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Abstract: After we describe the waiting queue problem, we identify a partially observable 2𝑛 1-player voting game with 
only one pivotal player; the player at the 𝑛 1 order.Given the simplest rule of heterogeneity presented in this 
paper, we show that for any infinite sequential voting game of size 2𝑛 1, a power index of size 𝑛 is a good 
approximation of the power index at infinity, and it is difficult to achieve. Moreover, we show that the collective 
utility value of a coalition for a partially observable anonymous game given an equal distribution of weights is 
𝑛 𝑛.This formula is developed for infinite sequential anonymous games using a stochastic process that yields 
a utility function in terms of the probability of the sequence and voting outcome of the coalition. Evidence from 
Wikidata editing sequences is presented and the results are compared for 10 coalitions. 

1 INTRODUCTION 

Cooperative games are used in many applications 
across various domains such as collective decision 
making, waste management, economics (such as 
profit sharing in cooperative e-commerce 
applications), dynamic robot coalition formation, and 
utility allocation in open anonymous environments 
(Skibski et al.,2018; Bachrach and Elind,2008; 
Eryganov et al.,2020; Smirnov et al.,2019; Zhao et 
al.,2018). Such cooperative games rely on coalition 
formation, and in most cases, weighted voting is used 
to predict the collective payoff gained through 
cooperation. In weighted voting, allocation of payoff 
depends on how much each agent is decisive in a 
sequential voting game. Unlike non-cooperative 
games which analyze the actions performed by 
individual players, weighted voting is based on the 
cooperative game theory which focuses on coalition 
formation strategies and allocating collective payoff 
based on group actions.  

The Shapley-Shubik power index is the most 
prominent among weighted voting models and it is 
used in the majority of cooperative game 
applications. The shapely value provides interesting 
properties that make it more suitable for fair payoff 
allocation in cooperative games such as symmetry 
(identity of players should not have impact on payoff 
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allocation) and efficiency (all available payoff should 
be distributed among players) (Skibski et al., 2018). 
Because the Shapley value is equiprobable (Boratyn 
et al., 2020), the existence of the grand coalition is 
necessary at least as a mere assumption for tactical 
reasons (Elkind et al., 2008). Moreover, 
equiprobability implies that coalitions are formed 
such that they represent a perfect sample of the 
population. The Shapley-Shubik power index 
measures the value of a coalition based on the hidden 
(marginal) voting power of each member. This hidden 
power can be described in terms of the marginal value 
of a member based on his order in a sequence randomly 
selected from the set 𝐴 which includes all agents, i.e. 
the grand coalition. Given the cardinality of 𝐴 , 
assuming that players leave the grand coalition 
sequentially in a random order ,each coalition is a 
permutation, and the contribution of each player is the 
probability of his random order in the coalition he joins 
averaged over all the permutations of 𝐴  (Skibski et 
al.,2018; Benati et al.,2019).  

Therefore, studying coalition formation strategies 
and coalitional structures is paramount and has been 
an important line of research for many years (Skibski 
et al.,2018).Some proposals identify a stable coalition 
structure that embeds all coalitions to optimize 
resource allocation and allow more than one coalition 
to win (Elkind et al.,2008). Moreover, discrete-time 
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stochastic processes, such as the Chinese Restaurant 
Process, have been used to model coalition formation 
in the Shapley-Shubik model (Skibski et al., 2018). 
For instance, in the Chinese Restaurant Process, 
agents leave the grand coalition sequentially and each 
new agent either forms a new partition or joins an 
existing one (Skibski et al., 2018).  

Unlike the Chinese Restaurant Process, in this 
paper, we consider a waiting queue example where 
each agent at the order 𝑛 can form a new partition 
given that 𝑛 1  anonymous players will form the 
remaining partition. Moreover, a discrete time 
stochastic process, played with a fair coin, is 
modelled to discard contributions made by 
consecutive voters to model heterogeneity in real-
time. Real-time heterogeneity is considered an 
important prerequisite for effective coalition 
formation and fair distribution of rewards in 
cooperative multi-agent systems (Smirnov et al., 
2019). Nonetheless, we believe that studying 
weighted voting in infinite games and creating 
dependencies on future group actions, especially for 
open anonymous environments, is important for 
identifying the threshold beyond which cooperative 
patterns may need to be refreshed or altered to a 
certain extent. This means that we highlight the 
possibility that cooperative patterns in infinite games 
may reach a certain level of exhaustion at points in 
time when they achieve the threshold at which task 
requirements are satisfied. 

Fundamentally, the most important condition in 
the Shapley-Shubik model states that the number of 
agents in a game is finite and a value function 𝑣 
describes the value of the coalition by mapping subset 
players to some real number such that 𝑣: 2 →
𝑅. Where 𝑣  is the collective payoff which the 
members of a coalition 𝑆 ⊆ 𝐴 gain through 
cooperation. However, the payoff for each player 
depends heavily on the player’s order in the sequence. 
For instance, the Shapley value of player 𝑖 in a game 
of 𝑛 players described as 𝐺 𝑣, 𝐴  is :  
 

𝜑 𝑣  
1
𝑛!

 𝑣 𝑅 ∪ 𝑖 𝑣 𝑅  (1)

 

Therefore, the marginal voting power is 
calculated over the range 𝑛!  , and 𝑅  is the set of 
players in the sequence 𝑄  which precede 𝑖 . The 
winning coalition is the one which achieves a certain 
quota concluded based on either a fuzzy rule or a pre-
identified value (for example, fuzzy rules are used to 
limit cooperation by restricting payoff for some 
players - see Gallardo and Jiménez-Losada 
(2017)).Each sequence plays a crucial rule in 

identifying the value of the coalition, however, when 
the number of players is large, the Shapley value 
takes a heuristic form: 
 

𝑆 𝑑𝑠 𝑣 𝑡𝐴  𝑑𝑠 𝑣 𝑡𝐴 𝑑𝑡 (2)

 

Where 𝑡𝐴 is the proportionality of coalition 𝑆 ∈
𝐴,  and 𝐴  contains a large number of players. This 
latter setting matches an infinite game model in which 
the identity of players does not play a crucial rule in 
deducing the value of the coalition. In this paper, we 
redefine the proportionality in terms of the likelihood 
of occurrence of the sequence. In infinite sequential 
ordered votes, each player has a minor contribution 
and the game evolves as a nonlinear game wherein 
the value of the coalition is more important than the 
payoff obtained by each agent. In particular, 
individual contributions are minor with respect to the 
collective contribution of the coalition. Moreover, in 
sequential infinite games, it is common to divide the 
action space into finite sequential games that 
approximate the utility gain in general situations 
(Reeves and Wellman, 2012).  

Unfortunately, much of the work produced in this 
field is directed towards studying finite voting games 
and less work has addressed infinite sequences. In this 
paper, we obtain the likelihood of the occurrence of 
any finite sequential partition 𝑡𝐴 in infinite sequential 
anonymous games. Firstly, we describe the waiting 
queue problem, then we identify a 2𝑛 1 -player 
game with only one pivotal player; the player at the 
𝑛 1 position.We use a stochastic game formula to 
model an infinite sequence given the simplest rule of 
heterogeneity in anonymous games identified in our 
method. We reach an approximate of the power index 
at infinity using samples of finite sequences, and we 
show that it is difficult to achieve. Our method is 
described in the next section. Section 3 analyses the 
results. Section 4 discusses related work. Finally, 
section 5 concludes the paper. 

2 METHOD 

Infinite sequences disproportionately influence the 
voting power of players because at any position in a 
sequential game the number of remaining voters is 
undefined or possibly large. In this case, predicting 
the proportionality of a coalition is more viable than 
computing the collective payoff based on the shapely 
value of each player. For instance, a voting game 
𝐺 𝑣, 𝐴  can be represented as a vector of values 𝑊 
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 w , w , … w ; q  that represents the weights of 
players and 𝑞  is the quota (Bachrach and Elind, 
2008). If 𝑊  represents the weights of an infinite 
number of players, the shapely value is undefined. To 
reduce this problem, we assume that the weight of 
each position in an infinite sequence is dependent on 
the number of players yet to vote, and moreover, we 
assume that every infinite game is partially 
observable. By “position” we mean the order of the 
player regardless of the identity of neighboring 
players. 

This problem resembles a waiting queue problem 
in which the weight of any agent 𝑖 is dependent on the 
number of agents that precede 𝑖  in the queue. 
However, to deal with the problem of having an 
infinite number of players, we assume that every 
queue of size 𝑛 is only a partition of a larger queue of 
size 2𝑛 1. if we consider a queue with size 2𝑛 1 
, and the function 𝑓 𝑛 𝑘  identifies the waiting 
time of any member 𝑖 at the 𝑘 1  position 
(assuming that each member corresponds to a single 
unit of time), we find that 𝑓 2𝑛 1 0, 𝑓 2𝑛
2𝑛 1 2𝑛  1, and we always find that 𝑓 𝑛  
 𝑛 1.This is observable for any sequence of size 
2𝑛 1. However, algebraically we can conclude that 
𝑓 𝑛 1 𝑛 1 1 𝑛. 

In light of the previous queue problem, we define 
a game 𝐺 𝐴, 𝑣  is a voting game with 𝐴: the set 
that contains all agents (grand coalition), and 𝑣 is a 
value function that maps a coalition to some real 
number ; 2 → 𝑅.Now consider a finite game with 
size 2𝑛 1 and quota 𝑞 𝑛  ,i.e. 
𝐺: 𝑎 , 𝑎 , 𝑎 … . 𝑎 ; 𝑛  where 𝑛  is any small 
number. In addition, the collective utility (value) 
function is identified by 𝜑 𝑣 𝑤 𝑡  where  ∈ 0,1  
, i.e. voters can only conduct a ‘yes’ or no ‘vote’ and 
𝑤 𝑓 𝑛 𝑛 1 for any 𝑖. In this case, we find 
that the only pivotal player is the player at the 𝑛 1 
position.  
 

Lemma 1: Given a partially observable sequential 
voting game of size 2𝑛 1  of which only an 𝑛 -
player partition is observable, the player at the order 
𝑘 𝑛 1 is pivotal for the grand coalition. 
 

Proof: For any quota 𝑞 n  and 𝑄 is the 
sequence identified by 𝐺 𝑎 , 𝑎 , 𝑎 … . 𝑎 , we 
split G into 𝐺 𝑎 , 𝑎 , . . 𝑎  and 𝐺
𝑎 , 𝑎 , . . 𝑎 , 𝑎  .We the assume that only 

𝐺 is observed with the assumption that ∃𝑡 ∈ 𝑇 
1and 𝑖 ∈  𝐺  ,and therefore, the quota 𝑞  for 𝐺  is 
𝑛 1 .Given that weights are distributed equally 
among voters, we find that the player at the order 𝑘
𝑛 1  is pivotal for 𝐺 .Given that 𝐺  is not 

observable, we conclude that player 𝑎  is pivotal 
for an infinite sequence of size 2𝑛 1. 

 

Example 1: Consider the game 𝐺
 1,1,1,1,1,0,0,0,0; 4 ,this is a 2𝑛 1 game with 𝑛
4. If all players up to the 𝑛  position vote ‘yes’, the 
quota is achieved assuming that there is at least one 
player at any position 𝑘 𝑛 will vote ‘yes’. In the 
above example, the outcome for 𝐺 ∈ 𝐺 , where 𝐺  
contains all players up to the 𝑛  position, is 4.Any 
player in the remaining sequence, let’s say the one at 
the order 𝑘 𝑛 1 , can guarantee achieving the 
quota if he conducts a ‘yes’ vote. In the above game, 
the player at the 𝑛 1 position is the one at the 5th 
position, therefore, the collective outcome of 𝐺 is 5. 
Therefore, given a 2𝑛 1  game and an 𝑛 -player 
partition , at the order 𝑘 𝑛, we find that there are 
still 𝑛 1 players yet to vote , and assuming that at 
least one player in the remaining sequence will 
conduct a ‘yes’ vote , we conclude that the pivotal 
player in any infinite sequential game of size 2𝑛 1 
is the one at the 𝑛 1 position. Although the player 
at the 𝑛  order guarantees achieving the quota if he 
conducts a positive vote, he is not pivotal to the 
coalition. Our interest here is identifying the pivotal 
player that first guarantees achieving the quota, 
regardless of whether the quota is exceeded, and 
given that at least one player in 𝐺  will conduct a 
positive vote. 
 

Lemma 2: For an infinite sequential voting game and 
a coalition of size 2𝑛 1 players, and quota 𝑞  𝑛, 
the value of the coalition 𝜑 𝑣  is 𝑛 𝑛. 
 

Proof: Consider the coalitional utility value function 
2 → 𝑅 represented by 𝜑 𝑣 ∑ 𝑤 𝑡  and 𝑡 ∈ 0,1  
, and moreover, the function 𝑓 𝑛 𝑛 1 
represents the weight 𝑤  of player 𝑖 at any order 
𝑘 .For simplicity, we assume that ∀ 𝑖 ∈ 𝐴, 𝑡 1. 
For an 𝑛-player partition we get : 

 

𝑤 𝑡 𝑛 𝑛 1  𝑛 𝑛 (3)

 

By revisiting example 1 above, we notice that the 
collective value of the coalition should be 4 4
20.Moreover, the collective value of 𝐺 ∈ 𝐺  is 14, 
where 𝐺  contains all players up to the 𝑛  position. 
In this case, the first player at the least 𝑛 1 order, 
i.e. the player at the 5th position, has sufficient weight 
to achieve the coalitional value, however, there is 
uncertainty about the state of all players at 𝑘 𝑛 
since 𝐺 is an infinite game.  

Note that for any game of size 2𝑛 1 there is a 
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partition of size 𝑛, i.e an 𝑛-player game that contains 
at least 2  players. This rule is violated for 𝑛
2 .Consider a game with 𝑛 1  and 3  players, for 
example 𝐺 0,0,1; 1 , at the 𝑛 position there 
should be a number of 𝑛 1 players that guarantee 
achieving the quota if they all conduct a “yes’ vote. 
Therefore, for a 2𝑛 1 player game with 3 players 
there is no pivotal player, and the quota is not 
achievable in this case.  

For infinite sequential voting games, we model a 
sequence of infinite games each with 𝑛 1 using a 
discrete-time stochastic Bernoulli process. Note that 
given a Bernoulli process with  𝑛 1 , 𝑎  does not 
affect the state transition in all cases because it is the 
initial input to the process. Moreover, in anonymous 
environments, heterogeneity is not observed, and 
therefore, the weight is identical for any two players 
𝑖 and 𝑗. Therefore, in order to model heterogeneity in 
its simplest form, we assume that anonymous players 
cannot conduct two consecutive votes. This rule is 
described in definition 1 below: 
 

Definition 1: In anonymous games, the simplest Rule 
of Heterogeneity (RoH) states that 𝑖 𝑗 where 𝑖 and 
𝑗  are the players at the positions 𝑘 1  and  𝑘 
respectively. 

 

Follows from definition 1 that the total number of 
votes in any fair game with an ordered sequence 𝑄 is 
bounded according to Lemma 3 below:  

 

Lemma 3: Given an infinite anonymous game with 
fair distribution of votes, the sequence 𝑄  with 
size 2𝑛 1 has 𝑛 number of votes.  

 

Proof: Given a Bernoulli stochastic sequence of 
games, each with a state space {0, 1}, and assuming 
that all games are played using a fair coin, a sequence 
of size 𝑍 contains 𝑍 1 coin tosses. A sequence of 
size 2𝑛 1, therefore, contains 2𝑛 coin tosses with 

probability  for any selection.  

To model heterogeneity, we use a discrete-time 
Bernoulli stochastic game with state space 𝑎
0, 𝑏 1  where 𝑎  and 𝑏  are Boolean variables that 
represent the satisfaction and dissatisfaction of RoH.  

Moreover, 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑎  is the winning 
strategy which occurs when RoH is satisfied, and 
𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑏  is vice versa. Thus, given that 
the random variable 𝑋  has a Bernoulli distribution, 
the probability of obtaining a win is 𝑃  and the 
probability of obtaining a loss is 1 𝑃. The game 
starts at state 𝑇  with applying the biased function 
𝑓 (X) 𝑥; if the result is 𝑓 𝑋 𝑏 then there is a 
loss and the process stays at 𝑇  , if the result is 

𝑓 𝑋 𝑎 then the result is a win and there should be 
a state transition to 𝑇 .Note that the function𝑓 𝑋  
does not guarantee collecting 𝑛 votes because 𝑓 𝑋  
is not a fair function yet it represents the likelihood of 
occurrence of the best possible sample of the 
population. More precisely, 𝑓 𝑋 𝑎 is the degree 
to which the voting sequence is heterogeneous. Given 
an infinite random game, intuitively, the probability 
of obtaining 𝑛 votes should be extremely low. 

Moreover, in a sequence of size  2𝑛 1  , the 
probability of obtaining 𝑙  losses is 𝑃  and the 
probability of obtaining 𝑤  wins is 1 𝑃 , and 
𝑤 2𝑛 1 𝑙.The higher the value of 𝑃, the less 
likely two consecutive wins will occur. Now 
considering the sequence Q, given that the discrete 
random variable 𝑋  has a Bernoulli distribution, the 
probability of obtaining 𝑄  is given by 𝑃 𝑄
 𝑃 𝑋 , 𝑋 , 𝑋 , 𝑋 , … . 𝑋 𝑃 1 𝑃 . The reason 
Q is observed is due to the collective measure of 
fairness it can provide; P(Q) is the likelihood of 
occurrence of the partition 𝑡𝐴  which is a perfect 
sample of the population of agents. To calculate the 
power index for the kth player in the game, equation 1 
is not valid because the sequence can be large enough 
such that equation 1 cannot be solved in polynomial 
time. Equation 2 satisfies a voting game with large 
number of participants, however, it does not satisfy 
an infinite game in which the identity of agents cannot 
be resolved in real time. The probability of 
occurrence of any sequence 𝑄 is 𝑃 𝑄  and it has been 
concluded as described above. Therefore, given that 
the game is anonymous and with a large number of 
players, it is reasonable to replace 𝑡𝐴 with P(Q),the 
probability of the sequence, in equation 2 above, and 
thus, the index of the 𝑘  player in the game is 
calculated as follows:  

 

𝑆 𝑑𝑠 𝑣
𝑃 𝑄

1 𝑃 𝑄

𝑣
𝑃 𝑄

1 𝑃 𝑄
𝑃 𝑄

1 𝑃 𝑄
 

(4)

 

Since the contribution of each player is minor, we 
have assumed that weights are distributed equally 
among voters. Therefore, 𝑆 𝑑𝑠  now represents 
the power index of agent 𝑎  in terms of the 
marginality (hidden power) over the range 1
𝑃 𝑄 . Due to the minority of individual contributions, 
the value 𝑑𝑠 now is very small and can be ignored, 
hence, the value function at position 𝑘 can be reduced 
to represent the power index of the 𝑘th position. This 
is calculated in equation 5. 
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Table 1: Sample of the results of 10 coalition obtained by analysing Wikidata’s editing sequences. 

 𝑃 1 𝑃 𝑃 𝑄  1 𝑃 𝑄  𝑤 𝑣  𝑛  𝜑 𝑣  𝐹 𝜆  

𝑒  0.55465587 0.44534413 0.247012736 0.752987264 0.32804371 73 27 0.037037037

𝑒  0.58552631 0.414473684 0.242685249 0.757314751 0.320454935 65 35 0.028571429

𝑒  0.64734299 0.352657005 0.228290042 0.771709958 0.295823631 61 39 0.025641026

𝑒  0.29003021 0.709969789 0.205912688 0.794087312 0.259307364 56 44 0.022727273

𝑒  0.57142857 0.428571429 0.244897959 0.755102041 0.324324324 55 45 0.022222222

𝑒  0.27118644 0.728813559 0.197644355 0.802355645 0.246330111 38 62 0.016129032

𝑒  0.37804878 0.62195122 0.2351279 0.7648721 0.307408128 54 46 0.02173913

𝑒  0.28179551 0.718204489 0.202386801 0.797613199 0.253740537 72 28 0.035714286

𝑒  0.61940298 0.380597015 0.235742927 0.764257073 0.308460249 64 36 0.027777778

𝑒  0.178 0.822 0.14631 0.853684 0.17139363 40 60 0.016666667
 

𝑤 𝑣  𝑣
𝑃 𝑄

1 𝑃 𝑄
 (5)

 

Indeed, the quota for any sequence 
𝑎 , 𝑎 , 𝑎  , … . . 𝑎  is 𝑛 𝑛 .Where 𝑛  is the 

number of votes obtained by using the biased function 
𝑓 𝑋 at the pivotal position where 𝑘 𝑛 1  and 
𝑤 𝑣  is the marginal power at the 𝑘  position. 
Moreover, there is a proximity function that measures 
the degree to which the outcome of any sequence 𝑄 
is close to the quota:  
 

𝐹 𝜆  
1

|𝑛  𝑛 |
 (6)

 

Note that as 𝑛  gets closer to n, 𝐹 𝜆 → ∞ and 
𝐹 𝜆 ∈ 0, ∞ . The value of the coaltion in this case 
can be concluded by updating equation 3 as follows: 
 

𝜑 𝑣  𝑤 𝑣 ∗ 𝑛  (7)
 

Where 𝜑 𝑣  represents the collective utility 
value of the coalition, i.e. the payoff members of the 
coalition gain through cooperation. In the next 
section, we use equations 6 and 7 to derive the 
coalitional values for 10 Wikidata coalitions. 
Furthermore, equation 6 is used to calculate the 
proximity value for each coalition with respect to the 
predicted output at infinity (which should precisely be 
equal to ∞).  

3 ANALYSIS 

In this analysis we exploit the nonlinearity of 
Wikidata, the largest structured crowdsourced 
knowledgebase that currently exists. Wikidata 

depends on a peer production service in which a large 
sample of the general population, called the crowd, is 
hired to perform editing tasks. Editing tasks merely 
depend on individual agent preferences. Therefore, 
selecting a targeted knowledge resource (entity) is a 
random process, as well as selecting the time to 
execute edits.  
The editing process in Wikidata is a sequential 
process with no bound on the amount of edits required 
to complete the knowledge. Thus, editing events can 
be modelled as an infinite sequential voting game 
where each edit is equivalent to a single vote. 
Moreover, identity of editors does not affect the 
editing sequence, while in particular many of the 
editing events are already performed by anonymous 
users or automated group programs (bots).Therefore, 
Wikidata editing events can ideally be modelled as an 
infinite anonymous voting game. In this context, 
editing events of many entities were analyzed. A 
sample of the result is shown in table 1 above. The 
editing sequence of each entity represents a 
coalitional game for which the value of the coalition 
at the 𝑘  position is calculated as in equation 5 and 
each entity is represented by a coalition 𝑆 ⊂ 𝐴. 

Moreover, entities are chosen such that the 
assumption can be made that the progress of different 
coalitions is not necessarily competitive, but distinct 
games should at least be comparable. Concerning the 
targeted quota, the progress of 1000 coalitions over 
five iterations, was analysed, but no coalition 
achieved the target quota. As expected, 𝑛 is difficult 
to achieve in an infinite game. As shown in table 1 
above, some coalitions came very close to 𝑛  with 
proximity as low as ~0.016 , but no coalition 
achieved 𝐹 𝜆  ∞  which means that 𝑛  can be 
considered as the power index at infinity.  
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Figure 1: Voting pattern and BF for 𝑒 . 

 

 

Figure 2: Voting pattern and BF for 𝑒 . 

Equation 7 is used to obtain the utility value of 
each coalition as shown in table 1.By examining 
many entities, we noticed that there is a strong 
relation between the utility function 𝜑 𝑣  and the 
publicity of entities. For example, the above entities 
represent a selection of higher educational 
institutions, the two entities with the highest 
coalitional values 62 and 60 are the most prominent 
in this list. Similarly in other coalitions that belong to 
comparable categories, in many cases, the value of 
the coalition is related to the publicity of entities.  

Because 𝜑 𝑣  also represents the quality of 
cooperative patterns in terms of achieving real-time 
heterogeneity (represented by the probability of the 
sequence captured at certain points in time), this 
result suggests that entities with higher public 
awareness may have higher quality cooperative 
patterns. However, the quality of cooperative patterns 
should not directly relate to the quality of the content 
of the corresponding Wikidata articles. 

Moreover, the sequential voting scheme for 
Wikidata yields a Boolean fingerprint (BF) as shown 
in figures 1 and 2 above. Both figures show the BF 
for the coalition with the largest gain (𝑒 ) and the 
coalition with the lowest gain ( 𝑒  ) respectively at the 
pivotal position 𝑛 1 for 𝑛 100 (the complete BF 
for each entity is shown below each graph). However, 
it should be noted that 𝑃 𝑄  does not represent the 
number of aggregated votes, but it represents the 
probability of the sequence, and it depends on the 
degree to which the voting sequence is 
heterogeneous. Heterogeneity in real-time is not the 
total number of players in the coalition, but it is the 
number of consecutive actions performed by different 
players. Therefore, on some occasions, coalitions 
with lower number of players may have highly 
heterogeneous patterns, hence higher quality 
cooperative patterns, than coalitions with higher 
number of players. 

4 RELATED WORK  

Skibski et al. (2018) derive the “stochastic shapely 
value” by applying the Chinese restaurant process to 
games with externalities .In the Chinese Restaurant 
Process, each player can either form a new group with 
probability 1/𝑛  or join an existing group with 
probability 𝑏/𝑛  where 𝑏  is the number of existing 
players. The stochastic shapely value takes into 
consideration , not only the marginal power of each 
player, but also the weighted average over all 
partitions , which is based on the probability that the 
coalition will form using the Chinese Restaurant 
Process. 

Benati et al. (2019) Show that stochastic 
approximation can produce effective sampling of 
additive exponential values in cooperative games. 
This is achieved by applying probability concepts 
only to the sample and reduced sum. They show that 
there stochastic approximation method produces 
accurate predictions equivalent to the actual value of 
the game with minor standard error. 

de Keijzer et al.(2010) addressed the possibility 
of manipulating voting games by designing a 
weighted voting game that yields a target power 
index, or at least a power index that is close enough 
to a certain threshold in an 𝑛 -player game. This 
problem is a difficult one because identifying a priori 
for agent 𝑖’s position such that the coalition yields a 
certain value requires examining an infinite set of 
weights and calculating all permutations over the 
finite set of players, and moreover, this applies to 
each weighed voting game. Our method escapes this 

0

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

0

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

011101111011111101000101111111111111011
101111011111010110111001000011101111111
01110111111011111010001  

101100000000001011000000011111011010101
000000000000000001111001100000011100100
0001010101110011011011 

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

480



restriction for two reasons: 1. there is an infinite 
number of players which implies that each player has 
a minor contribution to the value of the 
coalition.2.players are anonymous, and given the 
simplest RoH, the maximum contribution of each 
player is bounded by uniformity.  

However, the method represented by de Keijzer et 
al. (2010) requires excluding dummy players and 
identifying a superset, i.e. a super coalition that is 
always winning, then iteratively identifying the 
maximum-weight losing coalition. The previous 
approach is close to identifying the best response 
profiles in partially observable infinite games 
(Reeves and Wellman, 2012). Usually, computing the 
linear best response strategies in infinite games, such 
as the work of Reeves and Wellman (2012), needs a 
number of steps: 1.developing an algebraic formula 
for predicting the utility given a strategy and a set of 
parameters. 2. The action space of agents is then 
partitioned, and the maximum utility action, i.e. the 
action with the potential to maximize the utility 
expression, is identified. This method depends 
heavily on effectively identifying partitions such that 
the maximum utility action is the best one for 
generalization.  

To study false name manipulation, Bachrach and 
Elind (2008) studied a game that consists of all 
players in the grand coalition, and weights are 
distributed fairly among players. In addition, a value 
function 𝜑 𝑣 2  describes the gain and each 
player can split his weight fairly between two false 
identities. For example ,in a game 𝐺: 2,2,2, … ; 2𝑛 ,a 
player can split his weight equally among 2 identities 
resulting in the game 𝐺 : 2,2, … 2,1,1; 2𝑛 . Indeed, in 
such game the shapely value for any player is 1/𝑛 ( 
given that this is the only permutation that 
exists).Therefore, the maximum gain for the last two 
players with false identities is 2𝑛/ 𝑛 1 .Due to our 
RoH we have considered the game 2,1,1; 𝑛  ,and 
given our stochastic process , the maximum gain of 
this coalition is 𝑛 1.Moreover, to model an infinite 
game of this sample we have generalized our formula 
to model any sequence of size 2𝑛 1. 

5 CONCLUSIONS 

Infinite sequential games are now important in 
internet open anonymous environments, such as the 
Wikidata case study presented in this paper. We have 
reached the best approximation of the voting power 
index at infinity for a coalition. In light of the waiting 
queue problem described in this paper, we identified 
a voting game with only one pivotal player. In 

particular, for a partially observable sequence of size 
2𝑛 1, we have found that the only pivotal player is 
the one at the order 𝑛 1 given a utility function that 
identifies the coalitional value gained through 
cooperation. Moreover, we have found that 𝑛 is a 
good approximation of the power index at infinity, 
and it is difficult to achieve. This result is based on 
the simplest rule of heterogeneity which prevents 
anonymous players from conducting consecutive 
votes.  

We have applied our game formula to Wikidata 
editing sequences of many entities and a sample of 
the results has been presented. Using a discrete-time 
stochastic process, we have modelled Wikidata 
editing events as infinite sequential voting games. 
The quality of cooperative patterns, identified in 
terms of the degree of real-time heterogeneity, has 
played a key role in yielding higher coalitional values. 
An interesting line of research for future work is 
identifying the threshold beyond which cooperative 
patterns need to be refreshed to yield higher 
coalitional values or to maintain a winning strategy. 
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