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Abstract: The majority of the Ambient Assisted Living (AAL) systems, designed for home or lab settings, monitor one
participant at a time – this is to avoid the complexities of pre-fusion correspondence of different sensors since
carers, guests, and visitors may be involved in real world scenarios. Previous work from (Masullo et al., 2020)
presented a solution to this problem that involves matching video sequences of silhouettes to accelerations
from wearable sensors to identify members of a household while respecting their privacy. In this work, we
elevate this approach to the next stage by improving its architecture and combining it with a tracking func-
tionality that makes it possible to be deployed in real-world homes. We present experiments on a new dataset
recorded in participants’ own houses, which includes multiple participants visited by guests, and show an au-
ROC score of 90.2%. We also show a novel first example of subject-tailored health monitoring measurement
by applying our methodology to a sit-to-stand detector to generate clinically relevant rehabilitation trends.

1 INTRODUCTION

The world is getting old. Continuously improving
medical technologies and healthcare systems are con-
tributing to extend life expectancy more than ever be-
fore, with the effect that the world’s demographic of
age 60 or more is expected to double in the next 30
years (Patel and Shah, 2019). This shift in age distri-
bution is accompanied by the demand of an indepen-
dent lifestyle that can be met by novel technologies
through unobtrusive monitoring and the use of artifi-
cial intelligence (AI). To this end, Ambient Assisted
Living (AAL) is a field of research aimed at develop-
ing an ecosystem of sensors that work in cooperation
to help monitoring elderly people and their health to
live independently (Rashidi and Mihailidis, 2013).

A multitude of sensors may be typically in-
volved in AAL applications, for example wearable
accelerometers as the most common of all, Passive
Infrared (PIR) sensors (Cook et al., 2013), floor vi-
bration sensors (Dobbler et al., 2014), ambient sen-
sors (like temperature, humidity, power consumption)
(Zhu et al., 2015), and a variety of health sensors
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(heart rate, respiratory rate, VO2 max) (Calvaresi
et al., 2017). Videos recorded from camera sensors,
especially with the RGB data transformed into rela-
tively anonymous silhouettes, are also being increas-
ingly employed outside of lab conditions in a num-
ber of AAL applications, e.g. for fall detection (Ak-
agunduz et al., 2017), the measurement of calorie ex-
penditure (Masullo et al., 2018) and the analysis of
transitions from sitting to standing while recovering
from surgery (Masullo et al., 2019). Video is indeed a
powerful tool in the AAL armoury, e.g. it is a routine
part of the multi-platform SPHERE (Sensor Platform
for Healthcare in a Residential Environment) system
(Zhu et al., 2015).

Each of the sensor types comes with its own
pros and cons. For example, cameras are consid-
ered the richest source of information, but a signif-
icant number may be necessary for full coverage of
the home, while also invoking massive data storage
needs. Wearable devices can be carried everywhere,
but require user interaction to put them on and charge
their batteries regularly, and cannot provide data rich
enough to deal with the complexities of human be-
haviour. Other ambient sensors, such as PIR and
door opening detectors are inherently passive but of-
ten only allow for limited and specific exploration.

In order to enable any AAL system to provide
useful trends for health measurements, it is essential
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[10:36:05] - Cam 1, 1 bbox
[10:36:15] - Cam 2, 2 bboxes
[10:36:16] - Wear 1, (0.5, -0.3, 1.1)
[10:36:16] - Wear 2, (0.3, 0.1, 0.8)
[10:37:20] - Cam 2, 1 bbox
[10:37:35] - Wear 2, (0.1, -0.1, 0.8)
...

[11:52:11] - Cam 1, 1 bbox
[11:52:33] - Wear 1, (-0.1, 0.3, 0.7)
[11:53:41] - Cam 2, 2 bboxes
[11:53:03] - Wear 2, (0.2, -0.1, 0.8)

Raw Sensors Log

[10:36:16] Subject 2 standing up
[11:52:10] Subject 1 sitting down
[11:53:41] Guest detected in Room 2
[11:53:43] Subject 1 stands up

...

Output of Our AlgorithmSmart Home

Cam 1

Cam 2

Wear 1

Wear 2

Example of silhouettes images

Figure 1: Application scenario. A Smart Home including cameras recording silhouettes and wearable devices carried by
participants. Participants can have guests or pets (see example silhouette images) and live their lives normally in their own
homes. Our method can distinguish participants from the silhouettes in the scene and assign each detected activity to a specific
monitored subject.

to monitor individual subjects over long periods of
time. The system must be able to assign measure-
ments from every sensor to each individual member
of the household and discard any data generated by
guests, caregivers, pets, and so on. To the best of the
authors’ knowledge, no current AAL system can deal
with such complexity, as the majority of AAL frame-
works circumvent the problem by using home-like
lab environments or are deployed in single-occupancy
houses (Zouba et al., 2009; Skubic et al., 2009; Kurz
et al., 2012; Cook et al., 2013; Amato et al., 2016;
Holthe et al., 2018; Caroux et al., 2018; Das et al.,
2019). This is further discussed in a recent review
of AAL systems (Climent-Pérez et al., 2020), which
highlights users’ concerns in RGB video monitoring
systems deployed in peoples homes with respect to
mass surveillance and lack of privacy.

In this paper, we present a solution to the long-
term monitoring problem for AAL systems which can
be deployed in real multi-occupancy houses, as shown
in Figure 1. A recent work on video-acceleration
fusion (Masullo et al., 2020) provided a ReID ca-
pability for actively moving silhouettes in terms of
wearable IDs. We now push this work to the next
stage by implementing a tracking functionality that
propagates the ReID capability to untrimmed videos
of any activity content. We show its performance
on a new dataset recorded in real homes using the
SPHERE video monitoring system (Zhu et al., 2015;
Woznowski et al., 2015; Hall et al., 2016). The dataset
used in this study is a subset of the houses that volun-
teered for installing the system in their own habita-
tion; it includes video silhouettes from three differ-

ent rooms of each house and the accelerations form a
wearable device carried by the participants1. Further,
we also present an example application of subject-
tailored analysis of Sit-to-Stand trend plot for a partic-
ipant who underwent hip/knee replacement surgery.
The dual nature of privacy sensitivity through silhou-
ettes and multi-sensory fusion, combined with the
maximum level of spontaneity of our participants be-
ing recorded in their own homes, make our analysis
unique in the field of AAL.

Next in Section 2, we review related works, fol-
lowed by a review of our dataset in Section 3. In Sec-
tions 4 and 5, we present the proposed approach and
its evaluation, respectively, and conclude in Section 6.

2 RELATED WORK

The majority of AAL systems do not focus on a single
type of sensor but embrace a wide variety of modal-
ities through sensor fusion. Earlier works like the
GERHOME project (Zouba et al., 2009) or CASAS
(Cook et al., 2013) used a variety of contact sen-
sors on doors, windows and cabinets, together with
pressure sensors installed on chairs and power/water
consumption, to recognise or discover the activities
performed in a home-lab environment. More re-
cently, Holthe et al. developed a similar platform
of PIR and magnetic sensors that was directly de-
ployed in an elderly volunteer’s house (Holthe et al.,
2018) and a similar approach was followed in (Caroux

1The dataset and code will be provided in a future re-
lease on https://github.com/ale152/no-need-for-a-lab
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et al., 2018). The very recent project from Toyota
Smarthome (Das et al., 2019) pushed the data cap-
ture to the next stage by collecting fully unscripted
RGB+D data using Kinect sensors installed in a
home-lab setting. However, although RGB+D data
is the richest form in terms of information, it poses
a series of privacy challenges as recently highlighted
(Climent-Pérez et al., 2020). These concerns were ad-
dressed in the development of the SPHERE project
(Hall et al., 2016), which replaced RGB data with bi-
nary silhouettes, as a good trade-off between informa-
tion content of data and respect for privacy.

In spite of the multitude of AAL projects and sen-
sor frameworks developed over the past years, the ma-
jority of them have either been deployed in a home-
lab setting or involved a single participant living in
the home. The DOREMI project (Bacciu et al., 2016)
had the particular focus of indoor socialization events
and built an automatic system for detecting guests en-
tering and leaving the house. The system was based
on a simple classifier of multiple PIR activations and
it only provided an approximate indicator of social
inclusion. Moreover, due to its simplicity, this ap-
proach is unable to provide a real connection between
readings of different sensor modalities and partici-
pants generating the data. In a recent work, a more
advanced approach was presented, where the prob-
lem of association between wearable devices and their
wearers in video is tackled in the challenging scenario
of crowd mingling events (Cabrera-Quiros and Hung,
2019).

The recent work from Masullo et al. showed that
a deep learning approach to the video-acceleration
matching problem (Masullo et al., 2020) produced
even better performances than (Cabrera-Quiros and
Hung, 2019) on the challenging SPHERE Calorie
dataset (Tao et al., 2017). However, while the
SPHERE Calorie dataset includes a variety of people
in a regular home performing specific actions, it still
remains an acted dataset by volunteers. In this paper,
we build on the video-acceleration matching for sub-
ject ReID (Masullo et al., 2020) by implementing a
tracking functionality that allows the system to be de-
ployed in real homes. Together with an improved ver-
sion of the network architecture, our new algorithm
can work on real unscripted data. Our new dataset
constitutes a much more difficult challenge as it in-
volves the maximum level of spontaneity as our sub-
jects are living in their own houses and spend a vast
part of their time sitting, laying down and generally
resting. Moreover, the level of activity, habits and
view point for each house are very different from each
other, making this dataset even more challenging.

3 THE DATASET

SPHERE is a multi-modal sensor platform designed
to provide an intelligent residential space for health
monitoring (Woznowski et al., 2015). The project
recruited participants who were willing to install the
SPHERE platform in their homes, for up to one year.
The sensors of the SPHERE platform consist of three
different groups: video cameras (used to generate sil-
houettes) (Hall et al., 2016), a single accelerometer
device (Fafoutis et al., 2016) worn by each partici-
pant (recording x-y-z acceleration and RSSI signal)
and a variety of ambient sensors measuring tempera-
ture, humidity, light, power consumption, water con-
sumption and so on (Zhu et al., 2015). This work fo-
cuses only on the first two types of modalities, video
silhouettes and accelerations, selected from a subset
of the homes that were recorded.

The data was recorded in a variety of household
sizes and across a wide health spectrum. The com-
pletely free living setting involved in the SPHERE
project makes the analysis of our data much more
challenging than other similar (AAL) projects as all
houses are different from each other and our volun-
teers continued with their normal lives while being
monitored, which involved visitors, pets, forgetting
to charge their wearable (or to put it on), and even
changing furniture arrangements.

3.1 Data Collection and Filtering

When a house is continuously populated by multiple
people, it is extremely hard to match the wearable sen-
sor readings to the silhouettes in the scene. Hence,
for generating ground truth, we selected 4 houses that
were populated by single individuals and no pets (H1,
H2, H3 and H4), and 1 additional house with multiple
occupancy (H5) for testing. This resulted in a total of
38001 pairs of labelled video and acceleration clips
for training/validation and 6909 of additional unla-
belled pairs for testing. For details, please see Table 1.

Table 1: Some details of the houses H1-H5 in our dataset.

H1 H2 H3 H4 H5
Days Obs. 153 64 104 40 83
Hrs. Rec. 240 28 41 8 58

# clips 28856 3293 4949 903 6909

Since the data was recorded in a completely un-
scripted fashion, we applied a combination of filters,
described below, to produce a ground truth in terms
of matching video-acceleration pairs.
Acceleration Magnitude Persistence — We imple-
mented a filter on the acceleration intensity to make
sure that the wearable device was indeed being worn.
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Figure 2: Description of the acceleration filter to discard
segments of data where the device is not being worn.

Whenever the acceleration magnitude stayed below a
certain threshold for a long time, it is likely that the
wearable was not being worn and the corresponding
video/acceleration segment pairs should be discarded.
Let’s consider an acceleration stream,

A′ = {(a1, t1),(a2, t2), ...,(an, tn)} , (1)

where ai is a vector of the x, y and z components of the
acceleration, and ti is the corresponding timestamp.
Inactive segments of the acceleration can at first be
identified where the magnitude is lower than a thresh-
old σ1, i.e.,

A′inactive =
{
|ai|< σ1,(ai, ti) ∈ A′

}
. (2)

If we define the first and last timestamp of each inac-
tive segment as tstart and tend respectively, as depicted
in Figure 2, we then further examine A′inactive to dis-
card those inactive accelerations that persist for longer
than a certain time threshold σ2, i.e.

A′discard =
{

tend− tstart > σ2,(ai, ti) ∈ A′inactive
}
.
(3)

All the video/acceleration pairs whose accelerations
belong to A′discarded are removed from further pro-
cessing to retain our final set of accelerations A, i.e.

A = A′−A′discard . (4)

Video-acceleration Sync — Since the accelerations
are only recorded when the wearable device is in the
range of the house, we filtered to retain the video data
by the intersection of timestamps recorded from the
video and the wearable devices. This ensures that
video data is discarded when the participant is not at
home. Let’s define a video stream

V′ = {(v1,τ1),(v2,τ2), ...,(vnT ,τnT )} , (5)

where vi is a silhouette and τi is the corresponding
timestamp. Considering the acceleration stream de-
fined in Eq. (1), we can filter the video sequences as

V′discard =
{
|ti− τ j|> σ3,(v j,τ j) ∈ V′,(ai, ti) ∈ A

}
,

(6)
such that the difference in synchronisation between
the two streams is higher than σ3. The final set of
videos clips used for training can be defined as:

V = V′−V′discard. (7)

Bounding Box Motion — Our matching algorithm
relies on the bounding box detector and tracker im-
plemented in (Hall et al., 2016), which detects all the
people that appear in front of the camera. To remove
false positive bounding boxes, which are usually sta-
tionary objects, we discard all the bounding boxes
with a speed lower than σ4. Hence, given the bound-
ing box centre position B = (bx,by), then it is filtered
out if √

b′2x +b′2y < σ4. (8)

Once the data was prepared, our network was
trained and made ready to be applied to any house-
hold of any size without any real limitation.

4 METHODOLOGY

Let us consider a typical AAL house occupied by one
or more subjects and frequently visited by guests (e.g.
relatives, caretaker, plumber, and so on). If the moni-
tored participants are carrying a wearable, the acceler-
ation measurements can be directly associated with its
carrier2, while sensor measurements from the video
cameras and the rest of the environmental sensors
cannot. In order to enable a subject-tailored multi-
sensory analysis, such measurements need to be as-
signed to specific individuals and distinguished from
guest-triggered readings, and here is where we make
our contribution.

Based on the work in (Masullo et al., 2020), where
a novel deep learning approach was proposed to solve
the video-acceleration matching problem, we use ad-
ditional tracking information to extend its function-
ality even further. Our algorithm is able to match
untrimmed video clips of silhouettes to temporal seg-
ments of accelerations and compute the distance be-
tween the two to assign each anonymous video clip to
a wearable ID (and henceforth to a specific subject).

Next, we briefly summarise the previous work
from (Masullo et al., 2020) on video-acceleration
matching and then present the details of how we build
upon that method.

4.1 Video-acceleration Matching

As postulated in (Masullo et al., 2020), the problem
of Video-Acceleration Matching can be handled via a
triplet-loss formulation (as typical in face recognition
(Schroff et al., 2015)), where the triplet comprises a
video clip of silhouettes V (the anchor) and two ac-
celeration segments Ap and An (respectively positive

2Apart from the unlikely scenario where participants ex-
change their wearable device.
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Figure 3: Illustration of the network architecture adopted in our work. Two distinct branches process independently the video
silhouettes and the acceleration so that they can be compared on a latent space.

and negative matching samples)

(Anchor,Positive,Negative) = (V,Ap,An) . (9)

During training, the actual matching acceleration is
used as a positive sample, whereas a different accel-
eration from a different wearable is used as a negative
sample (more on the choice of negative samples later).
Two distinct neural networks f (·) and g(·) encode the
videos and the accelerations respectively into an em-
bedding space where the Euclidean distance between
the two can be measured to assert the matching

d(V,A) =

√
∑ [ f (V)−g(A)]2 . (10)

Reciprocal Triplet Loss (Masullo et al., 2020) (RTL)
is used to train the networks and a threshold is finally
employed to discriminate between matching and non-
matching pairs as

LRTL = | f (V)−g(Ap)|2 +
1

| f (V)−g(An)|2
. (11)

4.2 Network Architecture

The results of previous work (Masullo et al., 2020)
showed that a 3D fully convolutional network is the
best candidate to encode both video and acceleration
data, so we selected the fully-conv architecture from
(Masullo et al., 2020) and improved it to better gen-
eralise to real data. The main changes to the network
architecture are in the very last layer, where the tanh
activation previously used was replaced by a combi-
nation of relu and Layer Normalization layers, as de-
scribed in (Ba et al., 2016). The Layer Normaliza-
tion not only reduces the training time, but it also im-
proves over the validation error providing a more gen-
eral model that helps fusing the video and the accel-
eration data streams. In addition, we also increased

the size of the frame input from 100x100 pixels to
128x128 pixels, allowing for more details in the video
to be exploited for the analysis. This change was also
paired with an additional max-pooling layer at the end
of the network to compensate for the bigger input size.
Figure 3 illustrates for our network architecture.

4.3 Temporal Structure

To improve the matching algorithm to handle in-the-
wild data, we increased the temporal window used to
match the video and acceleration segments. As al-
ready observed in their experiments in (Masullo et al.,
2020), longer observation times lead to a drastic in-
crease in the matching performances; however, the
100 frames previously used in (Masullo et al., 2020)
for the video clips were not sufficient to enable dis-
crimination between different subjects in a real sce-
nario. Due to the limitations of GPU memory size, in-
creasing the number of frames for the video clips was
not viable and we therefore opted for increasing the
observation window by a factor of 2 while introduc-
ing a frame sub-sampling factor of 2. The observation
window of the acceleration stream was doubled with-
out sub-sampling and without significant memory im-
pact.

4.4 Tracking

Our last and most important improvement to the
Video-Acceleration Matching algorithm in (Masullo
et al., 2020) to deal with in-the-wild data is tracking,
as illustrated in Figure 4. The tracklet ID for each user
provided by the SPHERE system (Hall et al., 2016)
is consistent while the subject is in view, and some-
times even preserved when the user only briefly dis-
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appears from the frame - however, it changes to a new
ID on a later re-appearance of the subject. Since each
tracklet is assigned to a specific individual, we match
a wearable with an entire tracklet itself. To do that,
we divide each tracklet into Novp overlapping video
and acceleration segments (Vi,Ai) and compute the
matching distance d as per Eq. (10) across the entire
tracklet,

D =
{

d(V1,A1),d(V2,A2), ...,d(VNovp ,ANovp)
}
.

(12)
The result is a vector D of Novp elements
containing the matching distance for each short
video/acceleration clip. Based on this vector, we
developed three different strategies that perform the
matching based on the (1) minimum, dmin = min(D),
(2) median, dmedian =median(D), and (3) average dis-
tance, dmean = mean(D), across the vector.

The heuristic hypothesis behind the use of track-
lets to improve the matching is that users spend
most of the time at home sitting or sedentary, while
the Video-Acceleration Matching algorithm (Masullo
et al., 2020) is most effective when subjects are mov-
ing. Therefore, if a subject is sitting for a long period
of time, using the tracklet we can identify them either
while walking to a chair or while standing up from it,
and then propagate their ID to the rest of the monitor-
ing sequence.

4.5 Negative Samples

As we described in Section 4.1, training the Video-
Acceleration Matching network requires the defini-
tion of a triplet constituted by a video clip anchor
V, a positive acceleration Ap and a negative accel-
eration An. While the choice of the (V,Ap) pair
is trivial (each video clip only has one acceleration
that is matching with it), the negative acceleration
An can have a large effect on the overall results and
different strategies need to be tested. Considering
a set of k subjects S = (S1, ...,Sk) recorded for m
days (day1, ...,daym), a negative acceleration An can
be chosen from the Same Subject on the Same Day
(SSSD), Same Subject on a Different Day (SSDD),
or a Different Subject from a different house (DS). In
addition, we can also choose a negative sample that is
simply overlapping with the positive sample (OVLP).
The possible negative samples are summarised for
simplicity in Table 2. In our experiments, we tested all
the different strategies to find the most advantageous
one.

Table 2: Description of possible negative samples for triplet
learning.

Same Day (SD) Diff Day (DD)
Same Sub. (SS) SSSD SSDD
Diff. Sub. (DS) DS DS

Overlap OVLP OVLP

5 RESULTS

We now present a series of results and ablation studies
to show the improvements of the Video-Acceleration
Matching algorithm. To measure the performances of
each trained model, we use the area under the ROC
curve (auROC). If we define True Positive (T P) and
False Positive (FP) as:

T P(β) = { (Vi,A j) | f (Vi)
2−g(A j)

2 < β,

(Vi,A j) ∈ P } ,
(13)

FP(β) = { (Vi,A j) || f (Vi)
2−g(A j)

2 < β,

(Vi,A j) ∈ Q } ,
(14)

where P are the true matching pairs of videos and ac-
celerations (V,A) and Q are the true non-matching
ones, we can define True Positive Rate (T PR) and
False Positive Rate (FPR) as:

T PR =
T P
P

and FPR =
FP
Q

. (15)

The area under the T PR v. FPR is what we refer to as
auROC.

5.1 Best Negative Strategy

The first step to achieve a functional algorithm for
Video-Acceleration Matching is to optimise the video
and acceleration encoders described in Section 4.1.
The most important aspect of this optimisation pro-
cess is to find the best training strategy for the nega-
tive samples. Therefore in this experiment, we keep
the tracking functionality off and focus on the perfor-
mances of the encoders. As already described in Sec-
tion 4.5 and in (Masullo et al., 2020), different train-
ing strategies lead to very different behaviours of the
Video-Acceleration encoder and the best way to find
the optimal negative strategy is to test all the possi-
ble alternatives. For convenience, we decided to train
a model using Houses H1, H2 and H3, and we kept
House H4 out for validation. We tested the 4 differ-
ent strategies for negative samples described in Sec-
tion 4.5 and we report the results in Table 3.

In addition, to better understand the contribution
of our work and compare our results, we also intro-
duced an extra step to the original method (Masullo
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Accelerometers

Subject A
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Figure 4: Illustration of the proposed algorithm. Two subjects are tracked over a long sequence. Their identity, initially
unknown (dashed bounding box) is revealed when they move (solid bounding box) and propagated back using the tracking
information.

et al., 2020), namely (Masullo et al., 2020)+Time as
shown in Table 3, which includes our novel temporal
sampling described in Section 4.3.

Table 3: Results of auROC for the Video-Acceleration en-
coder using different negative strategies.

Method auROC score
(Masullo et al., 2020) 81.3%

(Masullo et al., 2020) + Time 85.1%
Ours: SSSD 80.6%
Ours: SSDD 80.2%

Ours: DS 71.9%
Ours: OVLP 86.1%

Results show that the best training strategy is ob-
tained when negative samples are overlapping with
the anchor (OVLP), with an auROC of 86.1%. The
optimal strategy found in this work differs from the
optimal strategy discovered in (Masullo et al., 2020)
on the Calorie dataset and it is to be expected. In fact,
the Calorie dataset is constituted by a set of acted
actions, for which a negative strategy that leads the
model to learn the different activities is the most ef-
ficient solution. When dealing with unscripted data
from SPHERE, the network cannot exploit any other
information than the actual correlation between the
videos and the acceleration to disclose the matching,
which explains why an overlapping strategy produces
such a high auROC score.

A comparison with previous work also reveals that
our encoder, even without the tracking functionality,
produces better results in terms of auROC score. We
can see that even implementing just the temporal sam-
pling already contributes to an improvement of 3.8
percentage points. In Section 5.4 we will see that this
improvement is even more remarkable once we intro-
duce the tracking functionality.

5.2 Cross-validation of Houses

In order to further assess the results from Section 5.1,
we performed an experiment of leave-one-out cross-
validation using the 4 labelled houses that we have

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 5: ROC curves for cross-validation using the OVLP
negative strategy. Each curve represents the results for a
specific validation House left out from the training process.
The average auROC across all tested models is 81.5%.

available. We selected the best negative strategy of
OVLP and trained 3 different models using only 3 of
the houses available and leaving a different one out
for validation for each model. Results are presented in
Figure 5 in terms of ROC curves. The auROC scores,
highlighted in the legend, support our findings from
Section 5.1, with an average auROC score across all
the houses of 81.5%.

5.3 Test for Number of Houses

Next, we investigated how the number of houses
used during training affected the performances of our
Video-Acceleration encoder. We kept one house at a
time out for validation, as in Section 5.2, and used an
increasing number of houses for training among the
remaining three. The results, plotted for each left-out
house in Figure 6 illustrate that, as expected, increas-
ing the number of houses used for training leads to
better performance. It is also interesting to note that
the performance improvement is particularly steep
when House H1 is left out for validation. This can be
explained by noting that House H1 (see Table 1) is the
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Figure 6: Test for variable number of houses used in train-
ing. Each house is kept out for validation and the remaining
houses are used for training in increasing size.

largest house in terms of data collected and therefore
leaving it out of the training set leads to a model with
the poorest performances. Results for House H4 con-
firm this observation presenting the highest auROC
score and constituting the smallest house that is left
out of the training data.

5.4 Results for Tracking Sequences

Finally, we test the performance of our full pro-
posed method, including the tracking functionality
described in Section 4.4. For this test, we trained
on houses H1, H2, and H3 using the best negative
strategy OVLP and tested using entire tracklets on
house H4. As described in Section 4.4, the output
of our algorithm is a vector of Novp distances between
video clips and accelerations evaluated for each track-
let. The final decision on the matching can be taken
by aggregating the tracklet vector in a single number
by considering its mean, median or minimum value.
In order to study the performance of the algorithm,
we simulate a scenario where two wearables are de-
tected in the same house but only one person is in
front of the camera and we want to know who that
person is. We achieve this by comparing each video
sequence both to the matching acceleration and to the
acceleration of the same person at a different time, as
already done in previous studies (Shigeta et al., 2008;
Masullo et al., 2020). We then calculate the auROC
score for all mean, median and minimum strategies as
seen in Table 4. For convenience, we also report here
the comparison results from (Masullo et al., 2020) of
Table 3.

We notice how the minimum strategy is the least
effective, since it maximises the chances that a single
clip in the tracklet is erroneously matched between
video and acceleration. The mean and median strate-

Table 4: Results of auROC for different tracking methods.

Method auROC score
(Masullo et al., 2020) 81.3%

(Masullo et al., 2020) + time 85.1%
Ours: Tracking minimum 77.3%

Ours: No tracking 86.1%
Ours: Tracking median 89.1%

Ours: Tracking mean 90.2%

gies are comparable in performance, although the for-
mer has a stronger discrimination power with an au-
ROC score of 90.2%. When comparing our results
with previous works, we can see that even without the
tracking functionality our algorithm is already able to
achieve 86.1% auROC agasint the 81.3% of (Masullo
et al., 2020). When we introduce tracking, the auROC
jumps up to 90.2%, outperforming previous works by
8.9 percentage points.

5.5 Tailored Sit-to-Stand Measurements

Finally, in order to provide with a real application of
our novel video-acceleration matching algorithm, we
tested our methodology on House H5, which is com-
pletely new to the model and was not filtered or la-
belled in any way. The house was occupied by two
participants, only one of whom was being monitored
using the accelerometer. The monitored subject un-
derwent a hip/knee replacement during the experi-
ment and we analysed their transition from sitting to
standing to study their recovery progress over time.

All the silhouettes recorded in the house were
analysed using the sit-to-stand detection algorithm
from (Masullo et al., 2019), resulting in the trend plot
in Figure 7, which depicts the stand-up speed as a
proxy of musculoskeletal functionality. This plot is
an ensemble of all the sit-to-stand transitions detected
in the house, including the monitored subject, their
partner and any potential guest, which results in par-
ticularly large error-bars of 0.0747 m/s. In spite of the
error, the plot still reveals a clear decay of the stand-
up speed in the 2 weeks soon after the surgery, fol-
lowed by a slow but steady increase in the following
months. This behaviour is to be expected since the
surgery patient is impaired post-operation and tends
to be more careful standing up, resulting in lower
stand up speeds. Once the wounds start healing, the
patient regains confidence and starts standing up more
quickly, reaching a final stand up speed that is higher
than before the surgery.

In order to obtain a more accurate trend for the
recovery of the monitored patient, we can use our
novel video-acceleration matching algorithm to anal-
yse only the stand-up transitions that were gener-
ated by them. Results are presented in terms of tai-
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Figure 7: Speed of the transition from sitting to standing
calculated on all the subjects appearing in front of the cam-
era and averaged per week. The red light represents the
trend from the surgery day until the end of the experiment.
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Figure 8: Speed of the transition from sitting to standing
calculated only for the subject undergoing hip/knee surgery
replacement, isolated using our matching algorithm and av-
eraged per week. The red light represents the trend from the
surgery day until the end of the experiment.

lored stand-up transitions in Figure 8, where a much
sharper decrease of the stand-up speed soon before
and after the surgery are observed, from ≈ 0.5 m/s
to ≈ 0.3 m/s. A sharper slope can also be observed
for the recovery trend, which increases from 0.0482
to 0.0770 m/s/month. This steeper slope is an ad-
ditional element confirming that our matching algo-
rithm is working properly and it is tailoring the video
measurements to our target subject. A comparison
of the average error-bar size between the two plots
provides us with a further confirmation of our results,
with an average error of 0.0747 m/s of the old results
compared with 0.0611 m/s of our tailored trend.

6 CONCLUSIONS

The majority of AAL systems are designed and im-
plemented under very strictly-controlled conditions,
often tailored to home-lab environments with lim-
ited occupancy and often including acted scenarios.
The reality is different, where people live their own
lives and regularly have guests, caretakers, pets, and
they leave their house, and even move their furniture
around. Moreover, many studies have shown an in-
creasing concern towards the privacy aspects of AAL

systems, especially in terms of RGB cameras and
mass surveillance.

In this paper, we proposed a solution to the above
concerns by developing a framework for AAL that al-
lows monitoring and ReID through multi-sensory fu-
sion of silhouettes and accelerations from wearable
devices. Our method is an improved version of the
work in (Masullo et al., 2020) to develop a track-
ing functionality which allows the system to be de-
ployed in real-world multi-occupancy environments.
We tested the algorithm in different conditions and
dissected its performances through a series of ab-
lation studies, showing an average auROC score of
81.5%. Additionally, we also presented a clinically
relevant real-world application of our AAL frame-
work by monitoring a hip/knee replacement surgery
patient during their recovery period. Results suggest
that the application of our methodology allows for a
more detailed trend plot that can better help clinicians
to follow their patient’s quality of rehabilitation.
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