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Abstract: The healthcare arena has been undergoing impressive transformations thanks to advances in the capacity to 
capture, store, process, and learn from data. This paper re-visits the problem of predicting the risk of in-
hospital mortality based on Time Series (TS) records emanating from ICU monitoring devices. The problem 
basically represents an application of multi-variate TS classification. Our approach is based on utilizing 
multiple channels of Convolutional Neural Networks (ConvNets) in parallel. The key idea is to disaggregate 
multi-variate TS into separate channels, where a ConvNet is used to extract features from each univariate TS 
individually. Subsequently, the features extracted are concatenated altogether into a single vector that can be 
fed into a standard MLP classification module. The approach was experimented using a dataset extracted from 
the MIMIC-III database, which included about 13K ICU-related records. Our experimental results show a 
promising accuracy of classification that is competitive to the state-of-the-art. 

1 INTRODUCTION 

Healthcare services are delivered in data-rich 
environments where a wealth of data is created at 
multiple levels of operational and medical records. In 
view of that, data analytics is increasingly becoming 
a key enabling thrust to leverage of such massive data 
amounts. An important part of the analytics 
capabilities is based on Time Series (TS) data. 
Applications of TS analytics are essential in a wide 
diversity of domains, especially healthcare where the 
use of temporal data is ubiquitous.  

However, the multi-dimensionality of TS data 
brings up further challenges regarding the extraction 
and selection of features. In this respect, Deep 
Learning (LeCun, Bengio, and Hinton 2015) could 
present as an appropriate approach. Deep Learning 
allows for learning hierarchical feature 
representations from raw data automatically. Deep 
architectures of Convolutional Neural Networks 
(ConvNets) (LeCun et al. 1989; LeCun et al. 1998) 
have been successfully implemented in complex 
tasks. Examples include Computer Vision and 
Machine Translation (e.g. Krizhevsky, Sutskever, 
and Hinton 2012; Gehring et al. 2017).  

Correspondingly, Deep Learning has also been 
considered as an attractive path for tackling tough TS 

problems. Particularly, in the case of multiple 
variates, complex relationships, and large amounts of 
data. There has been a growing interest over the past 
few years in this regard (e.g. Karim et al. 2019), as an 
alternative approach to avoid the need for developing 
conventional hand-crafted features.  

In this context, this study approaches a multi-
variate TS problem. The task is to predict the risk of 
in-hospital mortality among ICU patients. The 
problem under consideration represents a typical 
application of multi-variate TS classification. Using a 
multi-channel architecture, our approach utilizes 
multiple ConvNets to extract features from each 
univariate TS individually.  The experiments used a 
dataset extracted from the MIMIC-III database, 
which provides a freely accessible repository of ICU 
records (Johnson et al. 2016).  

The study attempts to make contributions in two 
aspects. On one hand, the study is conceived to 
contribute to the ongoing efforts towards availing of 
Deep Learning methods for multi-variate TS 
problems. While from a practical standpoint, the 
performance of channel-wise ConvNet architectures 
is explored with respect to the problem of predicting 
in-hospital mortality. 
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2 RELATED WORK 

The problem of TS classification was notably 
identified as one of the key challenges in Data Mining 
research (Yang and Wu, 2006). Distance-based 
methods such as Dynamic Time Warping (DTW) 
have been long recognized as the most performing 
technique in this respect (Berndt and Clifford, 1994). 
The development of feature-based similarity 
measures was also explored (Fulcher, 2018). 
However, the intensive process of pre-processing and 
feature extraction was generally considered as a 
limiting factor. While the analysis and forecasting of 
TS have been dominated by regression-based 
modelling methods such as Auto Regressive 
Integrated Moving Average (ARIMA). 

With recent advances, Machine Learning (ML) 
has increasingly come into prominence, especially for 
complex multivariate TS problems. Various 
implementations of ConvNet and Recurrent Neural 
Network (RNN) architectures were successfully 
applied for TS classification tasks. For instance, a 
ConvNet-based framework was proposed by (Cui, 
Chen, and Chen, 2016). ConvNets were exploited to 
automatically extract features through a sequence of 
convolution and pooling operations. The extracted 
features could represent the internal structure of the 
input TS. Furthermore, (Wang, Yan, and Oates, 2017) 
demonstrated that ConvNet models could provide 
better performance over traditional DTW methods. 

Further efforts concentrated on employing Deep 
Learning potentials for complex TS problems that 
involve large-scale datasets and multiple variables. 
For example, a ConvNet-based feature extractor was 
developed for multivariate TS classification (Zheng 
et al. 2016). (Purushotham et al. 2017) provided an 
exhaustive evaluation of Deep Learning against other 
ML models based on the MIMIC dataset. They 
demonstrated that Deep learning consistently 
outperformed other approaches, especially in the case 
of large multi-variate TS data.  

Other studies experimented Long Short-Term 
Memory (LSTM) models. For example, (Siami-
Namini, Tavakoli, and Namin, 2018) reported that 
LSTM outperformed traditional algorithms including 
ARIMA. Another study explored the use of bi-
directional LSTMs, which provided a better 
performance as well (Siami-Namini, Tavakoli, and 
Namin, 2019). A detailed presentation of such efforts 
would go beyond the scope of this study, but (Fawaz 
et al. 2019) provides a comprehensive review of the 
state-of-the-art Deep Learning implementations for 
TS classification. 

3 DATA DESCRIPTION 

The study used a dataset extracted from the MIMIC-
III database (Johnson et al. 2016). The MIMIC 
database provides a rich repository of ICU admissions 
to the Beth Israel Deaconess Medical Center in 
Boston between 2001 and 2012. It is considered to be 
one of the largest databases of its kind publicly 
available. It has been utilized in plentiful studies (e.g. 
Desautels et al. 2016; Komorowski et al. 2018). 

The dataset comprised more than 13K patient 
records related to a variety of ICU admissions 
including cardiac, medical, surgical, trauma, and 
others. The TS variables described the patient status 
over the 48-hour timespan after admission (e.g. heart 
rate, blood pressure, temperature, etc.). Specifically, 
the dataset included 17 temporal measurements, 
which represented the typical readings used during 
ICU monitoring (Silva et al. 2012).  As such, a 
(17x48) matrix could describe the development of 
each ICU patient. The dataset variables are listed in 
Table1 below.  

For each case, a binary label corresponded to the 
outcome (i.e. in-hospital mortality). The mortality 
rate among patients was about 9%. To establish a 
benchmark for comparison, the dataset was prepared 
following the set of procedures provided by 
(Harutyunyan et al. 2019). Under normal conditions, 
some variables could suffer from missing values (e.g. 
blood or urine samples). To fill in missing values, we 
applied values from the previous time point. All 
variables were normalized with zero mean and unit 
standard deviation. 

Table 1: Dataset variables. 

Variables 
Heart Rate
Respiratory Rate 
Capillary Refill Rate  
Systolic Blood Pressure 
Diastolic Blood Pressure 
Mean Blood Pressure 
Fraction Inspired Oxygen (FiO2) 
Oxygen Saturation (SaO2) 
Temperature 
Glucose 
pH 
Glascow Coma Scale Eye Opening 
Glascow Coma Scale Motor Response 
Glascow Coma Scale Verbal Response 
Glascow Coma Scale Total 
Height 
Weight 
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Figure 1: Approach overview. 

4 APPROACH OVERVIEW 

The approach is based on the multi-channel ConvNet 
architecture proposed by (Zheng et al. 2014). The 
architecture includes a combination of unsupervised 
and supervised learning over two stages as follows. 

4.1 Feature Extraction 

Learning representations is a fundamental question 
for ML. In this respect, ConvNets introduced a potent 
mechanism to automatically learn complex patterns 
from raw data. ConvNets were cleverly designed to 
deal with the spatial or temporal variability 
underlying data. Likewise, ConvNets were utilized in 
our case to learn features from the TS data, and hence 
eliminating the need to develop hand-crafted features. 

Initially, the multi-variate TS is separated into 
univariate channels. For each channel, hierarchical 
features are extracted through operations of 
convolution and pooling. The convolutional layers 
extract temporal patterns by applying 1-D filters over 
TS sequences. The convolutions are followed by a 
ReLU activation layer, which introduces the non-
linearity into the learning process. Subsequently, a 
global average pooling is applied, which computes 
the mean value of filters across the time dimension. 
The operations conducted on each TS channel are 
described in the equations below. 

yi = Wi ⁎ TSi + b        (1) 

hi = ReLU(yi)               (2) 

feati = GlobalAveragePooling(hi)   (3) 

Where yi is the output filter and ⁎ is the convolution 
operation, and feati is the output feature map. 

4.2 MLP Classifier 

The output of each ConvNet channel is a feature map 
that can be regarded as a compressed representation 
of the input TS. The feature maps are subsequently 
concatenated to jointly form a single feature map. 
Eventually, the aggregated feature map is fed to a 
conventional MLP classifier, which would be trained 
to perform the classification task. 

Supervised training is basically performed at this 
stage. The filter coefficients output from ConvNet 
channels are updated simultaneously during the MLP 
learning process. The classifier may include a single 
layer or multiple hidden layers, which would perform 
further non-linear transformation of the feature map. 
Figure 1 sketches the approach architecture. 

5 EMPIRICAL EXPERIMENTS 

As alluded earlier, the goal was to predict the risk of 
in-hospital mortality based on the initial 48h interval 
of ICU monitoring. The MIMIC dataset was 
randomly divided into 75% train and 25% test 
portions. The hyperparameters (e.g. filter size) of 
ConvNet channels were decided empirically. 
Specifically, we could achieve the highest accuracy 
with filter size= 8, and number of filters=8.  Given 17 
TS variables, the model included 136 convolutional 
filters (i.e. 17*8), and the output layer was composed 
of 136 weights. The model was trained using Adam 
optimizer (Kingma and Ba, 2014). 
 

DeLTA 2020 - 1st International Conference on Deep Learning Theory and Applications

100



 

Figure 2: Model loss in training and validation sets. 

 

Figure 3: ROC curve. 

 

Figure 4: Precision-Recall curve. 

 

Various structures of MLP were experimented for 
training the model. It turned out that the best 
performance could be achieved using 3 fully 
connected layers. Specifically, the hidden layers 
consisted of 64, 32 and 16 neurons, respectively. 
Further, the dropout technique was applied to help 
reduce the model over-fitting (Srivastava et al, 2014). 
Figure 2 plots the model loss in training and 
validation over 10 epochs with 20% of the dataset 
used for validation. 

Figure 3 examines the classification accuracy 
based on the Receiver Operating Characteristics 
(ROC) curve. The ROC curve plots the relationship 
between the true positive rate and the false positive 
rate across a full range of possible thresholds. The 
model could achieve a very good accuracy (AUC-
ROC≈0.85). Figure 4 plots the Precision-Recall 
curve, which is particularly important in the case of 
imbalanced datasets (AUC-PR≈0.60).  

Overall, the model could largely provide 
comparable performance to the literature. 
Furthermore, we could achieve a relatively higher 
AUC-PR compared to the work conducted by 

(Harutyunyan et al. 2019), which did not include the 
multi-channel ConvNet approach. The experiments 
were implemented using the Keras library (Chollet, 
2015) with the TensorFlow (Abadi et al. 2016) 
backend. The model implementation is shared on the 
GitHub repository (Elbattah, 2020). 

6 CONCLUSIONS 

The multi-channel ConvNet approach could yield 
promising results applied to the problem of predicting 
in-hospital mortality. Despite using a relatively 
simple ConvNet architecture, the accuracy achieved 
is competitive to the state-of-the-art. It is conceived 
that further improvements could be realized by 
applying more sophisticated architectures. 

Our future work aims to explore further 
interesting prospects. On one hand, we are concerned 
with the explainability of predictions. Analyzing and 
visualizing the output of ConvNet channels may be 
employed to bring insights into the most influential 
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variables on the predicted outcome. On the other 
hand, with the mounting successful applications of 
Transfer Learning, we endeavor to explore that path 
as well. Transfer Learning methods might be a key to 
improve the performance by fine-tuning pre-trained 
models rather than training from scratch. 
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