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Frederick Sauermann2 e, Andreas Gützlaff2 f, Günther Schuh2 g and Tobias Meisen3 h

1Institute of Information Management in Mechanical Engineering, RWTH Aachen University, Aachen, Germany
2Laboratory for Machine Tools and Production Engineering WZL, RWTH Aachen University, Aachen, Germany

3Chair of Technologies and Management of Digital Transformation, University of Wuppertal, Wuppertal, Germany

Keywords: Manufacturing Control, Production Scheduling, Job Shop Scheduling, Deep Reinforcement Learning,
Combinatorial Optimization.

Abstract: Computing solutions to job shop problems is a particularly challenging task due to the computational hardness
of the underlying optimization problem as well as the often dynamic nature of given environments. To address
such scheduling problems in a more flexible way, such that changing circumstances can be accommodated,
we propose a reinforcement learning approach to solve job shop problems. As part of our approach, we
propose a new reward shaping and devise a novel action space, from which a reinforcement learning agent can
sample actions, which is independent of the job shop problem size. A number of experiments demonstrate that
our approach outperforms commonly used scheduling heuristics with regard to the quality of the generated
solutions. We further show that, once trained, the time required to compute solutions using our methodology
increases less sharply as the problem size grows than exact solution methods making it especially suitable for
online manufacturing control tasks.

1 INTRODUCTION

Optimization problems in production planning and
control (PPC) are often solved using simple priority
rules and heuristics, which tend to achieve reasonable
results with short computation time. While exact ap-
proaches such as integer linear programming (ILP)
can be used to find optimal solutions, the time re-
quired to find such solutions is often impractical due
to the NP-hardness of problems in this space (Garey
and Johnson, 1979; Kan and Rinnooy, 2012). Fur-
thermore, such methods create complete solutions for
a given set of inputs, e.g. all jobs on a given day.
Should any of the underlying assumptions of the opti-
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mization problem change after the solution is created,
these algorithms will have to create a complete so-
lution once more, which again will result in a high
cost in terms of computation time and render the ap-
plication of such methods impractical in a dynamic
production environment.

Reinforcement learning (RL) offers an alternative
to the aforementioned approaches. Here, a so-called
agent creates a solution step by step, while the cur-
rent situation is reassessed at every step, such that
new information about changing circumstances is re-
flected in the future decision-making process of the
agent. Before such an agent can be employed in prac-
tice, it needs to be trained with regard to a specific
problem formulation. While this training is usually
time-intensive, it only needs to be performed once
and a trained agent can create scheduling solutions
in reasonable time. Since a reinforcement learning
agent essentially learns a heuristic suitable to a spe-
cific problem, there are no mathematical guarantees
for solutions created in this manner to be optimal, but
there is a possibility that such a learned heuristic can
outperform currently used heuristics and priority rules
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in terms of solution quality while keeping the time re-
quired for scheduling low.

While reinforcement learning approaches have
been investigated in production planning and schedul-
ing before (Zhang and Dietterich, 1995; Aydin and
Öztemel, 2000; Schneckenreither and Haeussler,
2018; Gabel and Riedmiller, 2008; Waschneck et al.,
2018; Qu et al., 2016), some shortcomings still exist.
One crucial issue is the capability of an agent to gen-
eralize to previously unseen job shop problems (JSPs)
of various sizes. If state representation and action
space are directly linked to the size of the problem,
i.e. the number of machines and orders in the produc-
tion, generalization is only possible to a very limited
degree. This paper aims to make one step towards a
reinforcement learning approach capable of general-
izing to different problem sizes by presenting a novel
action space design independent of the number of ma-
chines and orders involved in the planning. How this
design affects generalization performance will be a
focus in the work presented here. Additionally, we
introduce a new reward shaping approach aimed to
incentivize the learning of near-to-optimal scheduling
strategies through high reward gradients towards the
optimum.

The remainder of the paper is structured as fol-
lows. The next section gives a brief description of
the necessary background on production planning and
scheduling, JSP, relevant metrics, common schedul-
ing approaches, as well as a brief introduction to rein-
forcement learning. Section 3 discusses existing work
on the use of RL for production planning and control,
while section 4 elaborates on our own approach to the
issue. Section 5 presents experimental results gener-
ated by our approach and some final considerations
are given in section 6.

2 BACKGROUND

2.1 Production Planning and Control

Today, manufacturing companies are, among other
trends, facing the problem of increasing demand for
customized products (Zijm and Regattieri, 2019; Ja-
cobs, 2011; Gyulai et al., 2018). As a consequence,
companies need to increase the flexibility of their pro-
duction. Therefore, they often decide for the prin-
ciple of job shop production, allowing to manufac-
ture more customer-specific product offerings (Duffie
et al., 2017; Schuh et al., 2019). Here, components
can pass through the workstations required for pro-
cessing in a flexible sequence in a mostly undirected
material flow (Zijm and Regattieri, 2019). As a result,

complexity in PPC increases and demands for well-
designed strategies that support mastering this com-
plexity (ElMaraghy et al., 2013).

For mastering the complexity, targets of PPC need
to be understood. In general, the so-called logistical
targets can be classified in logistical performance and
logistical costs. The target of improving logistical
performance can be further specified by shortening
lead times and increasing the adherence to produc-
tion schedules, both internally and externally. On the
other hand, the target of reducing logistical costs is
expressed by increasing utilization of production re-
sources and reducing work-in-process (WIP) and tied
capital, subsequently. However, those targets depend
on each other and improving one can lead to a dete-
rioration of others (e.g. reducing WIP can lead to a
decrease in utilization). Hence, the optimization of
all targets can not be pursued at the same time, and
companies need to prioritize, with high adherence to
schedules and especially delivery dates usually being
the most important targets (Lödding, 2013; Gyulai
et al., 2018).

The planning of an optimal sequence and assign-
ment of orders to machines to achieve the logistic
goals prioritized by companies is laborious and com-
plex. To approach these problems, manufacturing
companies usually use software systems such as an
enterprise resource planning (ERP) system. These
systems are based on the logic of manufacturing re-
source planning (MRP II), which is an extension of
material requirements planning (MRP) (Zijm and Re-
gattieri, 2019). In a MRP II process, end products are
initially broken down into their components. Then,
the steps of operation of these components are as-
signed to work stations. Finally, the different com-
ponents are put into order on each machine, trying
to meet the end completion date of the whole order
(Zijm and Regattieri, 2019; Kurbel, 2016). Due to the
immense combinatorial complexity of PPC tasks such
as order release and sequencing on machines, practi-
cal approaches often make use of heuristics to enable
nearly optimal solutions with significantly reduced ef-
fort (Kurbel, 2016).

The task of order release is to determine an opti-
mal point in time to start with the production of an
order in a job shop production environment. This task
has a strong impact on the logistical targets. Releas-
ing orders close to their delivery dates can reduce WIP
and lead times, but bears the risk of a low adherence
to delivery dates. On the other hand, releasing orders
early does not necessarily lead to a higher probability
of better adherence to delivery dates, as an increase of
WIP results in longer and more scattered lead times
that are difficult to plan (Buker, 2001; Mather and
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Plossl, 1978). As a result, the goal is to release orders
as late as possible while still trying to meet delivery
dates. Typical heuristics for releasing orders are e.g.
constant WIP (conWIP), bottleneck control, or work-
load control (Lödding, 2013).

With order lead times up to several weeks or
months, a second important task in PPC is order se-
quencing at work stations (Schuh et al., 2019). The
goal of order sequencing is to support the achieve-
ment of logistical targets. The aim is to sort and pro-
cess work steps on the work stations in such a way
that all orders are completed on schedule. Common
heuristics for sequencing are first-in-first-out (FIFO),
setup time optimized or minimum slack. Further
heuristics to address the problem are the shortest-
processing-time (SPT) and longest-processing-time
(LPT) priority rules, in which operations are se-
quenced in increasing, respectively decreasing or-
der of their processing times. Finally, the longest-
remaining-processing-time (LRM) rule selects the op-
eration of the job with the longest remaining process-
ing time. Here, the operation under consideration is
excluded from the computation of the remaining pro-
cessing time (Lödding, 2013).

2.2 Reinforcement Learning

Reinforcement learning is an area of machine learning
which investigates how an agent can learn to perform
a specific task in a given environment. In order to ap-
ply reinforcement learning, the problem at hand needs
to be modeled as a Markov decision process (MDP).
Such a MDP features a state s which can change over
the course of discrete time steps. In each time step, an
action a available in the current state can be chosen,
which may influence the state s′ in the next time step
and lead to a reward Ra(s,s′). A reinforcement learn-
ing agent learns a policy, i.e. a mapping from states
to actions, by receiving the corresponding rewards for
performing actions in a problem modeled as an MDP.
A policy is learned with the goal of maximizing not
the reward at any single time step, but rather the long-
term cumulative reward (Sutton and Barto, 2018). If a
sequence of states has a clear beginning and endpoint,
it is called an episode and the corresponding problem
is considered an episodic task.

Reinforcement learning algorithms can be di-
vided into value-based, policy-based, and hybrid ap-
proaches. In value-based approaches, the value of
each available action in a specific state is estimated
and a policy is derived subsequently from these es-
timated values. In policy-based based approaches,
a policy as described above is learned directly as a
probability distribution of all actions in a given state.

Such policy approaches typically update the learned
policy at the end of an episode based on the over-
all reward received in that episode. Since actions
are not evaluated individually, the current state of
the policy might be evaluated as good overall while
some of the actions performed where actually disad-
vantageous or vice versa. So-called actor-critic ap-
proaches are a hybrid of value-based and policy-based
approaches that allow for an evaluation of individual
actions by updating the parameters of an actor, which
is the policy-based component, based on the value es-
timates computed by a critic, which is the value-based
component. In contrast to value-based approaches,
actor-critic and policy-based approaches lend them-
selves well to high-dimensional and continuous ac-
tion spaces (Konda and Tsitsiklis, 2000). In our work,
we apply Deep Q-Learning (DQN) as an example of
a value-based approach operating with discrete action
spaces and Soft Actor-Critic (SAC) as a representa-
tive of the actor-critic group of algorithms relying on
continuous action space design.

DQN is a variant of the well-known Q-
Learning algorithm (Watkins, Christopher John Cor-
nish Hellaby, 1989), in which the action-value func-
tion Q(s,a), i.e. the function describing the long-term
expected reward when performing action a in state s,
is approximated. These estimates are updated based
on the Bellmann equation given below:

Q(s,a) = Q(s,a)+α

(
r+ γmax

a′
Q(s′,a′)−Q(s,a)

)
(1)

where the learning rate α determines how much new
information affects the current estimate, r is the cur-
rent reward and γ is a discounting factor describing
how much projected rewards from future actions in-
fluence the current value.

While these estimates were originally stored in
simple tables where each cell corresponded to the
Q-Value of one specific action in one specific state,
current approaches such as DQN use deep neural
networks to approximate action-values. These net-
works improve by updating their parameters in the
direction of the gradient of a so-called loss function,
which compares the value Q(s,a) predicted by the
network with the correct value. Since the correct
value is not known in this case, it is substituted by
r + γmaxa′Q(s′,a′), similarly as in eq. (1). In con-
trast to DQN, the SAC algorithm maximizes not just
the expected reward but also the entropy of its policy,
which promotes exploration and prevents premature
convergence to local optima by encouraging the agent
to act with as much randomness as possible while still
succeeding at the given task. (Haarnoja et al., 2018).
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3 RELATED WORK

Early applications of reinforcement learning in the
area of production planning and scheduling com-
prised the modification of an initial, but infeasible so-
lution by iteratively reducing the number of violated
constraints in order to arrive at a feasible solution
(Zhang and Dietterich, 1995; Zhang and Dietterich,
1996). Further work has been carried out in the ap-
plication of reinforcement learning for order release
(Schneckenreither and Haeussler, 2018). Another ap-
proach focuses on the selection of appropriate priority
rules to schedule jobs based on the current state (Ay-
din and Öztemel, 2000).

While the number of single-agent approaches to
the job-shop problem in the literature is scarce, multi-
agent approaches have been investigated particularly
often in the area, possibly because modeling such a
problem becomes easier when various decisions can
be decoupled from each other and addressed sepa-
rately. One such example is the assignment of a sep-
arate agent to each machine in a job-shop schedul-
ing problem as described in (Gabel and Riedmiller,
2008; Gabel, 2009). More recent examples of this
type of approach have been applied in the context of a
semi-conductor production facility (Waschneck et al.,
2018), and in the combination of an agent performing
scheduling with an agent performing human resource
management to solve a flow-shop problem (Qu et al.,
2016).

While multi-agent approaches offer an easy way
to scale to bigger problem sizes by increasing the
number of agents, training such a group of agents
tends to be more difficult due to the inherent non-
stationary of an environment inhabited by other
agents, as well as the need to ensure that the agents
cooperate to solve overarching problem. Scaling to
bigger problem instances using a single-agent ap-
proach is not trivial, as state and action spaces are
typically dependent on the number of machines and
jobs. We partially address this issue by introducing
an action space independent of the number of jobs.

4 EXPERIMENTAL SETUP AND
SOLUTION DESIGN

The given experimental setting aims to evaluate the
proposed RL approach designed for simultaneous
management of two manufacturing control tasks in
complex production environments: order release and
operation sequencing. We pick job-shop production
as one of the most well known and challenging man-
ufacturing control environments. Even small prob-

Machine 1 Machine 2

Machine m

23 7

…

12 6
Job n

23 7
Job 1

✓✓ 7
Job 1

2✓ 7
Job 1

Order Release Pull

✓✓ ✓
Job 1

Finished Jobs

Colors                  : operation types

Numbers              : operation durations

Connections             : sequence dependencies

3

Order Release Sequencing

…

…

Figure 1: Job-Shop Order Release and Scheduling Setup.

lem instances with 3 jobs and 3 machines are demon-
strated to have NP-hard combinatorial complexity of
underlying scheduling tasks (Sotskov and Shakhle-
vich, 1995).

4.1 Job-shop Problem Formalization

A set of job-shop problems used in this study is for-
malized as follows: each problem instance has a set
of jobs J = {J1, ...,Jn} to be manufactured. Each
job Ji (i = 1, ...,n) includes a set of operations Oi =
{Oi1, ...,Oin} that can be processed in a predefined se-
quence only. Each operation Oiq (q = 1, ...,n) has
a non-negative integer processing time tiq and is as-
signed for processing to one machine from a ma-
chine set M = {M1, ...,Mm}. Each machine M j ( j =
1, ...,m) can process one operation Oiq (q = 1, ...,n)
at a time (Sotskov and Shakhlevich, 1995). We de-
fine the optimization objective as finding a schedule J
on M that minimizes the latest end time of any job Ji,
also referred to as the makespan Cmax.

To use RL for the task of order release and op-
eration sequencing, we define the solution process as
a Markov Decision Problem (MDP) (Howard, 1960).
In the initial state, all machines are idle and orders
included in the production program are placed in an
order release pull. Through a set of actions, the RL
agent can decide to stay inactive for one time unit,
move an order from order release pull into production
(order release), or move an order from one machine to
another machine (order sequencing). The final state
of an episode is achieved when all planned orders are
finished or the number of actions executed by the RL
agent exceeds the predefined limit. A sparse reward
is used, meaning that a reward is given only at the last
step of an episode and the reward for all intermediate
steps is zero. This sparse reward is inversely related
to the achieved makespan (see Figure 1).

4.2 RL Implementation

The considered RL implementation is divided into
three major design aspects: state space representation,
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action space, and reward shaping.

4.2.1 State Space Representation

The state observed by the agents is comprised of six
separate components: (1) the machine states, i.e. the
remaining time for the operations currently being pro-
cessed on each individual machine, (2) the sum of all
operations’ processing times currently in the queue
of each individual machine, (3) the sum of all oper-
ations’ processing times for each individual job, (4)
the duration of the next operation for each individual
job, (5) the index of the next required machine for
each individual job, and finally (6) the time already
passed in any given moment. If no job is being pro-
cessed on a machine at a particular point in time, the
corresponding entry in (1) will be −1. The relevant
elements of (4) and (5) will likewise be set to −1 if
no further operation needs to be carried out for a par-
ticular job. Each of these components is normalized
before being passed onto the agent.

4.2.2 Action Space Design

Based on the observed state, the agent needs to decide
which operation Oi j to process next, if any. To ensure
a consistent action space regardless of the number of
jobs and operations per job, the agent selects a rel-
ative duration a which will be mapped to a specific
operation, rather than selecting the operation directly.
Such a relative duration selected by the agent is then
mapped back to an absolute duration using the over-
all minimum and maximum processing times tmin and
tmax, respectively. This absolute duration is then com-
pared against every available operation’s processing
time tiq and the operation Osel with the closest pro-
cessing time is selected, as formalized in eq. (2).

Osel ← argmin
i,q

(
|tiq− (tmin +

a
10
∗ (tmax− tmin)|

)
(2)

Should multiple operations with identical processing
times exist, ties will be broken by applying the SPT
rule as a first step and, if necessary, applying the LRM
rule in a second step. The proposed action space de-
sign allows for the use of RL agents with both dis-
crete or continuous action space. In the discrete case,
possible actions span the integers in a range [0,10],
which represent relative durations. A continuous ac-
tion space modification comprises the real numbers
instead of integers in a range [0,10], thus potentially
enabling better precision when selecting operations.
Aside from the already mentioned action space above,
there is one special action with value −1, upon which
no operation will be selected at all, extending the

overall action space to a range of integers or real num-
bers [−1,10].

4.2.3 Reward Shaping

Next to state and action spaces, a reward function is
necessary in order to apply RL. In this work, we de-
fine a sparse reward function which only evaluates the
performance of the agent at the end of an episode.
While learning usually benefits from more frequent
rewards, in this case intermediate rewards are diffi-
cult to define in such a way that they correspond to
the actual optimization objective, which can only be
accurately evaluated once an episode has terminated.

The sparse reward function r(T ) employed here
is defined as in eq. (3), giving high rewards when the
makespan T of the solution is close to the optimal one
Topt and exponentially lower rewards as the quality of
the solution moves away from the optimal one. Coef-
ficient γ defines the steepness of the reward gradient
and is set to 1.025 in this work.

r(T ) = 1000
γTopt

γT (3)

4.3 Evaluation Approach

The main evaluation criteria in this study are solu-
tion quality, solution speed, and scalability to big-
ger problem instances. We evaluate our proposed
RL approach against three alternative approaches: the
well-known OR-tools implementation of the CP-SAT
solver (Perron and Furnon, 2020), as well as two com-
mon priority rule heuristics: shortest processing time
(SPT) and longest processing time (LPT). This choice
is by no means an exhaustive representation of com-
mon JSP solution approaches and is meant to give an
estimation of the relative performance against a set of
alternative JSP solvers designed specifically for solu-
tion speed or optimality.

In this work three jsp instance sizes are used in
experiments:

• jsp instances with 6 machines, 6 jobs, 6 operations
per machine refereed to as 6x6x6 jsp instances.

• jsp instances with 10 machines, 10 jobs, 10 op-
erations per machine refereed to as 10x10x10 jsp
instances.

• jsp instances with 15 machines, 15 jobs, 15 op-
erations per machine refereed to as 15x15x15 jsp
instances.

The generation of JSP instances for training and eval-
uation is completely random with no selection in-
volved. Durations of operations are uniformly sam-
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pled within a range [1,11] time units. Each opera-
tion is randomly assigned to one of the machines. No
selection of JSP instances is performed. Each JSP
instance is solved with the CP-SAT, SPT, and LPT
solver. The makespan for each JSP instance as found
by the CP-SAT solver is considered to be a reference
value for reward calculation (see eq. (3)) and is used
as a performance benchmark in our study. Solution
quality is formalized as an optimality gap (OptGap)
and can bee seen as a function of difference between
achieved makespan (T ) and the reference makespan
found by CP-SAT solver (Topt ) (see eq. (4)). Lower
values of the optimality gap correspond to better so-
lutions.

OptGap =
T −Topt

Topt
·100 (4)

5 EXPERIMENTS AND RESULTS

During the first iteration of experiments we conduct
several training and evaluation runs on single JSP in-
stances of various sizes. This is meant to test the
capability of an RL agent to iteratively find and im-
prove a JSP solution through exploration as well as to
test the applicability of RL agents with discrete and
continuous action spaces. Figure 2 demonstrates that
the new action space design is equally suitable for the
use with RL agents relying on discrete action spaces
(e.g. DQN) as well as RL agents operating on con-
tinuous action spaces (e.g. SAC). Due to space limi-
tations, the rest of the work presents results achieved
with DQN RL agents only. However, as demonstrated
here, comparable results can be achieved with an SAC
RL agent.

As a next step we look into using the same
RL setup on single JSP instances of 10x10x10 and
15x15x15 size (see Figure 3). Both runs demon-
strate a gradual improvement of reward per episode
during the training phase. For JSP sizes 10x10x10
and 15x15x15, the RL agent is given 1,500,000, and
2,000,000 time steps respectively to gradually im-
prove the dispatching and scheduling strategy. A
growing optimality gap can be seen with a growing
JSP size. Nevertheless, in both cases, the chosen RL
approach surpasses the common LPT and SPT heuris-
tics demonstrating the possibility of the chosen ap-
proach to scale to bigger JSP instances with sufficient
training.

Depending on operations strategies, SPT and LPT
are well-known sequencing rules in terms of through-
put or utilization maximization. One of the success
factors of those priority rule heuristics is the possibil-

ity to generate a new production schedule in a short
period of time. A lower runtime required to find a
feasible and near-to-optimal schedule increases the
planning flexibility and allows to minimize the neg-
ative impact of unexpected changes and disturbances
in the production environment. Figure 4 demonstrates
the average time needed to solve 50 JSP instances of
sizes 6x6x6, 10x10x10 and 15x15x15 with the SPT
and LPT heuristics, the proposed RL agent, as well
as with the CP-SAT solver. While the SPT heuristic,
LPT heuristic and RL approach demonstrate a mod-
erate increase in required runtime to generate a JSP
solution with growing problem size, the CP-SAT run-
time quickly becomes infeasible for online schedul-
ing. A 15x15x15 JSP instance can require up to 2.2
hours of runtime for the CP-SAT solver. The longest
observed solution time for the investigated RL ap-
proach for a JSP instance of the same size is 40 sec-
onds, while the SPT and LPT heuristics consume up
to 14 seconds each. All runtime benchmarks are con-
ducted on the same hardware featuring two Intel Xeon
E5-2687W CPUs and 256 GB RAM.

Further analysis of RL agent runtimes demon-
strates that the time required for inference of the next
step by the RL agent based on the given production
state is bellow 1% of the calculation times spend on
state updates within the production simulation envi-
ronment. In future work the execution time of the
developed production simulation can be greatly in-
creased by using faster Python implementations such
as PyPy or by adopting process-based discrete-event
simulation frameworks such as SimPy.

The main interest of our work lies in the inves-
tigation of the generalization capabilities of the pro-
posed RL approach. To ensure the generalization ca-
pabilities of the RL agent, we conduct training on 900
JSP instances of size 6x6x6. It takes 2,000,000 train-
ing steps to learn a scheduling strategy surpassing the
SPT and LPT heuristics for unseen JSP instances. The
final evaluation is conducted on 50 JSP instances not
seen during training. Each RL training is conducted
ten times with different fixed random seeds. Eval-
uation results from all ten training runs are used in
the final comparison against the alternative solution
approaches. Figure 5 depicts optimality gap distri-
butions for schedules found by the trained RL agent,
SPT, and LPT heuristic compared to the reference
JSP solutions found by the CP-SAT solver. On av-
erage, schedules generated by the trained RL agent
have 4.5% smaller optimality gap compared to the
next best SPT heuristic. 6% of generated RL solutions
are optimal, while no optimal schedules were found
by SPT or LPT heuristics. The biggest observed op-
timality gaps on the evaluation JSP set for RL agent,
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(a) DQN training for 200,000 time steps: RL agent in-
crementally learns better JSP solution

(b) DQN evaluation: RL agent has found a solution with
the shortest makespan

(c) SAC training for 200,000 time steps: RL agent incre-
mentally learns better JSP solution

(d) SAC evaluation: RL agent has found a solution with
the shortest makespan

Figure 2: Training and evaluation of RL agents on a single 6x6x6 JSP instance: both RL agents with continuous and discrete
action space can be successfully used with the proposed action space design.

(a) Single 10x10x10 jsp instance: DQN agent found bet-
ter JSP solution comparing to SPT and LPT heuristics

(b) Single 15x15x15 JSP instance: DQN agent found
better JSP solution comparing to SPT and LPT heuris-
tics

Figure 3: DQN agent benchmarking on bigger single JSP instances.

SPT and LPT heuristics are 39%, 39%, and 69% re-
spectively. The best RL run reduces the biggest opti-
mality gap down to 26%.

To statistically investigate observed differences
in optimality gaps between different scheduling

methods, the Wilcoxon signed-rank test (Rey and
Neuhäuser, 2011) is used. It is a non-parametric sta-
tistical test that makes no data normality assumption
and is used to compare two related samples. In this
case, we do the pairwise comparison of the SPT and
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Table 1: Statistical investigation of observed optimality gap differences: Wilcoxon signed-rank test p-values.

Priority
Rules

RL
Run 1

RL
Run 2

RL
Run 3

RL
Run 4

RL
Run 5

RL
Run 6

RL
Run 7

RL
Run 8

RL
Run 9

RL
Run 10

SPT 0.066 0.025 0.010 0.040 0.008 0.034 0.004 0.012 0.07 0.011
LPT 1.8E−4 2.14E−5 6.58E−6 7.17E−5 1.03E−5 4.76E−5 1.99E−6 1.03E−5 2.69E−4 7.23E−6

Figure 4: Comparison of average runtime per JSP instance
of various sizes.

Figure 5: Generalization test: optimality gaps for different
JSP solvers on a set of 50 unseen 6x6x6 jsp instances.

LPT heuristics with RL agents trained in ten indepen-
dent runs. All comparisons are conducted on the same
50 test JSP instances. The null hypothesis is stated as
follows: there is no difference between the medians of
the two observed populations, e.g. there is no differ-
ence in performance between the given priority rule
and RL agent. Table 1 provides resulting p-values for
the formulated null-hypothesis. Assuming a signifi-
cance level of 0.05, no conclusion about the observed
difference between the LPT heuristic and RL runs 1
and 9 can be derived. For the remaining 8 compar-
isons, there is sufficient evidence to support the claim
that the RL approach yields scheduling solutions with
lower optimality gaps compared to the SPT and LPT
heuristics.

6 CONCLUSION AND OUTLOOK

This work adapts methods of RL for job shop schedul-
ing. The main contribution of this work is the intro-
duction of a novel action space, which is indepen-
dent of the number of machines and orders allow-
ing for use of RL agents with continuous and dis-
crete action spaces. To the best of our knowledge,
this is the first action space design independent of the
problem dimensionality. Additionally, we introduce a
new reward shape encouraging the learning of optimal
schedules through higher reward gradients for near-
optimal solutions. In several evaluations, we demon-
strate that the trained RL agent can find consistently
better schedules for unseen JSPs compared to com-
mon priority rule approaches, and is orders of mag-
nitudes faster compared to state of the art constraint-
programming solvers such as the CP-SAT implemen-
tation from OR-tools. Our RL approach offers a good
balance between speed and solution quality which is
a crucial factor for online scheduling applications in
dynamic production environments.

One important direction of future work is trans-
ferring the achieved results to bigger, and hence more
realistic JSP instances. This work will concentrate on
three main directions: increasing RL training speed
and efficiency, enhancing reward design, as well as
developing new solution designs for the state-space
representation. To make extensive training of RL
agents possible, a runtime optimization of the devel-
oped production simulation should be conducted. Ad-
ditionally, distributed RL training can be adopted by
the deployment of such RL methods as Proximal Pol-
icy Optimization (Schulman et al., 2017). Our pro-
posed reward shape requires a precalculated optimum
for every JSP instance used for training. This can be
eliminated by adopting the ”ranked reward” idea pre-
sented by Laterre et al. (Laterre et al., 2018). Finally,
in addition to the action space, it is important to make
the state space representation agnostic to the problem
dimensionality as well, so that one RL agent can be
used for JSP problems of various sizes.
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