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Abstract: We study the generalization properties of pruned models that are the winners of the lottery ticket hypothesis on
photorealistic datasets. We analyse their potential under conditions in which training data is scarce and comes
from a not-photorealistic domain. More specifically, we investigate whether pruned models that are found
on the popular CIFAR-10/100 and Fashion-MNIST datasets, generalize to seven different datasets coming
from the fields of digital pathology and digital heritage. Our results show that there are significant benefits in
training sparse architectures over larger parametrized models, since in all of our experiments pruned networks
significantly outperform their larger unpruned counterparts. These results suggest that winning initializations
do contain inductive biases that are generic to neural networks, although, as reported by our experiments on the
biomedical datasets, their generalization properties can be more limiting than what has so far been observed
in the literature.

1 INTRODUCTION

The “Lottery-Ticket-Hypothesis” (LTH) (Frankle and
Carbin, 2018) states that within large randomly ini-
tialized neural networks there exist smaller sub-
networks which, if trained from their initial weights,
can perform just as well as the fully trained unpruned
network from which they are extracted. This hap-
pens to be possible because the weights of these sub-
networks seem to be particularly well initialized be-
fore training starts, therefore making these smaller ar-
chitectures suitable for learning (see Fig 1 for an illus-
tration). These sub-networks, i.e., the pruned struc-
ture together with their initial weights, are called win-
ning tickets, as they appear to have won the initializa-
tion lottery. Since winning tickets only contain a very
limited amount of parameters, they yield faster train-
ing, inference, and sometimes even better final per-
formance than their larger over-parametrized coun-
terparts (Frankle and Carbin, 2018; Frankle et al.,
2019a). So far, winning tickets are typically identified
by an iterative procedure that cycles through several
steps of network training and weight pruning, start-
ing from a randomly initialized unpruned network.
While simple and intuitive, the resulting algorithm,
has unfortunately a high computational cost. De-
spite the fact that the resulting sparse networks can
be trained efficiently and in isolation from their initial
weights, the LTH idea has not yet led to more effi-

cient solutions for training a sparse network, than ex-
isting pruning algorithms that all also require to first
fully train an unpruned network (Han et al., 2015a;
Molchanov et al., 2016; Dong et al., 2017; Lin et al.,
2017; Zhuang et al., 2018).

Since the introduction of the idea of the LTH, sev-
eral research works have focused on understanding
what makes some weights so special to be the win-
ners of the initialization lottery. Among the differ-
ent tested approaches, which will be reviewed in Sec.
5, one research direction in particular has looked into
how well winning ticket initializations can be trans-
ferred among different training settings (datasets and
optimizers), an approach which aims at characteriz-
ing the winners of the LTH by studying to what ex-
tent their inductive biases are generic (Morcos et al.,
2019). The most interesting findings of this study are
that winning tickets generalize across datasets, within
the natural image domain at least, and that tickets ob-
tained from larger datasets typically generalize bet-
ter. This opens the door to the transfer of winning
tickets between datasets, which makes the high com-
putational cost required to identify them much more
acceptable practically, as this cost has to be paid only
once and can be shared across datasets.

In this paper, we build on top of this latter work.
While Morcos et al. (Morcos et al., 2019) focused
on the natural image domain, we investigate the pos-
sibility of transferring winning tickets obtained from
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Figure 1: A visual representation of the LTH as introduced in (Frankle and Carbin, 2018). Let us consider a simplified version
of a two hidden layer feedforward neural network as is depicted in the first image on the left. The LTH states that within
this neural network there exist multiple smaller networks (represented in green), which perform just as well as their larger
counterpart. Training these sparse models from scratch successfully is only possible as long as their weights are initialized
with the same values that were also used when the larger (black) model was initialized. As can be seen by the blue curve of
the last plot the performance of such pruned models gets barely harmed even when large pruning rates are reached. These
models are considered as the winners of the initialization lottery and also perform better than the same models re-initialized
randomly (orange line). Results obtained on the MNIST dataset that replicate the findings presented in (Frankle and Carbin,
2018).

the natural image domain to datasets in non natural
image domains. This question has an important prac-
tical interest as datasets in non natural image domains
are typically scarcer than datasets in natural image do-
mains. They would therefore potentially benefit more
from a successful transfer of sparse networks, since
the latter can be expected to require less data for train-
ing than large over-parametrized networks. Further-
more, besides studying their generalization capabili-
ties, we also focus on another interesting property that
characterizes models that win the LTH, and which so
far has received less research attention. As originally
presented in (Frankle and Carbin, 2018), pruned mod-
els which are the winners of the LTH can yield a final
performance which is better than the one obtained by
larger over-parametrized networks. In this work we
explore whether it is worth seeking for such pruned
models when training data is scarce, a scenario that is
well known to constraint the training of deep neural
networks. To answer these two questions, we carried
out experiments on several datasets from two very dif-
ferent non natural image domains: digital pathology
and digital heritage.
Research Questions and Contributions: this work
investigates two research questions. First, we aim
at better characterizing the LTH phenomenon by in-
vestigating whether lottery winners that are found on
datasets of natural images contain inductive biases
that are strong enough to allow them to generalize to
non-natural image distributions. To do so, we present
to the best of our knowledge the first results that study
the transferability of winning initializations in this
particular training setting. Second, we thoroughly
study for the first time whether pruned models that are

the winners of the LTH can consistently outperform
their larger over-parametrized counterparts in condi-
tions with scarce training data.

2 DATASETS

We consider seven datasets that come from two dif-
ferent, unrelated sources: histopathology and digital
heritage. Each dataset comes with its training, val-
idation and testing splits. Furthermore the datasets
change in terms of size, resolution, and amount of la-
bels that need to be classified. We report an overview
about the size of these datasets in Table 1 while a vi-
sual representation of the samples constituting these
datasets in Fig. 2. The Digital-Pathology (DP) data
comes from the Cytomine (Marée et al., 2016) web
application, an open-source platform that allows in-
terdisciplinary researchers to work with large-scale
images. While Cytomine has collected a large num-
ber of datasets over the years, in this work we have
limited our analysis to a subset of four datasets that
all represent tissues and cells from either human
or animal organs: Human-LBA, Lung-Tissues, and
Mouse-LBA were originally proposed in (Mormont
et al., 2018), while Bone-Marrow comes from (Kainz
et al., 2017). All four datasets have been used in
(Mormont et al., 2018), that researched whether neu-
ral networks pre-trained on natural images could suc-
cessfully be re-used in the DP domain. In this pa-
per, we explore whether an alternative to the transfer-
learning approaches presented in (Mormont et al.,
2018) could be based on training pruned networks
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that are the winners of the LTH. This will allow us
to investigate the two research questions introduced
in Sec. 1: we will explore whether winning initial-
izations that are found on datasets of natural images
do generalize to non-natural domains, and whether
sparse models winners of the LTH can perform bet-
ter than larger unpruned models that get trained from
scratch. Regarding the field of Digital-Humanities
(DH) we have created three novel datasets that all re-
volve around the classification of artworks. We con-
sider two different classification tasks that have al-
ready been thoroughly studied by researchers bridg-
ing between the fields of Computer Vision (CV) and
DH (Mensink and Van Gemert, 2014; Strezoski and
Worring, 2017; Sabatelli et al., 2018). The first task
consists in identifying the artist of the different art-
works, while the second one aims at classifying which
kind of artwork is depicted in the different images, a
challenge which is usually referred to in the litera-
ture as type-classification (Mensink and Van Gemert,
2014; Sabatelli et al., 2018). When it comes to the
artist-classification task we have created two differ-
ent datasets, which purpose will be better explained in
Sec. 4.3. All images are publicly available as part of
the WikiArt gallery (Phillips and Mackintosh, 2011)
and can also be found within the large popular Om-
niArt dataset (Strezoski and Worring, 2018). Albeit
in DH it is actually easier to find large datasets than
in histopathology, it is worth mentioning that we have
kept the size of these datasets intentionally small in
order to fit the research questions introduced in Sec.
1. Furthermore, it is also worth noting that there are
several additional challenges that need to be over-
come when training deep neural networks on artis-
tic collections, which therefore motivate the use of
this kind of datasets in this work. The size, texture,
and resolution of the images coming from the DH are
usually representative of different time periods, artis-
tic movements and might have gone through different
digitization processes, which are all reasons that make
these datasets largely varied and challenging.

3 EXPERIMENTAL SETUP

We follow an experimental set-up similar to the one
that was introduced in (Morcos et al., 2019) (and that
has been validated by (Gohil et al., 2020)). Let us
define a neural network f (x;θ) that gets randomly
initialized with parameters θ0 ∼ Dθ and then trained
for j iterations over an input space X , and an output
space Y . At the end of training a percentage of the
parameters in θ j gets pruned, a procedure which re-
sults in a mask m. The parameters in θ j which did

not get pruned are then reset to the values they had
at θk, where k represents an early training iteration.
A winning ticket corresponds to the combination be-
tween the previously obtained mask, and the parame-
ters θk, and is defined as f (x;m�θk)

1. Constructing
a winning ticket with parameters θk, instead of θ0, is
a procedure which is known as late-resetting (Frankle
et al., 2019a), and is a simple but effective trick that
makes it possible to stably find winning initializations
in deep convolutional neural networks (Frankle et al.,
2019a; Morcos et al., 2019). In this study f (x;θ)
comes in the form of a ResNet-50 architecture (Han
et al., 2015a) which gets trained on the three pop-
ular CV natural image datasets CIFAR-10/100 and
Fashion-MNIST. Following (Han et al., 2015a; Mor-
cos et al., 2019), 31 winning tickets f (x;m� θk) of
increasing sparsity are obtained from each of these
three datasets by repeating 31 iterations of network
training and magnitude pruning with a pruning rate
of 20%. More precisely, at each pruning iteration,
the network is trained for several epochs (using early
stopping on the validation set as described in the ap-
pendix) and then the 20% of weights with the low-
est magnitudes are pruned. The parameters θk that
define each of the 31 tickets are then taken as the
weights of the corresponding pruned networks at the
kth epoch of the first pruning iteration. Once these
pruned networks are found we aim at investigating
whether their parameters θk contain inductive biases
that allow them to generalize to the non-natural image
domain. To do so we replace the final fully connected
layer of each winning ticket with a randomly initial-
ized layer that has as many output nodes as there are
classes to classify. We then fine-tune each of these
networks on the non-natural image datasets consid-
ered in this study. At the end of training, we study
the performance of each winning ticket in two differ-
ent ways. First, we compare the performance of each
network to the performance of a fully unpruned net-
work that gets randomly initialized and trained from
scratch. Second, we also compare the performance
of winning tickets that have been found on a natural
image dataset to 31 new sparse models that are the
winners of the LTH on the considered target dataset.
Since it is not known to which extent pruned networks
that contain weights that are the winners of the LTH
on a natural image dataset can generalize to target dis-
tributions that do not contain natural images, we re-

1Note that this formulation generalizes the original ver-
sion of the LTH (Frankle and Carbin, 2018) that we have
represented in Fig. 1, where a winning ticket is obtained af-
ter resetting the unpruned parameters of the network to the
values they had right after initialization, therefore defining
a winning ticket as f (x;m�θ0).
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Table 1: A brief overview of the seven different datasets which have been used in this work. Nt corresponds to the total
amount of samples that are present in the dataset, while Qt represents the number of classes.

Dataset Training-Set Validation-Set Testing-Set Nt Qt
Human-LBA 4051 346 1023 5420 9
Lung-Tissues 4881 562 888 6331 10
Mouse-LBA 1722 716 1846 4284 8
Bone-Marrow 522 130 639 1291 8
Artist-Classification-1 3103 389 389 3881 20
Type-Classification 2868 360 360 3588 20
Artist-Classification-2 2827 353 353 3533 19

Figure 2: Some image samples that constitute the non-natural image datasets which have been used in this work. From left to
right we have the Human-LBA, Lung-Tissues, Mouse-LBA and Bone-Marrow datasets, while finally we report some examples
that represent artworks which come from the field of digital heritage.

port the first results that investigate the potential of a
novel transfer-learning scheme which has so far only
been studied on datasets from the natural image do-
main. Moreover, testing the performance of sparse
networks that contain winning tickets that are specific
to a non-natural image target distribution also allows
us to investigate whether it is worth pruning large net-
works with the hope of finding smaller models that
might perform better than a large over-parametrized
one. As mentioned in Sec. 1, pruned networks that
are initialized with the winning weights can some-
times perform better than a fully unpruned network.
Identifying such sparse networks leads to a very sig-
nificant reduction of model size, which can be a very
effective way of regularization when training data is
scarce.

4 RESULTS

The results of all our experiments are visually re-
ported in the plots of Fig. 3. Each line plot represents
the final performance that is obtained by a pruned
model that contains a winning ticket initialization on
the final testing-set of our target datasets. This perfor-
mance is reported on the y-axis of the plots, while on
the x-axis we represent the fraction of weights that is
pruned from the original ResNet-50 architecture. As
explained in the previous section the performance of
each winning ticket is compared to the performance

that is obtained by an unpruned, over-parametrized ar-
chitecture that is reported by the black dashed lines.
The models that are the winners of the LTH on a
natural image dataset are reported by the green, red
and purple lines, while the winners of the LTH on
a non-natural target dataset are reported by the blue
lines. Furthermore, when it comes to the latter lot-
tery tickets, we also report the performance that is
obtained by winning tickets that get randomly reini-
tialized ( f (x;m� θ

′
0) with θ

′
0 ∼ Dθ). These results

are reported by the orange lines. Shaded areas around
all line plots correspond to ±1 std. that has been ob-
tained after repeating and averaging the results of our
experiments over four different random seeds.

4.1 On the Importance of Finding
Winning Initializations

We can start by observing that pruned models which
happen to be the winners of the LTH either on a nat-
ural dataset, or on a non-natural one, can maintain a
good final performance until large pruning rates are
reached. This is particularly evident on the first three
datasets, where models that keep only ≈ 1% of their
original weights barely suffer from any drop in per-
formance. This gets a little bit less evident on the
last three datasets, where the performance of win-
ning ticket initializations that are directly found on the
considered target dataset starts getting harmed once
a fraction of ≈ 97 of original weights are pruned.
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These results show that an extremely large part of the
parameters of a ResNet-50 architecture can be con-
sidered as superfluous, therefore confirming the LTH
when datasets contain non-natural images. More im-
portantly, we also observe that pruned models win-
ners of the LTH, significantly outperform larger over-
parametrized models that get trained from scratch.
This can be very clearly seen in all plots where the
performance of pruned models is always consistently
better than what is reported by the black dashed line.
To get a better sense of how much these pruned net-
works perform better than their larger unpruned coun-
terparts, we report in Table 2 the performance that
is obtained by the best performing pruned model,
found over all 31 possible pruned models, and com-
pare it to the performance of an unpruned architec-
ture. The exact fraction of weights which is pruned
from an original ResNet-50 architecture is reported in
Table 3 for each configuration. We can observe that
no matter which dataset has been used as a source
for finding a winning ticket initialization, all pruned
networks reach a final accuracy that is significantly
higher than the one that is obtained after training an
unpruned model from scratch. While in most cases
the difference in terms of performance is of ≈ 10%
(see e.g. the Human-LBA, Lung-Tissues and the
Type-Classification datasets), it is worth high-
lighting that there are other cases in which this differ-
ence is even larger. This is the case for the Mouse-LBA
and Artist-Classification-1 datasets where a
winning ticket coming from the CIFAR-10 dataset
performs more than 20% better than a model trained
from scratch. These results show that in order to max-
imize the performance of deep networks it is always
worth finding and training pruned models which are
the winners of the LTH.

4.2 On the Generalization Properties of
Lottery Winners

We then investigate whether natural image tickets can
generalize to the non-natural setting. Findings differ
across datasets. When considering the datasets that
come from the field of DP, we can see that, in three
out of four cases, winning tickets that are found on
a natural image dataset get outperformed by sparse
winning networks that come after training a model
on the biomedical dataset. This is particularly ev-
ident in the results obtained on the Human-LBA and
Lung-Tissues datasets where the highest testing-set
accuracy is consistently reached by the blue line plots.
When it comes to the Bone-Marrow dataset the differ-
ence in terms of performance between the best natural
image ticket, in this case coming from the CIFAR-

10 dataset, and the one coming from the biomedical
dataset, is less evident (see Table 2 for the exact accu-
racies). Furthermore, it is worth highlighting that on
the Bone-Marrow dataset, albeit natural image mod-
els seem to get outperformed by the ones found on the
biomedical dataset, the performance of the latter ones
appears to be less stable once extremely large pruning
rates are reached. When it comes to the Mouse-LBA
dataset these results slightly differ. In fact, this dataset
corresponds to the only case where a natural image
source ticket outperforms a non-natural one. As can
be seen, by the green line plot, pruned models com-
ing from the CIFAR-10 dataset outperform the ones
found on the Mouse-LBA dataset. When focusing our
analysis on the classification of arts, we see that the
results change greatly from the ones obtained on the
biomedical datasets. In this case, all of the natu-
ral image lottery winners, no matter the dataset they
were originally found on, outperform the same kind
of models that were found after training a full net-
work on the artistic collection. We can see from Table
2 that the final testing performance is similar among
all of the best natural image tickets. Similarly to what
has been noticed on the Bone-Marrow dataset we can
again observe that tickets coming from a non-natural
data distribution seem to suffer more from large prun-
ing rates.

These results show both the potential and the lim-
itations that natural image winners of the LTH can
offer when they are fine-tuned on datasets of non-
natural images. The results obtained on the artistic
datasets suggest that winning initializations contain
inductive biases that are strong enough to get at least
successfully transferred to the artistic domain, there-
fore confirming some of the claims that were made in
(Morcos et al., 2019). However, it also appears that
there are stronger limitations to the transferability of
winning initializations which were not observed by
(Morcos et al., 2019). In fact, our results show that
on DP data the best strategy is to find a winning ticket
directly on the biomedical dataset, and that winning
initializations found on natural image datasets, albeit
outperforming a randomly initialized unpruned net-
work, perform worse than pruned models that are the
winners of the LTH on a biomedical dataset.

4.3 Additional Studies

To characterize the transferability of winning initial-
izations even more, while at the same time gaining a
deeper understanding of the LTH, we have performed
a set of three additional experiments which help us
characterize this phenomenon even better.
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Table 2: The results comparing the performance that is obtained on the testing-set by the best pruned model winner of the
LTH, and an unpruned architecture trained from scratch. The overall best performing model is reported in a green cell, while
the second best one in a yellow cell. We can observe that pruned models winners of the LTH perform significantly better than a
larger over-parametrized architecture that gets trained from scratch. As can be seen by the results obtained on the Mouse-LBA
and Artist-Classification-1 datasets the difference in terms of performance can be particularly large (≈ 20%).

Target-Dataset Scratch-Training CIFAR-10 CIFAR-100 Fashion-MNIST Target-Ticket
Human-LBA 71.85±1.12 79.17±1.85 76.97±0.73 77.32±1.85 81.72±0.39
Lung-Tissues 84.75±0.81 88.90±1.97 87.61±0.90 87.61±0.11 90.48±0.16
Mouse-LBA 48.17±1.18 74.20±2.04 57.42±0.48 52.27±1.73 68.20±3.79
Bone-Marrow 64.66±1.36 71.75±3.36 69.87±0.39 68.77±0.39 72.55±0.46
Artist-Classification-1 45.88±0.42 66.58±1.54 65.55±1.79 63.88±0.12 58.74±1.92
Type-Classification 41.36±2.31 58.63±2.97 60.56±0.44 58.92±0.59 50.44±2.23

Table 3: Some additional information about the lottery winners which performance is reported in Table 2. For each winning
ticket we report the fraction of weights that is pruned from an original ResNet-50 architecture and that therefore characterizes
the level of sparsity of the overall best performing lottery ticket. The results in the Scratch-Training column are not reported
since these are unpruned models that are trained from scratch.

Target-Dataset Scratch-Training CIFAR-10 CIFAR-100 Fashion-MNIST Target-Ticket
Human-LBA - 0.945 0.79 0.886 0.832
Lung-Tissues - 0.977 0.977 0.672 0.965
Mouse-LBA - 0.972 0.893 0.738 0.931
Bone-Marrow - 0.866 0.988 0.931 0.914
Artist-Classification-1 - 0.972 0.993 0.991 0.931
Type-Classification - 0.991 0.931 0.995 0.963

4.3.1 Lottery Tickets vs Fine-tuned Pruned
Models

So far we have focused our transfer-learning study on
lottery tickets that come in the form of f (x;m� θk),
where, as mentioned in Sec. 3, θk corresponds to the
weights that parametrize a neural network at a very
early training iteration. This formalization is how-
ever different from more common transfer-learning
scenarios where neural networks get transferred with
the weights that are obtained at the end of the train-
ing process (Mormont et al., 2018; Sabatelli et al.,
2018). We have therefore studied whether there is
a difference in terms of performance between trans-
ferring and fine-tuning a lottery ticket with parame-
ters θk, and the same kind of pruned network which
is initialized with the weights that are obtained once
the network is fully trained on a source task. We de-
fine these kind of models as f (x;m�θi) where i stays
for the last training iteration. We report some exam-
ples of this behaviour in the first row of plots pre-
sented in Fig. 4, where we consider f (x;m�θi) mod-
els which were trained on the CIFAR-10 and CIFAR-
100 datasets, and then transferred and fine-tuned on
the Human-LBA dataset. We found that these models
overall perform worse than lottery tickets, while also
being less robust to pruning. This also shows that on
this dataset, the slightly inferior performance of the
natural image tickets with respect to the target tickets
is not due to the weight re-initialization.

4.3.2 Transferring Tickets from Similar
Non-natural Domains

We investigated whether it is beneficial to fine-
tune lottery winners that, instead of coming from
a natural image distribution, come from a re-
lated non-natural dataset. Specifically we tested
whether winning tickets generated on the Human-LBA
dataset generalize to the Mouse-LBA one (since both
datasets are representative of the field of Live-Blood-
Analysis), and whether lottery winners coming from
the Artist-Classification-1 dataset generalized
to the Artist-Classification-2 one. We visu-
ally represent these results in the central plots pre-
sented in Fig. 4. As one might expect, we found that
it is beneficial to transfer winning tickets that come
from a related source. Specifically, Human-LBA tick-
ets can perform just as well as winning tickets that
are generated on the Mouse-LBA dataset, while at the
same time also being more robust to large pruning
rates. When it comes to lottery winners found on
the Artist-Classification-1 dataset we have ob-
served that these tickets can even outperform the ones
generated on the Artist-Classification-2 one.

4.3.3 On the Size of the Training Set

We have observed from the blue line plots of Fig.
3 that there are cases in which lottery winners are
very robust to extremely large pruning rates (see as
an example the first and second plots), while there are
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Figure 3: An overview of the results showing that sparse models that are the winners of the LTH (represented by the coloured
lines) significantly outperform unpruned networks which get randomly initialized and trained from scratch (dashed black
line). This happens to be the case on all tested datasets, no matter whether a winning initialization comes from a natural
image source or not. It is however worth mentioning that, especially on the biomedical datasets, natural image tickets get
outperformed by sparse networks that that are the winners of the LTH on a biomedical dataset. On the other hand this is not
the case when it comes to the classification of arts where natural image tickets outperform the ones which are found within
artistic collections.

other cases in which their performance deteriorates
faster with respect to the fraction of weights that get
pruned. The most robust performance is obtained by
winning tickets that are generated on the Human-LBA
and Lung-Tissues datasets, which are the two tar-
get datasets that contain the largest amount of training
samples. We have therefore studied whether there is a
relationship between the size of the training data that

is used for finding lottery winners, and the robustness
in terms of performance of the resulting pruned mod-
els. We generated lottery winners after incrementally
reducing the size of the training data by 75%, 50%
and 25%, and then investigated whether we could ob-
serve a similar drop in performance as the one which
can be seen by the last three blue line-plots of Fig. 3
once a large fraction of weights got pruned. Perhaps
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surprisingly, we have observed that this was not the
case, and as can be seen by the plots represented in
the last row of Fig. 4, the performance of lottery win-
ners that are found when using only 25% of the train-
ing set is just as stable as the one of winning tickets
which are generated on the entire dataset. It is how-
ever worth mentioning that, albeit the performance of
such sparse models is robust, their final performance
on the testing set is lower than the one that is obtained
by winning tickets that have been trained on the full
training data distribution.

5 RELATED WORK

The research presented in this paper contributes to a
better understanding of the LTH by exploring the gen-
eralization and transfer-learning properties of lottery
tickets. The closest approach to what has been pre-
sented in this work is certainly (Morcos et al., 2019),
which shows that winning models can generalize
across datasets of natural images and across different
optimizers. As mentioned in Sec. 3, a large part of our
experimental setup is based on this work. Besides the
work presented in (Morcos et al., 2019), there have
been other attempts that aimed to better understand
the LTH after studying it from a transfer-learning per-
spective. However, just as the study presented in
(Morcos et al., 2019), all this research limited its anal-
ysis to natural images. In (Van Soelen and Sheppard,
2019) the authors transfer winning tickets among dif-
ferent partitions of the CIFAR-10 dataset, while in
(Mehta, 2019) the authors show that sparse models
can successfully get transferred from the CIFAR-10
dataset to other object recognition tasks. While these
results seem to suggest that lottery tickets contain in-
ductive biases which are strong enough to general-
ize to different domains, it is worth highlighting that
their transfer-learning properties were only studied af-
ter considering the CIFAR-10 dataset as a possible
source for winning ticket initializations, a limitation
which we overcome in this work. It is also worth
mentioning that the research presented in this paper
is strongly connected to the work presented in (Fran-
kle et al., 2019a). While the first paper that introduced
the LTH limited its analysis to relatively simple neu-
ral architectures, such as multilayer perceptrons and
convolutional networks which were tested on small
CV datasets, the presence of winning initializations
in larger, more popular convolutional models such as
(Szegedy et al., 2015) and (He et al., 2016) trained
on large datasets (Russakovsky et al., 2015) was only
first presented in (Frankle et al., 2019a). Since in
this work we have used a ResNet-50 architecture (He

et al., 2016), we have followed all the recommenda-
tions that were introduced in (Frankle et al., 2019a),
for successfully identifying the winners of the LTH
in larger models. More specifically we mention the
late-resetting procedure which resets the weights of a
pruned model to the weights that are obtained after k
training iterations instead of to the values which were
used at the beginning of training (as explained in Sec.
3), a procedure which has shown to be related to lin-
ear mode connectivity (Frankle et al., 2019b). While
the work presented in this paper has limited its anal-
ysis to networks that minimize an objective function
that is relevant for classification problems, it is worth
noting that more recent approaches have identified
lottery winners in different training settings. In (Yu
et al., 2019) the authors show that winning initializa-
tions can be found when neural networks are trained
on tasks ranging from natural language processing to
reinforcement learning, while in (Sun et al., 2019) the
authors successfully identify sparse winning models
in a multi-task learning scenario. As future work, we
want to study whether lottery tickets can be found on
different neural architectures, and also when neural
networks are trained on CV tasks other than classifi-
cation. More specifically we aim at studying whether
winners of the LTH, which are found on popular nat-
ural image datasets such as (Lin et al., 2014) and (Ev-
eringham et al., 2010) when tackling image localiza-
tion and segmentation tasks, can generalize to non-
natural settings which might include the segmenta-
tion of biomedical data, or the localization of objects
within artworks.

6 CONCLUSION

We have investigated the transfer learning potential
of pruned neural networks that are the winners of the
LTH from datasets of natural images to datasets con-
taining non-natural images. We have explored this
in training conditions where the size of the training
data is relatively small. All of the results presented
in this work confirm that it is always beneficial to
train a sparse model, winner of the LTH, instead of a
larger over-parametrized one. Regarding our study on
the transferability of winning tickets we have reported
the first results which study this phenomenon under
non-natural data distributions by using datasets com-
ing from the fields of digital pathology and heritage.
While for the case of artistic data it seems that win-
ning tickets from the natural image domain contain
inductive biases which are strong enough to general-
ize to this specific domain, we have also shown that
this approach can present stronger limitations when it

VISAPP 2021 - 16th International Conference on Computer Vision Theory and Applications

66



0.
0

0.
2

0.
36

0.
48

8
0.

59
0.

67
2

0.
73

8
0.

79
0.

83
2

0.
86

6
0.

89
3

0.
91

4
0.

93
1

0.
94

5
0.

95
6

0.
96

5
0.

97
2

0.
97

7
0.

98
2

0.
98

6
0.

98
8

0.
99

1
0.

99
3

0.
99

4
0.

99
5

0.
99

6
0.

99
7

0.
99

8
0.

99
8

0.
99

8
0.

99
9

Fraction of Weights Pruned

40

50

60

70

80

90
Te

st
in

g-
Se

t A
cc

ur
ac

y
Human-LBA

Scratch
f(x; m k)
f(x; m i)

0.
0

0.
2

0.
36

0.
48

8
0.

59
0.

67
2

0.
73

8
0.

79
0.

83
2

0.
86

6
0.

89
3

0.
91

4
0.

93
1

0.
94

5
0.

95
6

0.
96

5
0.

97
2

0.
97

7
0.

98
2

0.
98

6
0.

98
8

0.
99

1
0.

99
3

0.
99

4
0.

99
5

0.
99

6
0.

99
7

0.
99

8
0.

99
8

0.
99

8
0.

99
9

Fraction of Weights Pruned

40

50

60

70

80

90

Te
st

in
g-

Se
t A

cc
ur

ac
y

Human-LBA

Scratch
f(x; m k)
f(x; m i)

0.
0

0.
2

0.
36

0.
48

8
0.

59
0.

67
2

0.
73

8
0.

79
0.

83
2

0.
86

6
0.

89
3

0.
91

4
0.

93
1

0.
94

5
0.

95
6

0.
96

5
0.

97
2

0.
97

7
0.

98
2

0.
98

6
0.

98
8

0.
99

1
0.

99
3

0.
99

4
0.

99
5

0.
99

6
0.

99
7

0.
99

8
0.

99
8

0.
99

8
0.

99
9

Pruned Weights Percentage

0
10
20
30
40
50
60
70
80
90

Te
st

in
g-

Se
t A

cc
ur

ac
y

Mouse-LBA

Scratch
Target-Ticket
CIFAR-10

CIFAR-100
Fashion-MNIST
Human-LBA

0.
0

0.
2

0.
36

0.
48

8
0.

59
0.

67
2

0.
73

8
0.

79
0.

83
2

0.
86

6
0.

89
3

0.
91

4
0.

93
1

0.
94

5
0.

95
6

0.
96

5
0.

97
2

0.
97

7
0.

98
2

0.
98

6
0.

98
8

0.
99

1
0.

99
3

0.
99

4
0.

99
5

0.
99

6
0.

99
7

0.
99

8
0.

99
8

0.
99

8
0.

99
9

Pruned Weights Percentage

0
10
20
30
40
50
60
70
80

Te
st

in
g-

Se
t A

cc
ur

ac
y

Artist-Classification-2

Scratch
Target-Ticket
CIFAR-10

CIFAR-100
Fashion-MNIST
Artist-1

0.
0

0.
2

0.
36

0.
48

8
0.

59
0.

67
2

0.
73

8
0.

79
0.

83
2

0.
86

6
0.

89
3

0.
91

4
0.

93
1

0.
94

5
0.

95
6

0.
96

5
0.

97
2

0.
97

7
0.

98
2

0.
98

6
0.

98
8

0.
99

1
0.

99
3

0.
99

4
0.

99
5

0.
99

6
0.

99
7

0.
99

8
0.

99
8

0.
99

8
0.

99
9

Fraction of Weights Pruned

70

75

80

85

90

95

Te
st

in
g-

Se
t A

cc
ur

ac
y

Lung-Tissues

Scratch
100% of training data
75% of training data
50% of training data
25% of training data

0.
0

0.
2

0.
36

0.
48

8
0.

59
0.

67
2

0.
73

8
0.

79
0.

83
2

0.
86

6
0.

89
3

0.
91

4
0.

93
1

0.
94

5
0.

95
6

0.
96

5
0.

97
2

0.
97

7
0.

98
2

0.
98

6
0.

98
8

0.
99

1
0.

99
3

0.
99

4
0.

99
5

0.
99

6
0.

99
7

0.
99

8
0.

99
8

0.
99

8
0.

99
9

Fraction of Weights Pruned

40

50

60

70

80

90

Te
st

in
g-

Se
t A

cc
ur

ac
y

Human-LBA

Scratch
100% of training data
75% of training data
50% of training data
25% of training data

Figure 4: A visualization of the results of the additional studies presented in Sec. 4.3. In the first row our study which
compares the performance of lottery tickets to the one of fully trained pruned networks. In the second row our results that
show some of the benefits that could come from transferring winning tickets generated on similar non-natural distributions.
Lastly, in the third row, our study that shows that the stability performance of lottery tickets seems to not be dependent from
the size of the training set.

comes to biomedical data. This probably stems from
the fact that DP images are further away from natural
images than artistic ones. We have also shown that
lottery tickets perform significantly better than fully
trained pruned models, that it is beneficial to trans-
fer lottery winners from different, but related, non-
natural sources, and that the performance of lottery
tickets is not dependant on the size of the training
data. To conclude, we provide a better characteriza-
tion of the LTH while simultaneously showing that

when training data is limited, the performance of deep
neural networks can get significantly improved by
using lottery winners over larger over-parametrized
ones.
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APPENDIX

In all of our experiments we have used a ResNet-
50 convolutional neural network which has the same
structure as the one presented in (Han et al., 2015a).
We have chosen this specific architecture since it has
proven to be successful both when used on DP data
(Mormont et al., 2018) as on DH datasets (Sabatelli
et al., 2018). Specifically when it comes to the
amount of strides, the sizes of the filters, and the num-
ber of output channels, the residual blocks of the net-
work come in the following form: (1× 1, 64, 64,
256) × 3, (2×2, 128, 128, 512) × 4, (2×2, 256,
256, 1024) × 6, (2×2, 512, 512, 2048) × 3. The
last convolution operation of the network is followed
by an average pooling layer and a final linear clas-
sification layer which has as many output nodes as
there is classes to classify in our datasets. Since we
only considered classification problems, the model
always minimizes the categorical-crossentropy loss
function. When feeding the model with the images
of the datasets presented in Table 1 we extract a ran-
dom crop of size 224×224 and used mini-batches of
size 64. No data-augmentation was used. We train
the neural network with the Stochastic Gradient De-
scent (SGD) algorithm with an initial learning rate of
10−1. SGD is used in combination with Nesterov Mo-
mentum ρ, set to 0.9, and a weight decay factor α set
to 10−5. Training is controlled by the early-stopping
regularization method which stops the training pro-
cess as soon as the validation loss does not decrease
for five epochs in a row. When it comes to the param-
eters used for pruning we follow a magnitude pruning
scheme as the one presented in (Han et al., 2015b)
which has a pruning-rate of 20%. In order to con-
struct winning-tickets we have used the late-resetting
procedure with k = 2. We summarize all this infor-
mation in Table 4.

Table 4: Hyperparameters for our experimental setup.

Hyperparameter
Neural Network ResNet-50
Weight-Initialization Xavier
Optimizer SGD
Size of the mini-batches 64
Learning-rate 10−1

Momentum ρ 0.9
Decay-Factor α 10−5

Annealing-epochs [50,60,75]
Early-Stopping 5
Pruning-Rate 0.20
Late-resetting k 2
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