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Abstract: In this paper, we study a real life application of an orthogonal two dimensional bin packing problem (2D-
BPP) with a small assortment of different shapes of bins and items. A telecommunication equipment company 
ships its products to customers several times daily by trucks and it currently uses the less-than-truckload 
(LTL) shipping option which is priced as unit price per volume times the total volume of products. However, 
depending on scale of products to be shipped, full-truckload (FTL) shipping which is priced as a single price 
per truck may be cheaper. In this paper we aim to help the company to decide on the delivery choice as well 
as on how to pack the truck optimally when FTL shipping is selected. We model the problem as a variant of 
an orthogonal 2D-BPP using mixed-integer linear programming (MIP) with the objective to minimise the 
total cost of delivery. Practical conditions influencing the feasibility of packing patterns are also considered. 
Practical guidance such as those on some modelling techniques and the application of the model, are applied 
to enhance the solving efficiency. The problems are solved by commercial solver CPLEX to optimality up to 
34 pallets within an acceptable time. For lager problems, we adopt an approach to combine same items into 
larger rectangles and then pack them. This increases the solvability to 154 pallets. On average, our method 
help the company save 26% shipping cost. 

1 INTRODUCTION 

We study a problem where a telecommunication 
equipment company sends products from warehouses 
to customer sites in mainland China once a day by 
truck. There are two types of truck delivery service: 
less-than-truckload (LTL) shipping and full-
truckload (FTL) shipping, as illustrated in Figure 1. 
LTL is priced as unit price multiplied by total volume 
of products shipped and normally the products are 
packed with products of other companies. FTL is 
priced as a single price per truck. When there is a 
small amount of products, it is cheaper to use LTL 
shipping. However, when there is a large amount of 
products, the company should choose FTL shipping. 
The service level agreement (SLA) of FTL is also 
faster than FTL. For FTL shipping, the company need 
to load the products themselves. This part of cost is 
internal and negligible. The decisions to make are on 
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the type of shipping to choose, the number of trucks 
needed for FTL and the loading sequence and 
positions of products onto each truck. We modelled 
the problem as a variant of an orthogonal 2D-BPP 
using mixed-integer linear programming (MIP) with 
the objective to minimise the total cost of delivery. It 
combines two discrete optimization problems: Bin 
packing and optimal bundle shipment decisions. It is 
therefore modelled as an integrated mixed integer 
programing model (MIP) with two sets of constraints: 
one for bin packing and the other for bundle shipment 
cost computation. The products to be packed are 
fragile and cannot be stacked, which means there is 
only one layer of products inside a truck. Practical 
constraints are also needed, for example, no more 
than two customers can be loaded onto the same 
truck, some customers must be delivered later on the 
route as the unloading time could be long for those 
customers due to warehouse service capability, and 
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products for the same customers must be placed 
together for unloading convenience. We solve the 
problems using CPLEX solver. Experiments are 
carried out to demonstrate the performance of the new 
model. A 26% of reduction in delivery cost is 
achieved by applying this model in real life cases. 
Also, we provide some practical guidance on how to 
reformulate the problem with care to improve the 
solving efficiency. We solve the reformulated model 
on the same numerical examples and reduced the 
computational time to 1/100% of before which helps 
the model to be implemented in real life business.  

The paper is organized as follows. In section 2, 
literature on the 2D-BPP formulation, typology, 
practical applications, and related solution algorithms 
are reviewed. Section 3 presents the mathematical 
models for our problem and discusses how to pick up 
an appropriate value for the number of trucks to be 
used in the model when infinitely many are available. 
In section 4, the proposed mathematical model is 
tested through numerical experiments using general 
purpose MIP solver. A 26% saving in delivery cost is 
achieved on real life instances with this model. In 
section 5, we discuss how to improve the solving 
efficiency by choosing fixed charges in the MIP 
formulation, reducing symmetry and carefully 
implementing the MIP model for large cases. We 
show how careful formulation for a mixed integer 
program (MIP) can lead to a solution of the 
mathematical model in a reasonable amount of time, 
while some formulations of the same problem can 
make the model practically unsolvable. The reduction 
in computational time is critical for practical 
implementation. Finally, conclusions and future 
research directions are provided in section 6. 

 

Figure 1: Illustration of FTL Shipping vs. LTL Shipping. 

2 LITERATURE REVIEW 

The basic BPP involves two sets, one set of bins, with 
same size or different sizes, and one set of items to be 

packed normally with different sizes. All items and 
bins have fixed rectangular shapes. The problem is to 
place the items within the bins in order to optimize 
some functions, such as minimise the bins used, 
minimise cost, or maximise the items packed, subject 
to some physical or business constraints. Commonly 
considered physical constraints are: items cannot 
overlap (share the same region in the truck) if they are 
assigned to the same truck and any item must be 
completely located within a bin. The number of 
dimensions involved define the problem into 2D and 
3D BPP referring to two-dimensional and three-
dimensional problems. As the pallets contains 
valuable objects that cannot be stacked so we simplify 
the problem into 2D-BPP and are only interested in 
the arrangement of the pallets on a plane (the floor of 
the truck). Pallets can be rotated by 90 , but cannot 
be flipped over and their sides must be parallel to the 
sides of the truck (orthogonal packing). Allowing 
rotation can improve the number of pallets packed 
into a single bin by two times (Martins, 2003). 

According to Dyckhoff (1990)’s typology 
classification of this problem, our problem’s typology 
is: 
 Kind of Assignment: a selection of trucks and all 

pallets 
 Assortment: the number of different shapes of 

pallets and truck. We considered a small 
assortment of different shapes for both pallets 
and trucks. Many pallets of relatively few 
different shapes and sizes. 

 Availability: the constraints on the available 
quantities for pallets and bins. We consider no 
restrictions on availability of trucks. 

 Pattern restrictions: no pattern restrictions 
accepting non-guillotine cut patterns vs 
connectivity of pallets of the same type. 

 Status of knowledge: Full knowledge off-line 
algorithm. 

Scheithauer and Sommerweiß (1998) listed some 
practical conditions influencing the feasibility of 
packing, these are the maximum load constraint, 
which is the maximum weigh of items that a truck can 
carry; the placement constraint restrict that some 
items, because of their density, weight, or contents 
may not be placed on top of other items. The splitting 
constraints mean that some items cannot be split onto 
different trucks. Some items of the same type must be 
placed side by side (connectivity) and finally for 
stability purpose, large and heavy item must be placed 
below small and light item. As the products shipped 
in our problem are lightweight cargo but cannot be 
stacked, the maximum load and placement constraints 
need not considered. 
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A 2D-BPP instance consists of a list N of 
rectangular items with dimensions ,  for all ∈

 and a list  of bins with dimensions ,  for 
all ∈  and cost  for all ∈ . It is known as a 
strongly NP-hard problem and is also in practice very 
difficult to solve (Garey and Johnson, 1979; Martello 
and Vigo, 1998). Solution algorithms for 2D-BPP can 
be classified into three types, exact algorithms, 
heuristics and metaheuristics, with many literatures 
devoted to the improvement on lower bounds 
provided by heuristics (Lodi, 2002). Lodi (2017) 
proposed a heuristic algorithm for 2D-BPP with no 
rotation allowed based on enumeration tree. Each 
level of the tree represents the current content for the 
pth bin in the solution. In particular, each bin is filled 
by applying a packing strategy that packs one item at 
a time according to a given selection rule and 
guillotine split rule. The selection rule determines the 
next item to pack (and its position in the bin), whereas 
the guillotine split rule is used to ensure the produced 
pattern being guillotinable. The tree is pruned using a 
depth-first strategy. This heuristic can solve many 
benchmark problems to optimality and yield near 
optimal solution for other cases. Cui (2017) presented 
a construction heuristic to solve the 2D-BPP problem 
in three phases. The first phase generates triple-block 
patterns, the second phase uses some of the patterns 
to construct solutions, and the third phase solves an 
ILP problem to improve the solutions. The gap to LB 
is reduced by 30% compared to some best known 
algorithms on some test instances. In this paper, we 
also implement n-block patterns to speed up the 
solution for our MIP model. Buljubašić and Vasquez 
(2016) proposed a tabu search algorithm with a 
consistent neighborhood search approach to solve the 
1D-BPP and 2D-VPP problems and yield best-known 
solutions for all benchmark test instances they used. 
The bins available are infinite, they start with 

1 bins, where UB is an upper bound obtained 
by using a variant of the classical First Fit heuristic. 
LB and UB will be input for our implementation of 
the mathematical model presented in this paper. 
Pisinger and Sigurd (2007) studied an exact algorithm 
branch-and-price-and-cut for 2D-BPP. The master 
problem is formulated as a set covering problem 
where each set represents a feasible packing. All 
feasible packings (sets) could be large and the model 
will have much more columns than rows (variables 
than constraints), so column generation is applied to 
gradually add sets. Each restricted master problem is 
solved using dual simplex method. In each iteration 
of column generation, a pricing problem is solved by 
finding the set with smallest reduced cost to be added. 
Problems with pp to n=100 items are solved to 

optimality through this algorithm. Polyakovskiy and 
M’Hallah (2020) combined two difficult discrete 
optimisation problems: BPP and machine scheduling 
and model the problem as an integrated constraint 
program with two sets of constraints, bin packing 
feasibility and single machine scheduling constraints 
respectively. They also proposed two decompositions 
approaches, a master problem is a relaxation of BPP 
and then validate the solutions by row generations. 
Their results show that an integrated model 
outperforms the decomposition approaches. We will 
study an integrated model in this paper. 

To the best of our knowledge, this paper is the first 
to consider the combined problem of bundle shipment 
or shipment selections and 2D-BPP with rotations. 
We introduce a new mathematical formulation for the 
integrated problem with practical constraints and 
discuss how to improve the solving efficiency from a 
model formulation point of view. The model is 
currently being used by a large telecommunication 
service company and it has helped the company to 
save shipment cost. 

3 MATHEMATICAL MODEL 

There are normally three different problem 
representations for BPP: coordinates (Christofides 
and Whitlock, 1977), sequence pairs (Murata et al., 
1995) and graphs (Lins et al., 2002). We use the first 
one as different graph representations can lead to the 
same arrangement adding complexity for search 
algorithms. We need to decide on: partition ( ), 
order position , , orientation  and relative 
position	 , , , . The detailed definition of 
notation is shown in section 3.1. Although we assume 
the number of trucks is unlimited, the mathematical 
model needs an initial value of the number of each 
types of trucks. We could use a sufficiently large 
number of trucks but it will lead to much larger model 
than necessary and longer computational times. So 
we will use the lower bound generated from literature 
of heuristics as the starting point for the number of 
trucks available for the math model.  

There is an obvious lower bound on the number 
of trucks, which is the sum of area of squares divided 
by the area of truck floor: ∑ ∈ / . In 
many cases,  can be inadequate for an effective 
use for the exact algorithm. Several better bounds are 
provided by Martello and Vigo (1998). In this paper, 
we will use  for simplicity reason. 
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2.1 Problem Representation 

A problem solution is represented by coordinates of a 
pallet left bottom corner, relative positions and 
rotations. As only one layer of pallets can be packed 
into the truck, the truck loading result can be shown 
on a two dimensional graph (top view) as shown in 
Figure 2. We can build a Cartesian coordinate system 
around the truck container where the origin is set to 
be the bottom left corner of the truck. The position of 
each pallet packed is also represented by the position 
of its bottom left corner 	 , . As rotation is 
allowed, the two rectangular shown in Figure 2 are 
identical, and the right one is the rotated version of 
the original pallet (only 90  is allowed). To make 
sure any two pallets do not overlap, they must not 
overlap in x axis (one on the left of another in the 
graph), or not overlap in y axis (one below another in 
the graph), or not overlap in both axis. 

 

Figure 2: Graph representation of a truck loading result. 

Index: 
N: index set of pallets to be packed; 
K: index set of trucks; 
, :	index of pallet, ∀ , ∈ ; 
: index of truck, ∀ ∈ . 

M: a big number  
Parameters: 

: delivery price for FTL delivery of truck	 ; 
: unit price for LTL delivery per volume of pallet 

; 
: volume of pallet ; 

: width of pallet ; 
: length of pallet ; 
: the customer that pallet  belongs to; 

: width of truck	 ; 
: length of truck	 ; 

Ns: the set of pallets of telecommunication customers 
Nn: the set of pallets of other customers 
Variables: 

: the x coordinate of pallet i in a truck; 
: the y coordinate of pallet i in a truck; 

1,
0,
	 	 	 	 	 	 	 	 ;

;
  

1,
0,
	 	 	 	 	 	 	 	 	 	 	 ;

;
  

1,
0,
	 	 	 	 	 	 	 	 ;

;
  

1,
0,
	 	 	 	 	 ;

;
  

1,
0,
	 	 	 	 	 	 	 	 	 ;

	 ;  

 
Objective: 
Min: ∑ ∈ ∑ ∈ 1 ∑ ∈  
s.t. 

, ∀ ∈ , ∈  (1)
1

1 , ∀ , 	 ∈ , (2)

1
1 , ∀ , 	 ∈ , (3)

∈

1, ∀ ∈  (4)

1
1 , ∀

∈ , ∈  
(5)

1
1 , ∀

∈ , ∈  
(6)

2
1, ∀ , 	 ∈ , , ∀

∈
(7)

2 1,	 ∀ , , ∈
, , , ∀ ∈  

(8)

2 , ∀ ∈ ,
∈ , ∀ ∈  

(9)

2, ∀ , , ∈ ,
, ∀ ∈  

(10)

∈ ∈

, ∀ , ∈ ,  (11)

0, 0, ∀ , ∈  (12)
 

Variables	 , , , , and are all binary 
variables. 
 

The objective of the model is to minimise the total 
delivery cost of shipping all the pallets, with 
∑ ∈  indicating the total cost of FTL and 
∑ ∈ 1 ∑ ∈  representing the cost of 
LTL. Constraints (1) show that once a pallet is 
assigned to a truck ( 1) then this truck is in use 
( 1). Constraints (2) and (3) mean that any two 
pallets cannot overlap (share the same region in the 
truck) if they are assigned to the same truck. 
Constraints (4) demonstrate that all pallets must be 
assigned to at most one truck or to LTL shipping. 
Constraints (5) and (6) indicate that any pallet must 
be completely located within a truck when it is 
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assigned to that truck. Constraints (7) avoid 
overlapping between pallets. Constraints (8) 
implement the non-splitting conditions, meaning if 
the pallets of one customer can fit into one truck, we 
should not split the loading into two trucks. 
Constraints (9) show the placement requirement of 
the real life situation, the pallets of 
telecommunication customers must be unloaded after 
other customers and other customers’ pallets will be 
placed near the door of the truck for mixed load. 
Constraints (10) indicates that a truck can only be 
loaded with pallets of up to two different customers 
as a truck can only ship to two different places in a 
single day. Constraints (11) show that pallets of the 
same customer can only select one shipping options 
either LTL or FTL.  

4 NUMERICAL EXPERIMENTS 

Ten test instances are selected from real life shipping 
data to verify the mathematical model and comparing 
the results with historical shipping (LTL). We solved 
the ten test cases using a general purpose commercial 
solver CPLEX, which implements a powerful branch 
and bound algorithm. The numerical experiments are 
carried out on a PC with 64-bit Windows operating 
system, eight GigaBytes of RAM and an Intel i7 
processor with quad-cores. The computational results 
are shown in Table 1, where ID is the instance id, N 
is the number of customers involved, Pallets are the 
number of pallets to be shipped and before, after 
indicate the shipping cost. 

Table 1: CPLEX results of the original model. 

ID N Pallets Before  After  Time(s) 
1 7 22 10156 7361 17.47 
2 5 23 7934 5593 MLR 
3 5 18 7166 6072 3.05 
4 2 22 7890 5398 MLR 
5 2 32 11090 9805 MLR 
6 7 23 8295 6065 MLR 
7 7 33 10012 9898 18.25 
8 2 14 4638 3100 MLR 
9 2 8 3054 2600 0.18 
10 3 4 1461 1461 0.16 

SUM   71703 57355 103.91 
 

For the current model formulation, we solved 5 
out of 10 instances to optimality within 200s time 
limit. The average computation time is 103.91s. The 
reduction in delivery cost is 20%. The reduction in 
cost is promising for the business, but the 
computational time is a bit long for daily business, as 

we need to save enough time for the operations and 
actual loading. The row in the table labelled ‘MLR’ 
means those instances haven’t been solved to 
optimality within the time limit and the after cost for 
those cost are the current best feasible solution found.  

4.1 Example 

There are three different trucks available with 
different costs. The truck information is shown in 
Table 2. 

Table 2: Trucks Information. 

ID Length Width Price 
10T 9.6 2.4 2600 
18T 13.5 2.5 4100 
20T 16.5 2.5 4300 

 
We have 22 pallets to be packed and 7 different 

customers. Three customers are special customers 
that needed to be drop off later on route. The packing 
results are shown in Table 3. CID is the customer ID, 
PID is the pallet ID, l, w, vol are the length, width and 
volume of the pallets, TP is the indicator of whether 
the customer is telecommunication customer and the 
Sol column is the solution.  

Table 3: Example One Input Data. 

CID PID l w vol TP Sol 
1 0 1.65 1.15 4.07 YES LTL 
2 1 1.91 1.11 2.79 NO 10T-1 
2 2 1.91 1.11 5.29 NO 10T-1 
2 3 1.91 1.11 5.29 NO 10T-1 
2 4 1.91 1.11 5.29 NO 10T-1 
3 5 1.91 1.11 5.29 NO 10T-2 
3 6 1.91 1.11 5.29 NO 10T-2 
3 7 1.91 1.11 5.29 NO 10T-2 
3 8 1.91 1.11 5.29 NO 10T-2 
3 9 1.91 1.11 5.29 NO 10T-2 
3 10 1.91 1.11 5.29 NO 10T-2 
4 11 1.91 1.11 5.29 YES LTL 
5 12 1.91 1.11 1.42 NO 10T-1 
5 13 1.91 1.11 5.29 NO 10T-1 
5 14 1.91 1.11 5.29 NO 10T-1 
5 15 1.91 1.11 5.29 NO 10T-1 
6 16 1.91 1.11 5.29 NO 10T-2 
6 17 1.91 1.11 5.29 NO 10T-2 
6 18 1.91 1.11 5.29 NO 10T-2 
6 19 1.91 1.11 5.29 NO 10T-2 
7 20 1.41 1.15 3.04 YES LTL 
7 21 1.41 1.15 3.04 YES LTL 

 
The visualizations of the packing results are 

shown in Figure 3 and Figure 4. We can see that the 
optimal solution is a mix of LTL and FTL shipping. 
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The optimal cost is 7361.64 while the original 
shipping with all pallets shipped LTL is 10156.95. A 
28% reduction in delivery cost is achieved in this 
instance within 7.2 seconds.  

 

Figure 3: Packing Result of Example (10T Truck No.1). 

 

Figure 4: Packing Result of Example (10T Truck No.2). 

5 ENHANCE SOLVING 
EFFICIENCY 

A careful formulation for a mixed integer program 
(MIP) can lead to a solution of the mathematical 
model in a reasonable amount of time, while some 
formulations of the same problem can make the 
model practically unsolvable. The key principle of a 
better formulation of a MIP model is to make the 
feasible region of LP relaxation model as tight as 
possible even if this will make the LP model harder 
to solve. This topic is covered in various text books 
(Nemhauser and Wolsey, 1988; Williams, 1990). In 
this paper, we consider improving the solving 
efficiency by tailored fixed charges in the MIP, 
reducing symmetry and a careful implementation of 
the MIP model for large cases. 

5.1 Tailored Big M 

To model a fixed charge—a cost that is incurred once 
when a process is used, but is not proportional to the 
level of the process—a "Big M" formulation is 
usually used. We could choose a sufficiently large 
value for M, but there are some drawbacks when 
solve the LP relaxation of the MIP problem. If the 
relaxation objective value is too far from the integer 
objective value; the branching algorithm will try to 
force  to 0 first, because the LP solution value of 

 is already close to 0. So we need to choose M 
carefully; big enough for the bounding purpose but 
not too large. The values of M in constraints (2), (3), 

(5), (6), (8) and (9) are 	max	 , max	 , 
max	 , max	 , 2 and max  respectively.  

5.2 Symmetry in Trucks 

, ∀ 1 2 (13)
 

If k1 and k2 are the same type (same dimension) of 
trucks, we would select k1 first to break the 
symmetry/tie in trucks. Because select k1 and k2 will 
yield the same objective value and create ties in the 
candidate solutions.  

5.3 Symmetry in Pallets 

2 1, ∀
,   

(14)

 

If pallet i and pallet j are identical, we would place 
pallet j either below pallet i or to the left of pallet i to 
break the symmetry. Also, the routing sequence 
conditions constraints (9) also help to reduce 
symmetry in pallets. 

5.4 Sequence Pairs Restriction 

To make sure any two pallets do not overlap, they 
must not overlap in x axis (one on the left of another 
in the graph), or not overlap in y axis (one below 
another in the graph), or not overlap in both axis. 
Based on this information, we can add two other 
constraints to obtain a tighter LP relaxation of the 
MIP and make the feasible region described by the 
linear programming relaxation as close as possible to 
the feasible region that contains only feasible integer 
solutions. 
 

2 1, ∀  (15)
 

2 1, ∀  (16)
 

Constraints (15) and (16) void the other eight 
infeasible sequence pairs, meaning the relative 
position of two pallets cannot be left and right (top 
and bottom) at the same time.  

5.5 Pre-grouped Pallets 

In this problem, we only consider a small assortment 
of pallets size. Pallets of the same type can be 
prepacked into a lager item and significantly reduce 
the problem sizes. An example was shown in Table 4. 
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Table 4: A data example after pallets combination. 

CID PID l w vol 
1 c0 4.95 2.3 24.36 
1 c1 4.95 2.3 24.36 
2 c2 4.95 2.3 24.36 
2 c3 4.95 2.3 24.36 
2 c4 4.95 2.3 24.36 
2 7 1.65 0.4 0.75 
2 11 1.65 0.4 0.75 

 
c0-c4 are prepacked pallets set as shown in Figure 

5. The original problem is unsolvable within 200s, 
and the modified problem is solved in 0.34s. The 
objective value is 7200, which is a 35.13% saving in 
delivery cost than before.  

 

Figure 5: 6-blocks Pattern (Pre-combined Pallets). 

We rerun the modified model with all techniques 
proposed in section 5.1 – section 5.5 for the ten test 
cases in Table 1 and the new results are shown in 
Table 5.  

Table 5: CPLEX results of the modified model. 

ID  Pallets Before  After  Time(s) 
1 7 22 10156 7361 3.57 
2 5 23 7934 5593 0.84 
3 5 18 7166 6072 4.05 
4 2 22 7890 5898 0.9 
5 2 32 11090 7200 0.34 
6 7 23 8295 5707 0.91 
7 7 33 10012 9898 1.69 
8 2 14 4638 3100 0.58 
9 2 8 3054 2600 0.18 
10 3 4 1461 1461 0.16 

SUM   71703 54892 1.32 
 

With the new formulated mathematical model and 
the 6-blocks patterns generation, we can solve all ten 
instances to optimality within 200s time limit. The 
average computation time is now only 1.322s. The 
reduction in delivery cost is 23.45%. We reduce the 
computational time significantly and it could be 
applied in the real life business. We also did stress test 
of this model with CPLEX. The original problems are 

solved by commercial solver CPLEX to optimality up 
to 34 pallets within 200s. For the modified version of 
the model, the solvability is increased to 154 pallets. 

6 CONCLUSIONS 

In this paper, we study a problem where a 
telecommunication equipment company sends 
products from warehouses to customer sites in 
mainland China once a day by truck. There are two 
types of truck delivery service: less-than-truckload 
(LTL) shipping and full-truckload (FTL) shipping. 
We help the company to make the decisions on the 
type of shipping to choose, number of trucks needed 
for FTL as well as the loading sequence and positions 
of products onto each truck. We modelled the 
problem as a variant of an orthogonal 2D-BPP using 
mixed-integer linear programing (MIP) with the 
objective to minimise the total cost of delivery. It 
combines two discrete optimization problems: Bin 
packing and optimal bundle shipment decisions. 
Hence we model this as an integrated mixed integer 
programing model (MIP) with two sets of constraints, 
one for bin packing the other for bundle shipment cost 
computation. The problem is solved using the 
CPLEX solver. Experiment results are carried out to 
demonstrate the performance of the new model.  

A 26% of reduction in delivery cost is achieved 
by applying this model in real life cases. Also, we 
provided some practical guidance on how to 
reformulate the problem with care to improve the 
solving efficiency. We solved the reformulated model 
on the same numerical examples and reduced 
computational time to 1.3 seconds on average and 
help the model to be implemented for a real life 
business. 
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