Decision Support for Bundle Shipment Choices: Orthogonal Two-dimensional Bin Packing with Practical Constraints

Yizi Zhou ${ }^{1} \oplus^{\text {a }}$, Jiyin Liu ${ }^{2} \mathbb{O}^{\text {b }}$, Rupal Mandania ${ }^{2} \mathbb{O}^{\text {c }}$, Shuyang Li^{1}, Kai Chen ${ }^{1}$ and Rongjun Xu^{1}
${ }^{l}$ Huawei Technologies Co Ltd, Bantian Huawei Base, Shenzhen, China
${ }^{2}$ School of Business and Economics, Loughborough University, Loughborough, U.K.

Keywords: Orthogonal 2D-BPP, LTL Shipping, FTL Shipping, Mixed-integer Linear Programming.
Abstract: In this paper, we study a real life application of an orthogonal two dimensional bin packing problem (2DBPP) with a small assortment of different shapes of bins and items. A telecommunication equipment company ships its products to customers several times daily by trucks and it currently uses the less-than-truckload (LTL) shipping option which is priced as unit price per volume times the total volume of products. However, depending on scale of products to be shipped, full-truckload (FTL) shipping which is priced as a single price per truck may be cheaper. In this paper we aim to help the company to decide on the delivery choice as well as on how to pack the truck optimally when FTL shipping is selected. We model the problem as a variant of an orthogonal 2D-BPP using mixed-integer linear programming (MIP) with the objective to minimise the total cost of delivery. Practical conditions influencing the feasibility of packing patterns are also considered. Practical guidance such as those on some modelling techniques and the application of the model, are applied to enhance the solving efficiency. The problems are solved by commercial solver CPLEX to optimality up to 34 pallets within an acceptable time. For lager problems, we adopt an approach to combine same items into larger rectangles and then pack them. This increases the solvability to 154 pallets. On average, our method help the company save 26% shipping cost.

1 INTRODUCTION

We study a problem where a telecommunication equipment company sends products from warehouses to customer sites in mainland China once a day by truck. There are two types of truck delivery service: less-than-truckload (LTL) shipping and fulltruckload (FTL) shipping, as illustrated in Figure 1. LTL is priced as unit price multiplied by total volume of products shipped and normally the products are packed with products of other companies. FTL is priced as a single price per truck. When there is a small amount of products, it is cheaper to use LTL shipping. However, when there is a large amount of products, the company should choose FTL shipping. The service level agreement (SLA) of FTL is also faster than FTL. For FTL shipping, the company need to load the products themselves. This part of cost is internal and negligible. The decisions to make are on
the type of shipping to choose, the number of trucks needed for FTL and the loading sequence and positions of products onto each truck. We modelled the problem as a variant of an orthogonal 2D-BPP using mixed-integer linear programming (MIP) with the objective to minimise the total cost of delivery. It combines two discrete optimization problems: Bin packing and optimal bundle shipment decisions. It is therefore modelled as an integrated mixed integer programing model (MIP) with two sets of constraints: one for bin packing and the other for bundle shipment cost computation. The products to be packed are fragile and cannot be stacked, which means there is only one layer of products inside a truck. Practical constraints are also needed, for example, no more than two customers can be loaded onto the same truck, some customers must be delivered later on the route as the unloading time could be long for those customers due to warehouse service capability, and

[^0]products for the same customers must be placed together for unloading convenience. We solve the problems using CPLEX solver. Experiments are carried out to demonstrate the performance of the new model. A 26% of reduction in delivery cost is achieved by applying this model in real life cases. Also, we provide some practical guidance on how to reformulate the problem with care to improve the solving efficiency. We solve the reformulated model on the same numerical examples and reduced the computational time to $1 / 100 \%$ of before which helps the model to be implemented in real life business.

The paper is organized as follows. In section 2, literature on the 2D-BPP formulation, typology, practical applications, and related solution algorithms are reviewed. Section 3 presents the mathematical models for our problem and discusses how to pick up an appropriate value for the number of trucks to be used in the model when infinitely many are available. In section 4 , the proposed mathematical model is tested through numerical experiments using general purpose MIP solver. A 26% saving in delivery cost is achieved on real life instances with this model. In section 5 , we discuss how to improve the solving efficiency by choosing fixed charges in the MIP formulation, reducing symmetry and carefully implementing the MIP model for large cases. We show how careful formulation for a mixed integer program (MIP) can lead to a solution of the mathematical model in a reasonable amount of time, while some formulations of the same problem can make the model practically unsolvable. The reduction in computational time is critical for practical implementation. Finally, conclusions and future research directions are provided in section 6.

Figure 1: Illustration of FTL Shipping vs. LTL Shipping.

2 LITERATURE REVIEW

The basic BPP involves two sets, one set of bins, with same size or different sizes, and one set of items to be
packed normally with different sizes. All items and bins have fixed rectangular shapes. The problem is to place the items within the bins in order to optimize some functions, such as minimise the bins used, minimise cost, or maximise the items packed, subject to some physical or business constraints. Commonly considered physical constraints are: items cannot overlap (share the same region in the truck) if they are assigned to the same truck and any item must be completely located within a bin. The number of dimensions involved define the problem into 2D and 3D BPP referring to two-dimensional and threedimensional problems. As the pallets contains valuable objects that cannot be stacked so we simplify the problem into 2D-BPP and are only interested in the arrangement of the pallets on a plane (the floor of the truck). Pallets can be rotated by 90°, but cannot be flipped over and their sides must be parallel to the sides of the truck (orthogonal packing). Allowing rotation can improve the number of pallets packed into a single bin by two times (Martins, 2003).

According to Dyckhoff (1990)'s typology classification of this problem, our problem's typology is:

- Kind of Assignment: a selection of trucks and all pallets
- Assortment: the number of different shapes of pallets and truck. We considered a small assortment of different shapes for both pallets and trucks. Many pallets of relatively few different shapes and sizes.
- Availability: the constraints on the available quantities for pallets and bins. We consider no restrictions on availability of trucks.
- Pattern restrictions: no pattern restrictions accepting non-guillotine cut patterns vs connectivity of pallets of the same type.
- Status of knowledge: Full knowledge off-line algorithm.
Scheithauer and Sommerweiß (1998) listed some practical conditions influencing the feasibility of packing, these are the maximum load constraint, which is the maximum weigh of items that a truck can carry; the placement constraint restrict that some items, because of their density, weight, or contents may not be placed on top of other items. The splitting constraints mean that some items cannot be split onto different trucks. Some items of the same type must be placed side by side (connectivity) and finally for stability purpose, large and heavy item must be placed below small and light item. As the products shipped in our problem are lightweight cargo but cannot be stacked, the maximum load and placement constraints need not considered.

A 2D-BPP instance consists of a list N of rectangular items with dimensions $\left(l_{i}, w_{i}\right)$ for all $i \in$ N and a list K of bins with dimensions $\left(L_{k}, W_{k}\right)$ for all $k \in K$ and $\operatorname{cost} p_{k}$ for all $k \in K$. It is known as a strongly NP-hard problem and is also in practice very difficult to solve (Garey and Johnson, 1979; Martello and Vigo, 1998). Solution algorithms for 2D-BPP can be classified into three types, exact algorithms, heuristics and metaheuristics, with many literatures devoted to the improvement on lower bounds provided by heuristics (Lodi, 2002). Lodi (2017) proposed a heuristic algorithm for 2D-BPP with no rotation allowed based on enumeration tree. Each level of the tree represents the current content for the p th bin in the solution. In particular, each bin is filled by applying a packing strategy that packs one item at a time according to a given selection rule and guillotine split rule. The selection rule determines the next item to pack (and its position in the bin), whereas the guillotine split rule is used to ensure the produced pattern being guillotinable. The tree is pruned using a depth-first strategy. This heuristic can solve many benchmark problems to optimality and yield near optimal solution for other cases. Cui (2017) presented a construction heuristic to solve the 2D-BPP problem in three phases. The first phase generates triple-block patterns, the second phase uses some of the patterns to construct solutions, and the third phase solves an ILP problem to improve the solutions. The gap to LB is reduced by 30% compared to some best known algorithms on some test instances. In this paper, we also implement n-block patterns to speed up the solution for our MIP model. Buljubašić and Vasquez (2016) proposed a tabu search algorithm with a consistent neighborhood search approach to solve the 1D-BPP and 2D-VPP problems and yield best-known solutions for all benchmark test instances they used. The bins available are infinite, they start with $m=$ $U B-1$ bins, where UB is an upper bound obtained by using a variant of the classical First Fit heuristic. LB and UB will be input for our implementation of the mathematical model presented in this paper. Pisinger and Sigurd (2007) studied an exact algorithm branch-and-price-and-cut for 2D-BPP. The master problem is formulated as a set covering problem where each set represents a feasible packing. All feasible packings (sets) could be large and the model will have much more columns than rows (variables than constraints), so column generation is applied to gradually add sets. Each restricted master problem is solved using dual simplex method. In each iteration of column generation, a pricing problem is solved by finding the set with smallest reduced cost to be added. Problems with pp to $\mathrm{n}=100$ items are solved to
optimality through this algorithm. Polyakovskiy and M'Hallah (2020) combined two difficult discrete optimisation problems: BPP and machine scheduling and model the problem as an integrated constraint program with two sets of constraints, bin packing feasibility and single machine scheduling constraints respectively. They also proposed two decompositions approaches, a master problem is a relaxation of BPP and then validate the solutions by row generations. Their results show that an integrated model outperforms the decomposition approaches. We will study an integrated model in this paper.

To the best of our knowledge, this paper is the first to consider the combined problem of bundle shipment or shipment selections and 2D-BPP with rotations. We introduce a new mathematical formulation for the integrated problem with practical constraints and discuss how to improve the solving efficiency from a model formulation point of view. The model is currently being used by a large telecommunication service company and it has helped the company to save shipment cost.

3 MATHEMATICAL MODEL

There are normally three different problem representations for BPP: coordinates (Christofides and Whitlock, 1977), sequence pairs (Murata et al., 1995) and graphs (Lins et al., 2002). We use the first one as different graph representations can lead to the same arrangement adding complexity for search algorithms. We need to decide on: partition $\left(f_{i k}\right)$, order position $\left(x_{i}, y_{i}\right)$, orientation ($l x_{i}$) and relative position $\left(l e_{i j}, b_{i j}, l e_{j i}, b_{j i}\right)$. The detailed definition of notation is shown in section 3.1. Although we assume the number of trucks is unlimited, the mathematical model needs an initial value of the number of each types of trucks. We could use a sufficiently large number of trucks but it will lead to much larger model than necessary and longer computational times. So we will use the lower bound generated from literature of heuristics as the starting point for the number of trucks available for the math model.

There is an obvious lower bound on the number of trucks, which is the sum of area of squares divided by the area of truck floor: $L B_{0}=\left[\sum_{i \in N} w_{i} l_{i} / W L\right]$. In many cases, $L B_{0}$ can be inadequate for an effective use for the exact algorithm. Several better bounds are provided by Martello and Vigo (1998). In this paper, we will use $L B_{0}$ for simplicity reason.

2.1 Problem Representation

A problem solution is represented by coordinates of a pallet left bottom corner, relative positions and rotations. As only one layer of pallets can be packed into the truck, the truck loading result can be shown on a two dimensional graph (top view) as shown in Figure 2. We can build a Cartesian coordinate system around the truck container where the origin is set to be the bottom left corner of the truck. The position of each pallet packed is also represented by the position of its bottom left corner $\left(x_{i}, y_{i}\right)$. As rotation is allowed, the two rectangular shown in Figure 2 are identical, and the right one is the rotated version of the original pallet (only 90° is allowed). To make sure any two pallets do not overlap, they must not overlap in x axis (one on the left of another in the graph), or not overlap in y axis (one below another in the graph), or not overlap in both axis.
$Z_{k}=\left\{\begin{array}{l}1, \text { if truck } k \text { is used; } \\ 0, \quad \text { otherwise; }\end{array}\right.$
$l x_{i}= \begin{cases}1, \text { if pallet } i & \text { is oriented inline with the truck; } \\ 0, & \text { otherwise (rotated); }\end{cases}$

Objective:

Min: $\sum_{k \in K} Z_{k} p f_{k}+\sum_{i \in N} p l_{i} v o l_{i}\left(1-\sum_{k \in K} f_{i k}\right)$
s.t.

$$
\begin{gather*}
f_{i k} \leq Z_{k}, \forall i \in N, k \in K \tag{1}\\
w_{i} l x_{i}+l_{i}\left(1-l x_{i}\right)+y_{i}-y_{j} \\
\leq M\left(1-b_{i j}\right), \forall i, j \in N, i \tag{2}\\
\neq j \\
l_{i} l x_{i}+w_{i}\left(1-l x_{i}\right)+x_{i}-x_{j} \\
\leq M\left(1-l e_{i j}\right), \forall i, j \in N, i \tag{3}\\
\neq j \\
\sum_{k \in K} f_{i k} \leq 1, \forall i \in N \tag{4}\\
y_{i}+w_{i} l x_{i}+l_{i}\left(1-l x_{i}\right) \\
\leq W_{k}+M\left(1-f_{i k}\right), \forall i \tag{5}\\
\in N, k \in K \\
x_{i}+l_{i} l x_{i}+w_{i}\left(1-l x_{i}\right) \\
 \tag{6}\\
\leq L_{k}+M\left(1-f_{i k}\right), \forall i \\
\in N, k \in K \\
b_{i j}+b_{j i}+l e_{i j}+l e_{j i}+\left(2-f_{i k}-f_{j k}\right) \tag{7}\\
\geq 1, \forall i, j \in N, i<j, \forall k
\end{gather*}
$$

$$
\in K
$$

$$
\begin{equation*}
M\left(2-f_{i k}-f_{m k}\right)+f_{j k} \geq 1, \quad \forall i, j, m \in \tag{8}
\end{equation*}
$$

$$
N, i \neq j \neq m, c_{i}=c_{j} \neq c_{m}, \forall k \in K
$$

$$
\begin{equation*}
M\left(2-f_{i k}-f_{j k}\right)+x_{j} \geq x_{i}, \forall i \in N s, j \tag{9}
\end{equation*}
$$

$$
\in N n, \forall k \in K
$$

$$
\begin{equation*}
f_{i k}+f_{j k}+f_{m k} \leq 2, \forall i, j, m \in N, c_{i} \neq c_{j} \tag{10}
\end{equation*}
$$

$$
\neq c_{m}, \forall k \in K
$$

$$
\begin{gather*}
\sum_{k \in K} f_{i k}=\sum_{k \in K} f_{j k}, \forall i, j \in N, c_{i}=c_{j} \tag{11}\\
x_{i} \geq 0, y_{i} \geq 0, \forall i, j \in N \tag{12}
\end{gather*}
$$

Variables $f_{i k}, l e_{i j}, b_{i j}, Z_{k}, l x_{i}$ and are all binary variables.

The objective of the model is to minimise the total delivery cost of shipping all the pallets, with $\sum_{k \in K} Z_{k} p f_{k}$ indicating the total cost of FTL and $\sum_{i \in N} p l_{i} v o l_{i}\left(1-\sum_{k \in K} f_{i k}\right)$ representing the cost of LTL. Constraints (1) show that once a pallet is assigned to a truck $\left(f_{i k}=1\right)$ then this truck is in use ($Z_{k}=1$). Constraints (2) and (3) mean that any two pallets cannot overlap (share the same region in the truck) if they are assigned to the same truck. Constraints (4) demonstrate that all pallets must be assigned to at most one truck or to LTL shipping. Constraints (5) and (6) indicate that any pallet must be completely located within a truck when it is
assigned to that truck. Constraints (7) avoid overlapping between pallets. Constraints (8) implement the non-splitting conditions, meaning if the pallets of one customer can fit into one truck, we should not split the loading into two trucks. Constraints (9) show the placement requirement of the real life situation, the pallets of telecommunication customers must be unloaded after other customers and other customers' pallets will be placed near the door of the truck for mixed load. Constraints (10) indicates that a truck can only be loaded with pallets of up to two different customers as a truck can only ship to two different places in a single day. Constraints (11) show that pallets of the same customer can only select one shipping options either LTL or FTL.

4 NUMERICAL EXPERIMENTS

Ten test instances are selected from real life shipping data to verify the mathematical model and comparing the results with historical shipping (LTL). We solved the ten test cases using a general purpose commercial solver CPLEX, which implements a powerful branch and bound algorithm. The numerical experiments are carried out on a PC with 64-bit Windows operating system, eight GigaBytes of RAM and an Intel i7 processor with quad-cores. The computational results are shown in Table 1, where ID is the instance id, N is the number of customers involved, Pallets are the number of pallets to be shipped and before, after indicate the shipping cost.

Table 1: CPLEX results of the original model.

ID	N	Pallets	Before	After	Time(s)
1	7	22	10156	7361	17.47
2	5	23	7934	5593	MLR
3	5	18	7166	6072	3.05
4	2	22	7890	5398	MLR
5	2	32	11090	9805	MLR
6	7	23	8295	6065	MLR
7	7	33	10012	9898	18.25
8	2	14	4638	3100	MLR
9	2	8	3054	2600	0.18
10	3	4	1461	1461	0.16
SUM			$\mathbf{7 1 7 0 3}$	$\mathbf{5 7 3 5 5}$	103.91

For the current model formulation, we solved 5 out of 10 instances to optimality within 200s time limit. The average computation time is 103.91 s . The reduction in delivery cost is 20%. The reduction in cost is promising for the business, but the computational time is a bit long for daily business, as
we need to save enough time for the operations and actual loading. The row in the table labelled 'MLR' means those instances haven't been solved to optimality within the time limit and the after cost for those cost are the current best feasible solution found.

4.1 Example

There are three different trucks available with different costs. The truck information is shown in Table 2.

Table 2: Trucks Information.

ID	Length	Width	Price
10 T	9.6	2.4	2600
18 T	13.5	2.5	4100
20 T	16.5	2.5	4300

We have 22 pallets to be packed and 7 different customers. Three customers are special customers that needed to be drop off later on route. The packing results are shown in Table 3. CID is the customer ID, PID is the pallet ID, l, w, vol are the length, width and volume of the pallets, TP is the indicator of whether the customer is telecommunication customer and the Sol column is the solution.

Table 3: Example One Input Data.

CID	PID	1	w	vol	TP	Sol
1	0	1.65	1.15	4.07	YES	LTL
2	1	1.91	1.11	2.79	NO	$10 \mathrm{~T}-1$
2	2	1.91	1.11	5.29	NO	$10 \mathrm{~T}-1$
2	3	1.91	1.11	5.29	NO	$10 \mathrm{~T}-1$
2	4	1.91	1.11	5.29	NO	$10 \mathrm{~T}-1$
3	5	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
3	6	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
3	7	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
3	8	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
3	9	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
3	10	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
4	11	1.91	1.11	5.29	YES	LTL
5	12	1.91	1.11	1.42	NO	$10 \mathrm{~T}-1$
5	13	1.91	1.11	5.29	NO	$10 \mathrm{~T}-1$
5	14	1.91	1.11	5.29	NO	$10 \mathrm{~T}-1$
5	15	1.91	1.11	5.29	NO	$10 \mathrm{~T}-1$
6	16	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
6	17	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
6	18	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
6	19	1.91	1.11	5.29	NO	$10 \mathrm{~T}-2$
7	20	1.41	1.15	3.04	YES	LTL
7	21	1.41	1.15	3.04	YES	LTL

The visualizations of the packing results are shown in Figure 3 and Figure 4. We can see that the optimal solution is a mix of LTL and FTL shipping.

The optimal cost is 7361.64 while the original shipping with all pallets shipped LTL is 10156.95 . A 28% reduction in delivery cost is achieved in this instance within 7.2 seconds.

Figure 3: Packing Result of Example (10T Truck No.1).

Figure 4: Packing Result of Example (10T Truck No.2).

5 ENHANCE SOLVING EFFICIENCY

A careful formulation for a mixed integer program (MIP) can lead to a solution of the mathematical model in a reasonable amount of time, while some formulations of the same problem can make the model practically unsolvable. The key principle of a better formulation of a MIP model is to make the feasible region of LP relaxation model as tight as possible even if this will make the LP model harder to solve. This topic is covered in various text books (Nemhauser and Wolsey, 1988; Williams, 1990). In this paper, we consider improving the solving efficiency by tailored fixed charges in the MIP, reducing symmetry and a careful implementation of the MIP model for large cases.

5.1 Tailored Big M

To model a fixed charge-a cost that is incurred once when a process is used, but is not proportional to the level of the process-a "Big M " formulation is usually used. We could choose a sufficiently large value for M , but there are some drawbacks when solve the LP relaxation of the MIP problem. If the relaxation objective value is too far from the integer objective value; the branching algorithm will try to force $f_{i k}$ to 0 first, because the LP solution value of $f_{i k}$ is already close to 0 . So we need to choose M carefully; big enough for the bounding purpose but not too large. The values of M in constraints (2), (3),
(5), (6), (8) and (9) are $\max \left(W_{k}\right), \max \left(L_{k}\right)$, $\max \left(W_{k}\right), \max \left(L_{k}\right), 2$ and $\max \left(L_{k}\right)$ respectively.

5.2 Symmetry in Trucks

$$
\begin{equation*}
Z_{k 1} \geq Z_{k 2}, \forall k 1<k 2 \tag{13}
\end{equation*}
$$

If $k 1$ and $k 2$ are the same type (same dimension) of trucks, we would select $k l$ first to break the symmetry/tie in trucks. Because select $k 1$ and $k 2$ will yield the same objective value and create ties in the candidate solutions.

5.3 Symmetry in Pallets

$l_{i j}+b_{i j}+\left(2-f_{i k}-f_{j k}\right) \geq 1, \forall i<$ j if i, j are same type of pallets

If pallet i and pallet j are identical, we would place pallet j either below pallet i or to the left of pallet i to break the symmetry. Also, the routing sequence conditions constraints (9) also help to reduce symmetry in pallets.

5.4 Sequence Pairs Restriction

To make sure any two pallets do not overlap, they must not overlap in x axis (one on the left of another in the graph), or not overlap in y axis (one below another in the graph), or not overlap in both axis. Based on this information, we can add two other constraints to obtain a tighter LP relaxation of the MIP and make the feasible region described by the linear programming relaxation as close as possible to the feasible region that contains only feasible integer solutions.

$$
\begin{gather*}
l_{i j}+l_{j i}+\left(f_{i k}+f_{j k}-2\right) \leq 1, \forall i<j \tag{15}\\
b_{i j}+b_{j i}+\left(f_{i k}+f_{j k}-2\right) \leq 1, \forall i<j \tag{16}
\end{gather*}
$$

Constraints (15) and (16) void the other eight infeasible sequence pairs, meaning the relative position of two pallets cannot be left and right (top and bottom) at the same time.

5.5 Pre-grouped Pallets

In this problem, we only consider a small assortment of pallets size. Pallets of the same type can be prepacked into a lager item and significantly reduce the problem sizes. An example was shown in Table 4.

Table 4: A data example after pallets combination.

CID	PID	l	w	vol
1	c 0	4.95	2.3	24.36
1	c 1	4.95	2.3	24.36
2	c 2	4.95	2.3	24.36
2	c 3	4.95	2.3	24.36
2	c 4	4.95	2.3	24.36
2	7	1.65	0.4	0.75
2	11	1.65	0.4	0.75

c0-c4 are prepacked pallets set as shown in Figure 5. The original problem is unsolvable within 200s, and the modified problem is solved in 0.34 s . The objective value is 7200 , which is a 35.13% saving in delivery cost than before.

Figure 5: 6-blocks Pattern (Pre-combined Pallets).
We rerun the modified model with all techniques proposed in section 5.1 - section 5.5 for the ten test cases in Table 1 and the new results are shown in Table 5.

Table 5: CPLEX results of the modified model.

ID	c_{i}	Pallets	Before	After	Time(s)
1	7	22	10156	7361	3.57
2	5	23	7934	5593	0.84
3	5	18	7166	6072	4.05
4	2	22	7890	5898	0.9
5	2	32	11090	7200	0.34
6	7	23	8295	5707	0.91
7	7	33	10012	9898	1.69
8	2	14	4638	3100	0.58
9	2	8	3054	2600	0.18
10	3	4	1461	1461	0.16
SUM			$\mathbf{7 1 7 0 3}$	$\mathbf{5 4 8 9 2}$	1.32

With the new formulated mathematical model and the 6 -blocks patterns generation, we can solve all ten instances to optimality within 200s time limit. The average computation time is now only 1.322 s . The reduction in delivery cost is 23.45%. We reduce the computational time significantly and it could be applied in the real life business. We also did stress test of this model with CPLEX. The original problems are
solved by commercial solver CPLEX to optimality up to 34 pallets within 200s. For the modified version of the model, the solvability is increased to 154 pallets.

6 CONCLUSIONS

In this paper, we study a problem where a telecommunication equipment company sends products from warehouses to customer sites in mainland China once a day by truck. There are two types of truck delivery service: less-than-truckload (LTL) shipping and full-truckload (FTL) shipping. We help the company to make the decisions on the type of shipping to choose, number of trucks needed for FTL as well as the loading sequence and positions of products onto each truck. We modelled the problem as a variant of an orthogonal 2D-BPP using mixed-integer linear programing (MIP) with the objective to minimise the total cost of delivery. It combines two discrete optimization problems: Bin packing and optimal bundle shipment decisions. Hence we model this as an integrated mixed integer programing model (MIP) with two sets of constraints, one for bin packing the other for bundle shipment cost computation. The problem is solved using the CPLEX solver. Experiment results are carried out to demonstrate the performance of the new model.

A 26% of reduction in delivery cost is achieved by applying this model in real life cases. Also, we provided some practical guidance on how to reformulate the problem with care to improve the solving efficiency. We solved the reformulated model on the same numerical examples and reduced computational time to 1.3 seconds on average and help the model to be implemented for a real life business.

REFERENCES

Buljubašić, M. and Vasquez, M., 2016. Consistent neighborhood search for one-dimensional bin packing and two-dimensional vector packing. Computers \& Operations Research, 76, pp.12-21.
Christofides, N. and Whitlock, C., 1977. An algorithm for two-dimensional cutting problems. Operations Research, 25(1), pp.30-44.
Cui, Y. P., Yao, Y. and Zhang, D., 2017. Applying tripleblock patterns in solving the two-dimensional bin packing problem. Journal of the operational research society, pp.1-14.
Dyckhoff, H. and Wäscher, G., 1990. Cutting and packing (special issue). European Journal of Operational Research, 44(2).

Garey, M. R. and Johnson, D.S., 1979. Computers and intractability (Vol. 174). San Francisco: freeman.
Lins, L., Lins, S. and Morabito, R., 2002. An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container. European Journal of Operational Research, 141(2), pp.421-439.
Lodi, A., Martello, S. and Monaci, M., 2002. Twodimensional packing problems: A survey. European journal of operational research, 141(2), pp.241-252.
Lodi, A., Monaci, M. and Pietrobuoni, E., 2017. Partial enumeration algorithms for two-dimensional bin packing problem with guillotine constraints. Discrete Applied Mathematics, 217, pp.40-47.
Martello, S. and Vigo, D., 1998. Exact solution of the twodimensional finite bin packing problem. Management science, 44(3), pp.388-399.
Martins, G. H., 2003. Packing in two and three dimensions. Naval Postgraduate School Monterey CA Dept of Operations Research.
Murata, H., Fujiyoshi, K., Nakatake, S. and Kajitani, Y., 2003. Rectangle-packing-based module placement. In The Best of ICCAD (pp. 535-548). Springer, Boston, MA.
Pisinger, D. and Sigurd, M., 2007. Using decomposition techniques and constraint programming for solving the two-dimensional bin-packing problem. INFORMS Journal on Computing, 19(1), pp.36-51.
Polyakovskiy, S. and M'Hallah, R., 2020. Just-in-time twodimensional bin packing. Omega, p. 102311.
Scheithauer, G. and Sommerweiß, U., 1998. 4-block heuristic for the rectangle packing problem. European Journal of Operational Research, 108(3), pp.509-526.
Williams, H. P., 1990. Integer and combinatorial optimization. Journal of the Operational Research Society, 41(2), pp.177-178.
Wolsey, L. A. and Nemhauser, G. L., 1999. Integer and combinatorial optimization (Vol. 55). John Wiley \& Sons.

[^0]: a (D) https://orcid.org/0000-0003-2140-9801
 b(1) https://orcid.org/0000-0002-2752-5398
 c(D) https://orcid.org/0000-0002-9025-0569

