a significant push for reducing 
dependency on imported fossil fuels (understanding 
that these considerations will vary between countries, 
as the sources of energy may be more or less abundant 
within a particular geography). Economic aspects 
take into account the financial viability of operating 
those solutions, as well as the need to maintain a 
reliable source of supply. Concerns with long-term 

resilience of the infrastructure reflect the incidence of 
natural disasters as well as potential terrorist threats. 
Finally, the technology allows the expansion of 
alternative sources of energy (such as solar and wind) 
at a lower cost (in some cases even cheaper than 
traditional generation methods), even operated by the 
end consumers, combined with more efficient energy 
storage mechanisms. Control of power networks 
becomes more sophisticated through the development 
of smart grids. 

The combined effect of environmental concerns 
with geo-political factors regarding the dependency 
on fossil fuels, is driving the establishment of power 
networks that are resilient, reliable, and economically 
efficient, and that have a reduced impact on the 
environment. In this context, several complementary 
developments come in place to address these needs.  
First, the establishment of smart grids, which expand 
the more traditional power grids, by using two-way 
flows of electricity and information to create an 
automated and distributed advanced energy delivery 
network.  Figure 1 (U.S. Energy Information 
Administration, 2014), depicts a typical network 
configuration for a power grid, which we will expand 
later on, with a more detailed explanation of the 
different components’ role.  

Second, as a specialization of these smart grids, 
we see the development of Hybrid Renewable Energy 
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System (HRES) (sometimes also called Integrated 
Renewable Energy Systems). HRES denotes an 
elaborate energy grid that relies on multiple sources – 
most prevalent of which are renewable sources such 
as solar, wind, and hydro, combined with more 
traditional sources such as fossil-fired power 
generators, as well as with storage technology at key 
locations of the grid, to establish a reliable, cleaner 
and stable flow of supply. In this context, the role of 
electricity storage is particularly important in order to 
address multiple needs: balancing power supply 
(uncertain due to potential fuel shortages and the 
stochastic nature of renewable sources), deferring 
costly upgrades of the transmission/distribution 
infrastructure, allowing frequency regulation, and 
creating opportunity for revenue generation through 
secondary markets. 

1.2 The Problem and Technical 
Challenges 

There are key decisions to be made by stakeholders 
in the public and private sector, who need to 
determine the policies, investment and operations of 
an HRES for the energy and power sector, as is the 
focus of this paper. One involves determining the 
optimal investment in a balanced portfolio amongst a 
growing set of energy resources and providers with 
varying capital investment costs and constraints. 
Another key decision is finding the most efficient 
way to operate the different HRES resources. In this 
paper, we focus on the investment and operations 
decisions associated with an HRES described as a 
pool of electric power, fed by a variety of components 
to satisfy distributed sources of demand (although our 
work will not focus on the distribution/transmission 
question, functioning instead as a centralized model). 
Analyzing and making actionable recommendations 
on investment in the grid is challenging due to a 
number of factors: 

● Highly complex interaction among 
different components of a power network 

● Trade-offs between multiple goals and 
objectives, including the total cost of ownership, CO2 
emissions and environmental impacts, service 
reliability, grid resilience and socio-economic impacts. 

● Uncertain patterns of energy demand, as 
well as supply, especially when relying on renewable 
sources. 
There has been extensive research to support 
modelling of hybrid energy systems (Chauhan and 
Saini, 2014) and (Erdinc, and Uzunoglu, 2012). 
Typically, however, the models are hard-wired for 
specific energy technologies and scenarios, and do 

 

Figure 1: Distributed power system with storage 
technologies (Source: U.S. Energy Information 
Administration). 

not provide a flexible framework to allow easy 
composition of designs of networks or microgrids for 
a variable combination of components such as 
generators, batteries, etc. There has been some work 
that allows a more flexible modelling framework and 
software implementation (see for example HOMER 
(Gilman et al., 2006)). Most of the research, however, 
is less reliant on mathematical programming (MP) 
and formal optimization methods, and more on 
heuristics or on simulation based engines. Among 
those works that effectively use MP, it is common to 
see the application of Mixed Integer Linear 
Programming (MILP) to investment and operations 
problems in power networks. For a good overview of 
MILP and other related integer optimization 
problems and approaches, see (Hoffman and Ralphs, 
2012). There is a body of research that uses MILP 
Optimization models for power generation 
investment and operations decision (see (Omu et al., 
2013), (Wouters et al., 2015), (Tenfen and Finardi, 
2015), (Yang et al., 2015)), while others focus on 
Demand-Side Management (DSM) optimization (see 
(Barbata and Capone, 2014) for a survey). These 
papers, however, do not provide a way to model the 
network with components that can unify aspects of 
power supply and demand optimization in one 
integrated framework.  Additionally, these works do 
not attempt to build the investment decision model 
from the optimal operation of the underlying day-to-
day model; instead, they make simplifying 
assumptions regarding the operation to derive the 
rough-cut impact of the investment decisions. An 
alternative approach is the one provided by 
(Papavisiliou and Oren, 2013). They define the Unit 
Commitment Problem as a set of interconnected 
nodes/buses with stochastic elements reflecting 
supply and demand uncertainty. The proposed 
solution approach is based on a two-stage mixed 
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stochastic programming, to commit generation to 
demand source. This approach is robust and well 
suited to address stochastic problems on dispatching 
energy. However, it is directed towards  operational 
decisions, and does not attempt to address the 
investment decisions, which are key to our research.  

When addressing an MILP approach for the types 
of applications described, it is common to recur to 
modelling languages that are specialized in 
mathematical programming and optimization 
problems (Hoffman and Ralphs, 2012). Powerful 
languages such as OPL and AMPL are in place to 
address those needs (Martin, 2002) and (Fourer et al., 
1990). OPL and AMPL provide many advantages to 
make the optimization modelling easier and less 
error-prone. Some good examples of Power Network 
optimization models utilizing OPL are found in (Levy 
et al., 2016). However, they still require a 
considerable knowledge of optimization methods to 
properly program with them. Furthermore, they are 
not built for the use of reusable components between 
models; instead, each new model has to be created 
from scratch. 

1.3 Key Contributions  

Bridging these gaps is exactly the focus of this paper. 
More specifically, the contributions of the paper are 
as follows: First, we develop a modular composite 
analytic performance model (PM) for investment 
decisions in the HRES, which is based on an 
extensible library of atomic models for HRES  
components, such as diesel generators, renewable 
sources such as solar and wind, power storage, 
contractual agreements with third parties, and 
programmable switches. The performance model 
expresses metrics of interest and feasibility 
constraints as a function of investment and operation 
decision variables. Decision variables include all 
investment choices and system operational controls 
over the time horizon, such as (1) power flows in the 
network as a whole, (2) specific controls for each 
physical network component, and (3) financial 
instruments such as contracts with external power 
providers. Feasibility constraints include capacity 
limitation of physical resources, power flow 
equilibrium, contractual terms, and satisfying power 
demand over the planning horizon. Metrics of interest 
include net present value of investment and operation 
over the planning horizon, or the amount of carbon 
dioxide emissions, or a combined measure of 
financial and environmental impact.  Second, we 
develop an HRES Decision Guidance System (DGS) 
based on the performance model. The HRES DGS is 

unique in that it allows extensibility of a model 
component library similar to simulation systems, yet 
achieves the quality of optimization results and 
computational time of mathematical programming 
solvers. This is achieved by using the  Decision 
Guidance Analytics Language (DGAL) and 
Management System (Brodsky and Wang, 2008), 
(Brodsky and Luo, 2015), (Nachawati et al., 2017). 
The HRES DGS performs simulation, optimization, 
and trade-off analysis to support investment 
decisions, based on an extensible Knowledge Base 
(KB) of reusable component models. Finally, we 
provide  a case study based on a real world example 
for a microgrid application, utilizing real data 
documented for a municipal electric utility, to 
demonstrate the applicability of the model and to 
derive actionable recommendations on investments 
on selected technologies, and the operations of the 
same technologies. 

The remainder of this paper is organized as 
follows: Section 2 describes an application example 
for an electric utility, to be used as a basis for the 
formalization; Section 3 presents the design of the 
formal mathematical model to be used for 
optimization;  Section 4 discusses the implementation 
of the model through the use of the DGS; Section 5 
examines a microgrid case study, using a combination 
of real data and realistic assumptions applicable to a 
municipal utility. Section 6 provides our conclusions 
and directions for further development of this 
research. 

2 MUNICIPAL ELECTRIC 
UTILITY EXAMPLE 

2.1 Overview 

To better visualize the application of the formal 
model, we will refer to a case study that constitutes a 
practical implementation of the approach. This case 
study was developed as part of a joint initiative 
between the Department of Computer Science and the 
School of Public Policy of George Mason University. 
The effort was driven towards identifying relevant 
planning problems of a municipal utility, and 
developing a solution model to address them. We 
believe this to be a good initial ground for developing 
our framework, which could be further expanded to 
allow variability and complexity, and better illustrate 
the flexibility of the model.  

Different municipalities in Virginia are associated 
in a central organization, which has a contract with a 
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third party power generation company, to purchase 
electric power. This contract is based on separate 
metering for each municipality, and drives charges on 
different elements, mainly peak power demand and 
actual energy consumption. A typical electric supply 
for a municipality is composed of a number of 
substations for its residential customers, and separate 
substations serving industrial customers. The 
municipality may own diesel generators located in 
these substations that are bid into the capacity pool. If 
the generation provider needs additional generation to 
meet their peak demand, it may dispatch the 
additional generation capacity, for a cost (if a unit is 
not available when dispatched, a penalty may be 
incurred). The generator capacity will not affect the 
peak demand for billing calculation.  

The peak demand charge is based on coincidental 
demand, i.e. the demand at the municipality level 
occurring at the time the generation provider 
identifies and communicates an overall peak that 
occurs for the month. Other peak demand times (non-
coincidental) are also observed, so if a non-
coincidental peak demand is above a certain ratio to 
the coincidental peak demand, the charge is adjusted 
to account for the non-coincidental peak demand. 
This way the municipal utility is not incentivized to 
shift the demand artificially to reduce the coincidental 
peak, and therefore reduce the overall cost. 

In addition, each municipality operates a program 
involving switches for water heaters and HVAC, 
which can control the consumers’ demand and 
therefore affect peak billing. When water heater 
switches are activated they delay the corresponding 
demand for a different time period. HVAC demand 
locks a certain temperature for a period of time. The 
municipality provides a monetary incentive (or a 
corresponding free service) for customers that agree 
to install the switches in their households. 

Some municipalities are examining different 
problems related to the investment and operation of 
some of the technologies. Regarding the generation, 
they have to decide whether to invest in additional 
diesel generators, to replace any of the existing ones 
either with new generators, or possibly to consider 
other technologies such as batteries or solar power 
instead, and determine the best schedule for 
dispatching those sources (above and beyond the 
requirements from the external generation provider).   

Regarding the switches, decisions are to be made 
as to the number of additional switches to install at its 
customers’ locations, and how best to operate them.  

We use some of these problems as a basis for our 
case study, and to provide a starting point for the 
development of our formal model.   

Our initial problem formulation is to recommend 
an optimal portfolio of investments between diesel 
generators, batteries, solar and household switches, as 
well as optimal operations within a given time 
horizon to minimize total costs of ownership (TCO) 
at present value. 

2.2 Problem Statement and Illustration 

We present here the problem statement and an 
intuitive description of a simple instantiation based on 
the formal model. The problem is stated as 
recommending an optimal portfolio of investments 
between different local technologies (e.g. diesel 
generators, batteries, and renewable sources) and 
household switches, as well as optimal operations to 
satisfy demand within a given time horizon to 
minimize total costs of ownership (TCO) at present 
value.   

 

Figure 2: Simplified HRES Problem Schematic. 

Based on this model, we developed an initial 
framework and component library to reflect the 
performance model for each of the components: 
generator, battery, households, and power generation 
contract. Each component generates metrics 
including the daily cash flows corresponding to 
operations and investment costs, and the power 
generated/consumed by time interval. A separate 
performance model consolidates the cash flows and 
the power for the microgrid across the individual 
components. The investment decision variables 
include buying/installing a diesel generator, 
buying/installing a battery, buying/installing a solar 
generation unit, and the number of new switches to be 
installed at the households. The operations decision 
variables include, for each time interval, the amount 
of energy generated by the diesel generator, the 
amount of charge/discharge of the battery, and the 
state of activation of the switches. The objective 
function is the minimization of the net present value 
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of the investment and operational costs for all 
components for the time horizon. 

3 FORMAL MODEL 

3.1 Notation for Optimization Problem 
Formulation 

We consider HRES investment optimization 
problems of the form: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐼𝑂 𝑃, 𝑉   
subject to: IC(P,V) (1)

where:  
● P is a vector of parameters to the problem that 

range over a domain Dp 
● 𝑉 is a vector of investment and operation 

decision variables that range over a domain Dv 
● 𝐼𝑂: 𝐷𝑝 𝐷𝑣 →  𝑅 is the investment objective 

function (such as net present cost) that gives a  
value in R for for any instance of (P,V) in the 
domain 𝐷𝑝 𝐷𝑣 

● 𝐼𝐶: 𝐷𝑝 𝐷𝑣 → 𝑇, 𝐹  is the investment 
constraint, expressed as a Boolean function, that 
gives, for any instance of (P,V) in the domain 
𝐷𝑝 𝐷𝑣,  T (true) if the constraint is met, or F 
(false) otherwise 

 

To support a range of HRES optimization problem 
for different objective functions IO and reusability of 
model components, we define an HRES analytic 
performance model  as a tuple P, V, Cmp, M, C   

where: 
 P, V are defined above 
 Cmp is a computation procedure that computes, 

given an input (P,V): 
 a vector of metrics M =  𝑀 ,...,𝑀  ) that 

contains the investment objective IO(P,V),  i.e., 
IO(P,V) = 𝑀  for  1  i  k. 

 the investment constraint C, i.e.,  IC(P,V) = C 
 

the HRES optimization problem is defined by the  
HRES analytic performance model P, V, Cmp, M, C   
and a metric 𝑀 in M designated as the optimization 
objective. 

3.2 HRES Analytic Performance 
Model 

We now define the elements of (P, V, Cmp, M, C) for 
the HRES formalization. 
 
 

3.2.1 Parameters P 

P includes generic parameters, as well as the 
parameters specific to each HRES component, i.e., 
we define P as the tuple:  

𝑃: 𝑇, 𝑇𝑜𝑡𝑀𝑜𝑛𝑡ℎ𝑠, 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ, 𝑀𝑜𝑛𝑡ℎ, 𝐼𝑅,  𝑃  

where: 
● T = is the length of the time horizon in days. We 

use the term time horizon TH = {1,…,T} to 
denote the set of days within the considered 
investment time horizon. 

● TotMonths = {1,..,endmonth} is the  set of 
calendar months corresponding to the contractual 
billing cycles, as well as other operational and 
leasing costs, where endmonth is the last 
calendar month within the time horizon. 

● IntervalLength is the duration of each time 
interval in hours (assume a fixed number of time 
intervals during a day) 

● Month is the set of time intervals {tm ,…, tn} 
where time tm is the first interval of the calendar 
month, and tn is the last interval of the calendar 
month  

● We compute  

numIntervals =  (2) 

● as the number of intervals in T 
● 𝐼𝑅 ∈ 0,1  is the market annual rate of return for 

investment 
● 𝑃 , 𝑖 1, … 𝑘, is the set of parameters specific to 

component i (see example of initial library of 
components in the Appendix) 

3.2.2 Variables V 

V includes decision variables specific to each 
component defined as:  
 

𝑉:  𝑉       
where: 
● 𝑉 , 𝑖 1, … 𝑘,is the set of decision variables 

specific to component i (see example in 
Appendix) 

3.2.3 Computations Cmp 

Cmp includes computations specific to each 
component, and general ones as defined below. 
 For every component i = 1,…,k, perform 
computations 𝐶𝑚𝑝 𝑃 , 𝑉 . Each computation 
𝐶𝑚𝑝 𝑃 , 𝑉  returns (𝐶𝐹 ,𝑘𝑤 ,𝐼𝐶  
where:  
 𝐶𝐹 : 𝑇𝐻 → 𝑅 is the cash flow of component i 

𝐶𝐹 (d), d∈ 𝐻𝑇 gives the dollar amount spent by 
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component I on day d (note that 𝐶𝐹 (d) 
0 represents net revenue) 

 𝑘𝑤 : 𝑇𝐻 → 𝑅, where 𝑘𝑤 𝑖𝑛𝑡 , 𝑖𝑛𝑡
1, … , 𝑛𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠, is the amount of power 
that component i produces at time interval int 
(note 𝑘𝑤 𝑖𝑛𝑡  0 represents power 
consumption) 

 𝐼𝐶 ∈ 𝑇, 𝐹  is the Boolean value representing 
satisfaction of feasibility constraints of 
component i 

 Compute: 𝐻𝑇 → 𝑅 , which is the integrated cash 
flow across all components. i.e. 

𝐶𝐹 𝑑  𝐶𝐹 𝑑  ∀ 𝑑 𝜖 𝑇𝐻 (3)

 Compute 𝑁𝑃𝑉 (Net Present Value) for the 
HRES: 

𝑁𝑃𝑉  
𝐶𝐹 𝑑

 1 𝐷𝑎𝑖𝑙𝑦𝐼𝑅
 (4)

Where 

𝐷𝑎𝑖𝑙𝑦𝐼𝑅   1 𝐼𝑅 / - 1 (5)

 Compute balance flow constraint BalFlow: 

𝐵𝑎𝑙𝐹𝑙𝑜𝑤 ⋀ 𝑘𝑤 𝑖𝑛𝑡 0  (6)

 Compute overall feasibility constraint:  

𝐼𝐶 𝐵𝑎𝑙𝐹𝑙𝑜𝑤 ⋀    ⋀ 𝐼𝐶          (7) 

3.2.4 Metrics M 

M are the metrics computed for each component, that 
are defined generically as the following tuple: 
 

𝑀:  𝐶𝐹 ,  𝑘𝑤 , 𝑁𝑃𝑉, 𝐶𝐹  
where: 
𝐶𝐹  , 𝑘𝑤 , 𝑁𝑃𝑉, 𝐶𝐹 are obtained as computed by Cmp  
as in section 3.2.3 

3.2.5 Investment Constraints IC 

IC includes general constraints, as well as the 
constraints specific to each component defined as the 
tuple:  

𝐼𝐶:  𝐼𝐶 , 𝐼𝐶, 𝐵𝑎𝑙𝐹𝑙𝑜𝑤  
where 

● 𝐼𝐶  , 𝐼𝐶, 𝐵𝑎𝑙𝐹𝑙𝑜𝑤 are obtained as computed by Cmp 
as in section 3.2.3 

3.2.6 Component Model 

In the appendix, we demonstrate how we apply our 
general model to our initial library of components, 

constituted with initial object that supports the 
example described in the prior section. 

4 DGS IMPLEMENTATION 
USING DGAL 

An initial version of this model was developed using 
the language JSoniq, a data manipulation language 
over the JSON data format. To perform optimization, 
we use Unity DGMS and DGAL, which machine-
generate an MILP optimization problem formulation 
in the AMPL equational language and invoke the  
Bonmin solver. For this version, we utilized our 
initial library of components, as described in the 
appendix, to develop the applicable routines.  Figure 
3 illustrates the high-level DGMS/ DGAL 
framework. 

A separate module was designed for each 
component: diesel generator, battery, solar, 
household demand (with or without water heater 
switches), and generation contract for energy 
provision. Each module is independent of the others, 
and includes the calculation of the relevant metrics 
for each component for the planning time horizon (i.e. 
power consumed/produced by time interval, and cash 
flows for operations costs, investment amount), and 
the binary variable of constraint, indicating if the 
constraints for the component were met. An 
investment/integration model consolidates the 
metrics, validating for example that all power 
supplies and demands match for each time interval, 
and calculating the aggregated cash flows, the 
aggregated investment values, and the net present 
value for the overall network.   

The code is designed so that the future addition of 
new components (e.g. solar panels to be installed at 
the households, different generator models, wind 
farms, etc.) will not affect the individual components 
already defined.  

 

Figure 3: DGAL Framework. 
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5 CASE STUDY APPLICATION 

For the initial, simplified scenario in our case study, 
we follow the example described in Section 2, 
utilizing a combination of real data from a 
municipality in Virginia (for example daily energy 
consumption during a calendar year and peak demand 
events), and realistic synthetic data (for elements not 
currently in place such as investment and 
maintenance costs for batteries and renewable 
sources) for twelve months of operation to 
recommend optimal combination of investments and 
operations of a diesel generator, a battery, a solar 
source, and water heater switches. Our initial test 
focuses on daily demand data for an entire year in one 
particular area, based on the billing and historical 
consumption data gathered.  

The investment and operational costs associated 
with each technology were based on studies by third 
party companies as evaluation of possible 
replacement of current generators in place. Other data 
such as fuel costs and efficiency were based on 
available market data. Information for generation 
prices were obtained from billing and contractual 
data. 

The core methodology for this application 
consisted in collecting the data for each of the 
parameters over the time horizon, based on the time 
interval being used, and transforming the data in a 
spreadsheet to the format required by the model. The 
data is then consolidated in a JSON format that is 
used as the input file for the model.   

The model had a total of 1100 decision variables, 
including the purchase decisions of each component, 
the power per day generated or consumed by 
component for the twelve months, the status of the 
switches, and the upper bounds of peak power and 
transmission. For this size, it took a little over 8 
minutes to achieve the optimal values  for each 
variable for minimizing the Total Cost of Ownership 
(TCO) including investment and operations for the 
whole system, when running on a Toshiba Satellite 
S55 Laptop, with an Intel i7 2.40 GHz processor and 
12 GB RAM.  

As expected, the recommendations for purchase 
and daily operations for each component were 
directly affected by the comparative parameters 
between the components, e.g. the 
purchase/installation cost for each component, the 
maintenance costs, fuel costs (for diesel generator), 
billing rates for the external utility, demand patterns 
per month and peaks, etc. Consequently any changes 
in the variables associated to one of the components 
potentially affected the operations and the purchase 
decisions of all the other components as well.  

Although we did not establish a direct comparison 
of our results to a more traditional investment model 

that doesn’t account for the short term operations, 
note that,  from the sensitivity analysis,  the impact of 
short term parameters and variables have an 
accumulated effect on the investment decision. 
Therefore, this indicates (pending future detailed 
comparisons of results) that the integration of the 
short term operational decisions represent a more 
accurate method for investment decisions.  

We also note that  the solution is modular, in that 
we can at any point remove or add individual 
components/resources, without any need to modify 
the remainder of the model, therefore providing 
scalability to increase the model to address more 
complex scenarios with higher variability of 
resources. Likewise, in our simplified example we 
treated each component as an individual resource, not 
accounting for the combined value of, for example, 
batteries and solar/renewable sources. The model can 
accommodate this factor by either defining joint 
constraints applying to the solar generation and the 
battery, or alternatively creating a composite element 
defined by the two individual components with their 
combined performance characteristics. 

Finally, the model can account to changes in our 
objective function to include different metrics such as 
the total emissions of the system as a whole (driven 
as a function of the total power generated by 
source/component), or a balanced combination of 
TCO and emission. In such a scenario, the model 
would favor clean energy solutions such as batteries 
and solar at the expense of diesel generators. 

6 CONCLUSIONS AND FUTURE 
DIRECTIONS 

In this work, we developed a formal mathematical 
formulation for a modular, extensible analytic 
performance model for investment decisions in the 
HRES, expressing metrics of interest and feasibility 
constraints as a function of investment and operation 
decision variables. We also developed an HRES 
Decision Guidance System (DGS) to support the 
formal performance model, relying on Decision 
Guidance Analytics Language (DGAL).  As part of 
the HRES DGS, we created an extensible Knowledge 
Base (KB) of reusable Performance Models based on 
the different energy resources associated with a 
municipal utility example. Finally, we provided  a 
case study based on this example for a microgrid 
application, utilizing a combination of real  and 
synthetic data, to demonstrate the applicability of the 
model to derive actionable recommendations on 
investments on selected technologies. 
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There are several potential ways to expand the 
model. One promising addition is to add elements of 
complexity on the customer level, including 
stochasticity of demand, net-metering models (where 
customers produce solar energy for own consumption 
and charge back excess to utility), and dynamic 
pricing mechanism.  

Another aspect of expansion would be to support 
decisions that go beyond the operations of the 
network, and to include infrastructure/ capital 
investment recommendations to achieve long term 
goals, based on Total Cost of Ownership.  

A promising potential for the model is to define 
multiple stakeholders, for example adding regulators, 
consumers, and other utilities, each with their own 
specific objectives, translated into Key Performance 
Indicators (KPIs), which would include a variety of 
goals (including environmental impact, total cost of 
ownership, system reliability, etc.). The problem 
could be set as what is known as Bi-level 
Optimization, in which a ‘leader’ decision maker (in 
this case a regulator) who has its defined KPIs,  has 
to define the optimal portfolio of policies (e.g. tax 
incentives, emissions regulations),  to affect utilities 
and consumers behavior, which in turn optimize their 
own KPIs (potentially different from the leader).  
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APPENDIX 

Formal Model for Initial Library of Components. 
 

To exemplify how the individual components in the 
library are modelled, we show here the formal model 
for a Diesel Generator. A similar methodology is 
applied to batteries, solar panels, households, and 
external generation contracts. 
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Based on our general model, we define the Fuel-
Based Generators Structure tuple as: 
 

𝐺𝑆: 𝑃 , 𝑉 , 𝐶𝑚𝑝 , 𝑀 , 𝐼𝐶   
 

and we decompose each element of the tuple: 
 

𝑃  = (G, fPr, gCap, gEff, NGC, GLC, GMC, 
availG) as generators parameters 
where: 
 G is the set of generator ids;  
 𝑓𝑃𝑟:  𝐺 1, … . , 𝑛𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 → 𝑅 is the 

price function that for each generator g 𝜖 𝐺 and 
time interval 𝑡 ∈ 1, … , 𝑛𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 , gives 
the expected fuel (Diesel) price fPr(g,t) in 
$/Gallon 

 𝑔𝐶𝑎𝑝:  𝐺 → 𝑅 is a function that gives for each 
generator g 𝜖 𝐺, the maximal load of generation 
gCap(g)  in kw 

 𝑔𝐸𝑓𝑓: 𝐺 → 𝑅 is the function that gives for each 
generator g 𝜖 𝐺 , the efficiency gEff(g) in 
Gallon/kwh 

 NGC: 𝐺 𝑇𝐻 → 𝑅 is the cost cash flow 
function associated with a new generator (either 
through one-time disbursement at the beginning, 
or through leasing), that gives for each generator 
g 𝜖 𝐺 and day 𝑑 𝜖 𝑇𝐻, the investment daily cost 
NGC(g,t) 

 GLC: 𝐺 → 𝑅 is the generator Lifecycle 
function, that gives for each generator g 𝜖 𝐺 the 
expected total life GLC(g) in years 

 GMC:G → 𝑅 is the monthly maintenance cost 
function that gives, for each generator g 𝜖 𝐺 , the 
estimated monthly maintenance cost GMC(g) for 
the time horizon 

 availG: G→ 0,1  𝑖s the binary (flag) function 
that indicates if a diesel generator g 𝜖 𝐺 was 
present at the beginning of the planning horizon 

𝑉  = (iG, kw) as Generators variables,  
where: 
 iG: G→ 0,1  is the binary (flag) function that 

indicates if a new generator g 𝜖 𝐺 is being 
purchased 

 kw: 𝐺 1, … , 𝑛𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 → 𝑅   is the 
decision variable matrix of elements kw[g, t], 
where for every time interval t 
𝜖 1, … . , 𝑛𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠 , kw[g,t]  gives the 
amount of kilowatts generated  by the diesel 
generator g 𝜖 𝐺 

𝐶𝑚𝑝  corresponds to all the computations 
performed for the generator, to obtain the applicable 
metrics and constraints, given the parameters and 
variables.  

The metrics are given by  𝑀 : 𝑘𝑤 , 𝐶𝐹  
where 𝑘𝑤  is already determined by the decision 
variable kw[g, t].  
𝐶𝐹   is obtained by calculating the operational and 
investment costs associated with the purchase and 
operation of the generator at each time interval, and 
translating into cash flow entries on a daily basis. 
 We assume only output flows from a Diesel 

Power Generator. The cost of operating a power 
generator (if it was available or purchased at the 
start of the planning period) equals the total fuel 
cost and the monthly maintenance cost.  

 We compute the Fuel Cost for  ∀𝑔𝜖 𝐺, 𝑡 𝜖 𝑇, 
𝐺𝑒𝑛𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑔, 𝑡 , based on the fuel unit cost 
(Dollars per Gallon), the generator efficiency 
(Gallon per kwh), and the amount of output flow 
in kwh during the given time interval: 

𝐺𝑒𝑛𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑔, 𝑡 𝑓𝑃𝑅 𝑔, 𝑡   𝑔𝐸𝑓𝑓 𝑔  
𝑘𝑤 𝑔, 𝑡   𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ (8)

 We compute GenOpCost g,t  ,  the total 
Operational Cost for the Power generator g at 
time t, as: 

GenOpCost g,t   𝐺𝑒𝑛𝐹𝑢𝑒𝑙𝐶𝑜𝑠𝑡 𝑔, 𝑡
𝐺𝑀𝐶 𝑔 𝑎𝑣𝑎𝑖𝑙𝐺 𝑔   𝑖𝐺 𝑔  (9)

 We compute the Investment cost for a new 
generator GenInvestmentCost[g,t] , ased on the 
given cash expenditures, and on the purchase 
decision: 
GenInvestmentCost[g,t] = 𝑁𝐺𝐶 𝑔, 𝑑     𝑖𝐺 𝑔  (10)

 

For 𝐼𝐶 , we consider the constraints for total power 
output,  and the condition to purchase a new 
generator:  

 

 We compute the constraint for the power output 
based on the generator’s maximal operating 
capacity: 

𝐼𝐶 :  kw g,t    gCap 𝑔  
(11)

∀𝑔𝜖 𝐺, 𝑡𝜖 1, … , 𝑁𝑢𝑚𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠  

● We compute the constraint for the purchase of a 
new generator based on the consideration that we will 
only buy a new generator g if it was not yet available 
at the start of the planning horizon, i.e. 

𝐼𝐶 :  availB 𝑔  𝑖𝐺 𝑔    1   
(12)

∀𝑔𝜖 𝐺  

● We compute the overall constraint for the 
generator as: 

𝐼𝐶  𝐼𝐶  Λ 𝐼𝐶  (13)
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