
Improving UI Test Automation using Robotic Process Automation

Marina Cernat1, Adelina-Nicoleta Staicu2 and Alin Stefanescu1 a
1Department of Computer Science and Research Institute of the University of Bucharest, University of Bucharest, Romania

2Cegeka, Romania

Keywords: Robotic Process Automation, RPA, UI Testing, Test Automation.

Abstract: Robotic Process Automation (RPA) is now one of the fastest growing segments in enterprise software. This
technology uses so called “software robots” that can mimic humans interacting with various applications at
the UI level. Thus, RPA achieves automation of various UI scenarios, without writing dedicated software to
implement them. In this position paper, we open a discussion on the opportunities and challenges of using
RPA to improve the test automation.

1 INTRODUCTION

Robotic Process Automation (RPA) (van der Aalst,
2018; Syed, 2020) is one of the strongest contenders
in the enterprise software market, being also the
fastest growing segment in 2019 (Gartner, 2019). The
technology found a sweet spot in enterprise
automation by emulating repetitive tasks done by a
human operating a computer. The first-class citizen in
this context is a so-called “software robot” that
interacts with the system at the UI level, e.g., clicking
or filling web forms with data copied from various
data sources that are accessible through the front-end.
Being in principle agnostic to the technology behind
the UI, RPA can be easily deployed and integrated in
the workflows of a company including legacy
applications that do not offer proper APIs. In fact, one
of the promises of RPA is that it is cheaper and
quicker to implement compared to writing a dedicated
software. More precisely, the most suitable tasks for
RPA are those that are repetitive, but not frequent and
structured enough to economically justify full
enterprise automation. On the other end of the
spectrum are those tasks that require a lot of creative
human input, are ad-hoc, or too infrequent to be worth
the investment in automation (van der Aalst, 2018).
In fact, due to its nature, UI testing is an area that
would be amenable to RPA automation, and this is the
very idea that we explore in this paper.

Software testing is a very important stage in
software development, with a proportion of 25% of

a https://orcid.org/0000-0002-8418-2643

IT spending dedicated to QA and testing (Sogeti,
2019). However, less than 20% of the testing
processes are automated, so there is a lot of potential
to improve the state-of-the-practice. In fact, the need
for test automation is reflected in its healthy growth –
the automation testing market is estimated to double
its size from USD 12.6 billion in 2019 to USD 28.8
billion in 2024 (Markets and Markets, 2019). Testing
activities are very diverse: from unit testing, to
integration testing, to UI testing. While unit testing is
almost entirely automatic, UI testing still involves a
lot of manual testing, with testers clicking through
interfaces following certain scenarios for acceptance
testing or using their intuition in exploratory testing.
In general, automating UI testing is regarded as
challenging (Aho, 2018) due to fragile scripts when
the interface is changing, high maintenance
(Alegroth, 2016), difficulty in defining the test
oracles (Memon, 2013), estimating the costs of
automation (Dobslaw, 2019), or combinatorial
explosion of the states to be explored (Nguyen, 2014;
Vos, 2015). Moreover, other complications appear
when the UI testing needs to deal with scenarios
involving several applications or even remote ones.
In this situation, one does not have the same control
of the GUI elements as when only one web
application is under test (via e.g., Selenium). RPA
may provide a solution to some of these problems
since it works very well at the UI level, in a
heterogeneous environment, is in many cases
scriptless (thus easier to learn), more stable, and

260
Cernat, M., Staicu, A. and Stefanescu, A.
Improving UI Test Automation using Robotic Process Automation.
DOI: 10.5220/0009911202600267
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 260-267
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

profits from recent advanced features such as
computer vision. Industry already started to
understand its potential benefits to UI test automation
(Bhukan, 2017; Murphy, 2019), even though RPA
cannot be applied to UI testing out-of-the-box
(Ariola, 2019). We hope that we spark the interest of
the academic community to investigate and combine
state-of-the-practice in RPA with state-of-art in
testing to improve test automation (Arcuri, 2018).

The structure of the paper is the following: After
a short introduction in RPA, we describe two usage
scenarios examples. Then, we discuss opportunities
and challenges as well as related work. Finally, we
conclude with future work and an appendix.

2 A SHORT INTRO TO RPA

Robotic Process Automation is the technology that
enables the automation of a process by imitating and
integrating the actions of a person who interacts with
digital systems when executing a process. Note that
the RPA does not replace existing systems. Instead, it
works with the current enterprise landscape and
executes well-established actions. RPA interacts with
the system in the same way a human would, but faster,
at a lower cost, and with less errors. This technology
offers the possibility to integrate modules developed
in programming languages such as VB.NET, C#,
Python, or Java.

The RPA tool market is highly dynamic with
several companies competing in a fast-expanding
environment (Gartner, 2019). The biggest players are
UiPath, Automation Anywhere, and Blue Prism. In
the rest of the paper, we will refer to the UiPath
platform, because it is currently the leader in the field
and, also, the second author of the paper has 2+ years
of industrial experience using its technology.

The main components of UiPath platform are:

• UiPath Studio: An IDE that relies on Microsoft
Workflow Designer and Microsoft Visual Studio
tools and uses the Visio-style process views to
graphically model workflows as sequences,
flowcharts, or state machines. It gives the user an
ergonomic experience. Built on .Net framework,
UiPath Studio allows working with all types of
variables, arguments, reading data from several
formats (Excel, PDF, common databases, Word,
desktop or web-based applications), writing data,
creating reports, handling keyboard strokes and
mouse clicks, as well as Optical Character
Recognition (OCR).

• UiPath Robot: The workflows created in UiPath
Studio are executed by a UiPath robot. There are
two main types of robots: attended and
unattended, the difference being that the former
requires human inputs at some point during the
execution.

• UiPath Orchestrator: A component that manages
the UiPath robots across various platforms.

Due to requests and needs from the users, RPA has
become, in the past years, a conglomerate of different
technologies that are combined in order to help and
ease the development of an RPA project. Advanced
plugins, including machine learning, cognitive
automation and computer vision, can now be used by
the robots. Also, third party integration with popular
cognitive services from Microsoft, Google, IBM are
readily available.

Another challenge and opportunity for RPA is the
automation in virtual or remote environments a.k.a.
VDIs (virtual desktop interfaces). There is a clear
growth in VDI usage among enterprise customers,
proving a need of quick and stable UI automations for
technologies such as Citrix, VMware and Windows
Remote Desktop. UiPath was among the first ones to
implement it using latest breakthroughs in computer
vision research. Thus, it solved for the robot the
difficult problem to have obtain the underlying
properties of UI elements (buttons, text fields, etc.).
In VDI, this ability is damaged because of the lack of
a traditional interface since the robot only obtains an
image of a remote desktop. Mixing computer vision,
machine learning, OCR, text fuzzy matching and a
multi-anchoring system, robots now automatically
recognize on-screen elements, not relying on IDs,
hidden properties or metadata. Also, this solution for
VDIs can be extended also to work for similar
situation of scanned PDFs, Microsoft Silverlight,
images etc.

Yet another area of great progress of RPA recently
is that of processing and understanding unstructured
information, especially text, through data mining,
natural language processing, and machine learning.

These RPA advancements could be very helpful
when solving some of the problems of UI testing.

3 A SIMPLE EXAMPLE OF
TESTING USING RPA

To illustrate better how RPA could be used for test
automation, we will provide a small example.
Assume that we want to test two calculator apps, one
installed locally (e.g., the Windows calculator app),

Improving UI Test Automation using Robotic Process Automation

261

but also one online (e.g., the calculator that appears
on top of the Google page when you search for
“calculator”). A scenario that a human would follow
to test them could be: take two numbers, for instance
1 and 2, add them on the calculator (desktop and
online) and verify if the output of the calculator is
indeed the expected value of 3.

To automate this in RPA, we quickly build a robot
that can test in parallel both calculators using test data
extracted from an Excel spreadsheet. The spreadsheet
contains test data with operands and an operator (1+2,
5+7, 3*8) and the expected computation result for
them (3, 12, 24, respectively). The robot can
implement two test cases, one for each app, in the
usual way of doing testing, by reading the data,
executing the application under test and comparing
the output with the expected values. If the values are
equal, the test has passed, otherwise it failed. The
graphical model of the robot is provided in Fig. 1 in
the Appendix, where we have the sequence with the
steps. When it runs, the robot will do the following

• Step 1 (test setup): It reads the values from Excel
(see Fig. 2 in the Appendix) and keeps them into
an internal data table variable.

• Step 2: It opens the desktop and online calculator
in the same time, but in different threads.

• Step 3 (test execution): For each row of the data
table (which contained the test data, 1, +, and 2),
the robot performs the encountered operation by
clicking the buttons of the calculator, then it takes
the obtained result and writes them back in the
Excel spreadsheet (to be used for debugging, if the
tests fail). See Fig. 3 in the Appendix.

• Step 4: It closes both calculators.
• Step 5 (test assert): It compares the column of the

actual results and the column of the expected
results from the spreadsheet and put into the
“Status Desktop”, respectively “Status Online”
columns, the test results for each test being
“Passed”, if the results were equal, and “Failed”
otherwise. See Fig. 4 in the Appendix.

Thus, the robot is graphically modelled and will
automatically click through the interfaces of a
desktop app, but also of a web app in the browser,
implementing a data-driven test suite and writing the
results back into a file for the test reports. Note that
everything is done at the UI level and the robot
seamlessly switches between applications (Excel,
desktop app, web browser). This would not be
possible using a classical UI web testing framework
such as Selenium, which would only be able to deal
with the web app in the browser, but not with the
desktop app.

4 AN END-TO-END EXAMPLE
OF TESTING USING RPA

To understand how RPA may improve UI testing, we
exemplify a more complex testing scenario that uses
several applications and technologies.

Assume we want to test various functionalities of
a back-office banking application. An unattended
robot could be implemented to do the following tasks.

First of all, we want to test if the application is
working on several web browsers, so the robot should
successfully login regardless of the used browser. The
robot keeps an oracle application testing suite logging
if the test passed or not in an Excel format. If the login
is successful, the test has passed, else the test failed.

After testing the login functionality, the robot tests
the ability of internal money transfers in the
application. So, it transfers an amount of money to
another account, then it checks if the money arrived.
If the transfer is successful, the test passed, and the
result is saved. After doing the payment, the bank
clerk, and now also the robot, should be able to see
and save the payment confirmation in PDF format.
So, the robot also tests this functionality, opening the
menu where it finds the payment confirmations and
saves the most recent file. In order to check if the PDF
file contains the fields that represent the amount of
money sent and the account to which the money was
transferred, the robot opens the PDF file and checks
the corresponding fields. If they exist and are correct,
the test passed.

After this check, we move forward and test an
application that loads these PDF files in a database.

First, the robot checks the database connection.
Then, the robot checks if the files are correctly loaded
in the database. For all the files previously processed,
the robot interrogates the database and checks if the
actual result corresponds to the expected result.

Last but not least, the robot will access for some
final verifications a sensitive, more restricted area of
the bank system remotely through a VDI. In this case,
the robot has access only to screenshots of the remote
applications, without access to the logical elements of
the UI. However, also in this case the robot can use
the latest computer vision RPA add-ons (see previous
section) and smoothly solve the given tasks.

We notice that writing test scripts to implement all
these test cases is not at all easy, whereas using the
advanced capabilities of RPA, the task becomes
feasible.

ICSOFT 2020 - 15th International Conference on Software Technologies

262

5 OPPORTUNITIES AND
CHALLENGES OF USING RPA
FOR TESTING

As already hinted until now, we consider that there
are many opportunities of using RPA to improve UI
test automation.

First of all, RPA is much more accessible than test
scripting or programming. Most RPA tool providers,
including UiPath, offer some products that do not
require technical knowledge (see the lightweight
UiPath StudioX solution aimed at non-technical
users). Therefore, businesspersons, field experts or
manual testers without technical knowledge can
automate some of their UI testing tasks. Thus, using
RPA, we can imagine that acceptance tests can be
automated easier and at a lower cost even by the end
users (for example, the doctors from a hospital) with
some training before, because they are the experts in
the respective field and this is the best way to check
if the tested application or usage scenario is correct.

Then, a robot can access through the UI any tools
available irrespective if APIs are provided or not.
Thus, if certain tools, including testing tools, are used
inside an organization, the robot can use them to
achieve its goal. An RPA robot could implement test
scenarios that are more flexible, maintainable, stable,
easier to integrate (ERP legacy systems, CRM,
calendar, email, PDF, VDIs), and also accurate. This
was proved by the fast adoption of RPA in enterprise
automation, but we expect that this will still hold in
the UI test automation domain (in fact, that could
constitute a good topic for an empirical software
engineering research project).

Last but not least, using RPA for testing could
capitalize on the high growth and advanced
developments of the RPA tool providers. They are
now in a race to include as many sophisticated
features as possible, and UI testing could benefit from
them, since the UI testing tool providers are not so
fast in implementing the latest technologies,
especially in the field of AI. So, the robots will
become smarter in several dimensions and this could
clearly benefit a UI testing process deploying them.

However, with great opportunities come also
challenges. First of all, the RPA as-is must be adapted
to the UI testing requirements. This means that one
should define a suitable test infrastructure, RPA tools
must be better integrated with existing test tools for
test management, reporting, test execution, and other
test automation tools such that the strengths of all are
combined. Then, one should see what can be further
automated such that state-of-the-art in testing can be

used also in the context of RPA-based testing. So, we
should investigate how model-based testing, search-
based testing, automatic test generation, keyword-
driven and data-driven testing, fuzz-testing,
exploratory testing, to name a few, could be
embedded into RPA test robots. Also, the challenges
of UI testing (Aho, 2018) should be revisited,
investigating which of them could be solved by RPA-
based UI testing. Last but not least, in order to be
attractive to industry, cost models that include RPA
licenses should be devised such that the final testing
toolchain and process will provide a good return-on-
investment (Dobslaw, 2019).

6 RELATED WORK

We could not find any reference in the academic
literature reading the idea of using RPA technologies
to automate UI testing. This is understandable since
the RPA is a very recent technology that only recently
reached maturity (van der Aalst, 2018) and whose
challenges are started to be discussed (Syed, 2020).

There are only a handful of research papers that
may be relevant to our discussion involving RPA for
quality assurance. (Lübke, 2016) discussed the
possibility of using BPMN for test case design, which
is similar to the graphical modeling of RPA robots.
(Moffitt, 2019) proposed an approach of using RPA for
auditing, which resembles in some way a testing
process. (Beschastnikh, 2017) envisaged a framework
that deploys “bots” to do code analysis during the
software development process, but they do not work
at UI level and do not use RPA. (Enoiu, 2019)
investigated the general concept of test agents that
could distributively and cooperatively run a test plan.
It is an interesting idea to adapt for the context of RPA
test robots. (White, 2019) studied the problem of UI
testing for VDIs and implemented a solution to
extract UI test relevant information from images. This
could complement the current RPA plugins that do
the same task.

We analysed the industrial UI test tools. We tried
to be as comprehensive as possible in our
comparative analysis and we downloaded (whenever
possible) the tools and experimented with them in
order to understand their main features, strengths and
weaknesses. We do not have space in this short paper
to discuss the findings, but we only mention those that
offer interesting or advanced features that could be
used in combination with an RPA-based test
framework: Selenium (see also (Besant
Technologies, 2019)), Applitools, Robotframework,
Power Automate, Eggplant, Eyeautomate, Squish,

Improving UI Test Automation using Robotic Process Automation

263

Tricentis, Mabl, test.ai, apptest.ai, Functionize,
testim.io, as well as academic tools such as GUITAR
(Nguyen, 2014) and TESTAR (Vos, 2015).

Note that some of the RPA tools evolved from UI
testing tools, e.g., Automation Anywhere (which in
the meanwhile is not active anymore in the testing
market), while UI testing companies, e.g., Tricentis
(Murphy, 2019), Leapwork, want to enter the RPA
market. On the other hand, some RPA companies
such as UiPath are starting to provide RPA-based
testing solutions1.

7 CONCLUSIONS

The goal of this short paper is to promote the idea of
using the latest RPA technologies and research in
order to improve the state-of-the-art in UI test
automation. Based on our initial investigations, we
believe that there is a great potential in this idea both
from an academic as well as industrial point of view.

As future work, there are many aspects that we
plan to address. First, we will implement several
complex test scenarios using UiPath tooling to make
an inventory of strengths and weaknesses with respect
to testing. Then, we will try to enhance them by
integrating state-of-the-art tools and approaches from
the testing research (see also the discussion at the end
of Section 5), but also existing commercial UI tools
(see the tool list in Section 6). Some of the topics to
focus on are: the use of AI to obtain a “smarter” test
robot; the generation of test robots using process
discovery and understanding (Gao, 2019) (see also
UiPath Explorer component); but also the
development of methods to test the RPA
implementations themselves (see also (Cewe, 2018)).
Last but not least, we will perform all the above in the
context of a collaboration with UiPath, which showed
interest to provide feedback, access to tooling and
industrial use cases to validate the resulting ideas and
prototypes.

ACKNOWLEDGEMENTS

This work was supported by a grant of Romanian
Ministry of Research and Innovation CCCDI-
UEFISCDI, project no. 17PCCDI/2018. We also
thank to Ingo Philipp, Vice President at UiPath, for
inspiring discussions on the topic of the paper.

1 https://www.uipath.com/product/test-suite

REFERENCES

van der Aalst, W., Bichler, M., A. Heinzl, A., 2018. Robotic
Process Automation. Business & Information Syst. Eng.
60 (4), pp. 269-272, Springer.

Aho, P., Vos, T., 2018. Challenges in Automated Testing
Through Graphical User Interface. In Proc. of ICST
Workshops 2018, pp. 118-121, IEEE.

Alegroth, E., Feldt, R., Kolstrom, P., 2016. Maintenance of
automated test suites in industry: An empirical study on
visual GUI testing. Information and Software
Technology, 73, pp. 66–80, Elsevier.

Arcuri, A., 2018. An experience report on applying
software testing academic results in industry: we need
usable automated test generation. Empirical Software
Engineering 23 (4), pp. 1959-1981, Springer.

Ariola, W., 2019. RPA for Software Test Automation: Not
So Simple. CIO Magazine. Online at:
https://www.cio.com/article/3409056/rpa-for-
software-test-automation-not-so-simple.html

Besant Technologies, 2019. RPA vs Selenium. Industry
blog post, 2019. Online at:

 https://www.besanttechnologies.com/rpa-vs-selenium
Bhukan, S., 2017. Robotic Process Automation and the

Testing Future. Industry blog post. Online at:
https://www.testingbits.com/robotic-process-
automation-and-the-testing-future

Beschastnikh, I., Lungu, M., Zhuang, Y., 2017.
Accelerating Software Engineering Research Adoption
with Analysis Bots. In Proc. of ICSE-NIER, 2017, pp.
35-38, IEEE.

Cewe, C., Koch, D., Mertens, R., 2018. Minimal Effort
Requirements Engineering for Robotic Process
Automation with Test Driven Development and Screen
Recording. In Proc. of BPM’18 Workshops, LNBIP vol.
308, pp. 642-648, Springer.

Dobslaw F., et. al, 2019. Estimating Return on Investment
for GUI Test Automation Tools. arXiv report no.
CoRR abs/1907.03475, 12 pp.

Enoiu E., Frasheri, M., 2019. Test Agents: The Next
Generation of Test Cases. In Proc. of NEXTA’19, ICST
Workshops 2019, pp. 305-308, IEEE.

Gao, J., van Zelst, S., Lu, X., van der Aalst, W, 2019.
Automated Robotic Process Automation: A Self-
Learning Approach. In Proc. of OTM Conferences
2019, LNCS 11877, pp. 95-112, Springer.

Gartner, 2019. Magic Quadrant for Robotic Process
Automation Software. Market research report, no.
G00379618.

Lübke D., van Lessen, T., 2016. Modeling test cases in
BPMN for behavior-driven development. IEEE
Software 33 (5), pp. 15-21, IEEE.

Moffitt, K., Rozario, A., Vasarhelyi M., 2019. Robotic
Process Automation for Auditing. J. of Emerging
Technologies in Accounting 15 (1), pp. 1-10.

Markets and Markets, 2019. Automation Testing Market by
Component, Endpoint Interface, Organization Size,

ICSOFT 2020 - 15th International Conference on Software Technologies

264

Vertical, and Region - Global Forecast to 2024. Market
research report no. TC 6163.

Memon, A., Banerjee, I., Nagarajan, A., 2013. What Test
Oracle Should I Use for Effective GUI Testing? In
Proc. of ASE 2003, pp. 164-173, IEEE.

Murphy, T., 2019. Test automation + RPA,” Tricentis
industry webinar Online at:

 https://www.tricentis.com/resources/test-automation-rpa
Nguyen, B., Robbins, B., Banerjee, I., Memon, A., 2014.

GUITAR: an innovative tool for automated testing of
GUI-driven software. Automated Softw Engineering 21
(1), pp. 65-105, Springer.

Sogeti, 2019. World Quality Report 2019-2020, 11th
edition. Market research report.

Syed R. et al., 2020. Robotic Process Automation:
Contemporary themes and challenges. Computers in
Industry 115.

Vos, T., Kruse, P., Condori-Fernández, N., Bauersfeld, S.,
Wegener, J., 2015. TESTAR: Tool support for test
automation at the user interface level. Int. Journal of
Information System Modeling and Design 6 (3), pp. 46-
83, IGI Global.

White, T., Fraser, G., Brown, G., 2019. Improving random
GUI testing with image-based widget detection. In
Proc. of ISSTA 2019, pp. 307-317, ACM.

APPENDIX

Figure 1: Implementation of a test robot in UiPath for a test suite with two test cases: the one on the left to verify the desktop
calculator and the one on the right to verify an online calculator.

Improving UI Test Automation using Robotic Process Automation

265

Figure 2: Excel file containing the test data: The first input data in the first 3 columns and output data in the 4th column. The
rest of the columns are used to record the results of the tests.

Figure 3: The RPA sequence for automating the calculation 1+2 in the desktop calculator (the screenshots show the clicks
performed by the robot).

ICSOFT 2020 - 15th International Conference on Software Technologies

266

Figure 4: The implementation of the comparison between the expected value (oracle) and the calculated value.

Improving UI Test Automation using Robotic Process Automation

267

