
Investigating on the Relationships between Design Smells Removals
and Refactorings

Lerina Aversano1, Mario Luca Bernardi1, Marta Cimitile2, Martina Iammarino1
and Kateryna Romanyuk3

1Department of Engineering, University of Sannio, Via Traiano, Benevento, Italy

2UnitelmaSapienza, University of Rome, Italy
3CERICT, Benevento, Italy

marta.cimitile@unitelmasapienza.it, kateryna.romanyuk20@gmail.com

Keywords: Design Smells, Software Maintenance, Software Evolution.

Abstract: Software systems continually evolve and this conducts to its architectural degradation due to the existence of
numerous design problems. The presence of Design Smells is the main indicator of such problems, it points
out the use of constructs that generally hurt system evolution. In this work, an investigation on Design Smells
removals has been performed, focusing specifically on the co-occurrence of refactoring and related changes
performed on a software system. An empirical study has been conducted considering the evolution history of
5 software systems. The detection of instances of multiple Design Smell types has been performed, along with
all the history of the systems, along with, the detection of refactoring activities. The empirical study shows
that Design Smells removals are not correlated to the presence of refactoring. The analysis provides useful
indications about the percentage of activities conducted on smelly classes, including refactoring (even if these
activities in few cases lead to effective smell removals).

1 INTRODUCTION

Software system evolution is usually affected by
challenging trade-off between short-term and long-
term goals. Usually, stringent deadlines lead to design
problems inducing rework costs. In particular, design
violations taken to satisfy fast delivery might
compromise software maintainability and introduce
technical debt.

In the literature, there are numerous studies
investigating design problems introduced along with
the evolution of a software system. Specifically, at the
design level the presence of construct design
problems, the so-called Design Smells, contribute to
system erosion. Design smells can be defined as
indicators of poor design quality (Hochstein et al.,
2005, De Silva et al., 2012, Garcia et al., 2009, Le et
al., 2016, Sharma et al., 2016), and are originated
from implementation constructs (e.g., classes).

Design Smells are closely related to system
evolution, as often an organization necessity deal
with accumulated design problems when adding new
features to a software system. Unmanaged, Design

Smells can lead to significant technical problems and
increased maintenance and evolution efforts.
More in detail, during the software evolution, the
amount and complexity of the interactions among the
software elements increase, with a consequent effect
on the design structure.

In this work, an investigation on the Design
Smells removals has been performed, focusing on the
relationships with refactoring performed on the
software system (Bernardi et Al., 2016).

An empirical study has been conducted
considering the evolution history of 5 software
systems. The detection of instances of multiple
Design Smell types has been performed, as well as the
detection of the refactoring activities. Then a co-
occurrence analysis has been conducted to investigate
their relationships.

The empirical study confirmed that classes
affected by Design Smells are more subject to
refactoring, evidencing that especially when multiple
smells are detected in the same classes these are more
frequently subject to changes. Moreover, it emerged
that in some cases Design Smells are removed, and

212
Aversano, L., Bernardi, M., Cimitile, M., Iammarino, M. and Romanyuk, K.
Investigating on the Relationships between Design Smells Removals and Refactorings.
DOI: 10.5220/0009887102120219
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 212-219
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

smells removals are not correlated to the presence of
refactoring.

The rest of the paper is organized as follow:
Section 2 discusses the related work, Section 3
describes the empirical study design, while the results
of the study are reported in Section 4. Section 5
discusses the threats that could affect the obtained
results, finally, conclusions are given in the last
section.

2 RELATED WORK

The impact of code level smells defined by Fowler
(Fowler, 1999) has been widely investigated in the
research literature. In particular, several studies
analysed their effects on maintainability (Sjoberg et
al., 2013, Tufano et al., 2015, Sjoberg et al., 2013),
program comprehension (Abbes et al., 2011), change,
and fault-proneness (Khomh et al, 2012, Palomba et
at., 2017).

Currently, there are also several tools used to
automatically detect (Moha et al., 2010, Palomba et
al., 2015), code smells, exploiting different sources
of information. Several papers discuss code smells fix
through the application of refactoring operations
(Tsantalis et al., 2009, Suryanarayana et al., 2014).

At architectural level smells are ultimately
instances of poor design decisions (Garcia et al.,
2009). The technical debt is due to the presence of
construct design problems, the so-called architectural
smells (Hochstein et al., 2005, de Silva et al., 2012,
Garcia et al. 2009), that contribute to system erosion.
They have a negative impact on system life cycle
properties, such as understandability, testability,
extensibility, and re-usability (Le et al., 2016).

Several research papers in the literature deal with
the detection of architectural smells, and part also
with the influence of architectural smell on issue
related activities. Brunet et al. (Brunet et al., 2012)
studied the evolution of architectural violations in 76
versions selected from four subject systems showing
how the number of architectural violations is
constantly growing over time. Moreover, some
previously identified violations reappear, and in all
the studied systems a critical core is identified and
this core does not change over time.

Arcan (Arcelli Fontana et al., 2017) is a static
analysis tool targeted at the detection of three
architectural smells, including cycles and hubs. Arcan
creates a graph database containing the structural
dependencies of a Java system and then runs several
detection algorithms (one per smell) on this graph.
Finally, there are some commercial tools for detecting

architectural smells, such as Designite (Sharma et al.,
2016), which identifies seven architecture smells,
including cycles and other dependency-based smell.
As far as we are aware, all the previous tools have no
predictive capabilities.

Le et al. (Le et al., 2016) presented an empirical
study to date of architectural decay and its impact on
software systems. For each version of the system,
different architectural recovery techniques have been
applied considering different types of smells. They
examined the relationships between the collected
smells and the issues extracted from the repositories
of the various systems in question. This has shown
how architectural decay can cause significant
problems for each software system.

Mo et al. (Mo et al., 2015) presented an empirical
study of hotspot patterns that cause high maintenance
costs. The aim of the study shows like these patterns
not only identify the most error-prone and change-
prone files, but also the root causes of bug-proneness
and change-proneness in specific architecture
problems. Tufano et al. (Tufano et al., 2015)
presented an empirical investigation into when and
why code smells are introduced in software projects.
The study conducted over the commit history of open
source projects demonstrated that most of the times
the smells identified since their creation.

All of these studies were conducted at a
significantly high-level scope than our work. Indeed,
none of these studies considered the different types of
Design Smells removals and refactoring at commits
level.

3 STUDY DEFINITION AND
PLANNING

The study aims to investigate the recurrence between
refactoring actions and code smell in the source code,
and also to understand if refactoring really contributes
to the removal of Design Smells, or if, instead, both
activities are used to improve the quality of the
systems.

To conduct the empirical study, the complete
historical evolution of five open-source Java projects
has been considered: Atlas, Guice, Junit4, Log4j, and
Zookeeper. Table I reports the number of commits,
the relative number of files analysed, and the number
of detected Design Smells.

To achieve the aforementioned objective, it has
been necessary to identify to what extent the
refactoring actions take place in the same files in
which at least one code smell has been detected and

Investigating on the Relationships between Design Smells Removals and Refactorings

213

if this happens with a greater or lesser percentage than
other files. Therefore, the first research question is:

RQ1: To what extent are smelly file more subject to
refactoring actions?

The occurrences of refactoring on smelly files and
clean files, commits per commits, have been
analysed, to understand if refactoring activities are
more used in the commits changing smelly files.

The second objective was to understand if the
refactoring actually contributes to the removal of
smells code. The simultaneous occurrence of these
two activities could be due to chance, for this reason,
a more in-depth study was conducted to understand if
it could be a true cause-effect relationship between
them. Therefore, the second research question is:

RQ2: To what extent do refactoring actions and
Design Smells removals co-occur?

Table 1: Characteristics of the studied Projects.

Project #Commits #Files #Design Smells

Atlas 1580 13822 15383

Guice 1177 8590 7400

Junit4 1406 5444 5529

Log4j 2042 9235 9049

Zookeeper 1084 6216 8952

3.1 Data Extraction

To carry out this work, two datasets were built for
each project.

The first dataset collects for each commit, at the
class level, the presence or absence of each one of the
17 Design Smells considered in the study. Moreover,
for each commit, a comparison with the previous
commit has been performed to understand if someone
of the detected smells has been removed or added, or
if nothing has changed.

The Designite tool was used to detect the presence
of the Design Smells. Designite is a software design

quality assessment tool. It offers various features to
support the identification of design problems that
contribute to the decay of the software architecture.
Table 2 lists the Design Smells that are detectable by
Designite (Sharma et al., 2016).

The second dataset collects, for each commit, all the
data related to the presence or absence of refactoring
activities. For the detection of refactoring activities,
version 2.0 of Refactoring Miner (Tsantalis et al.,
2018) was used, which allows the identification of 40
different types of refactoring.

For each commit, trough Refactoring Miner, it has
been extracted the list of refactoring actions
performed in the commit, with the specification of the
refactoring type and the source/target classes and
methods involved. The complete dataset used in the
empirical study was obtained from the merge of the
two abovementioned datasets and provides
information on the refactoring actions that occurred
together with the removal of the code smells.

Table 2: Detected Design Smells.

Abstraction
Design Smells

Imperative Abstraction
Unnecessary Abstraction
Multifaceted Abstraction
Unutilized Abstraction

Encapsulation
Design Smells

Deficient Encapsulation
Unexploited Encapsulation

Modularization
Design Smells

Broken Modularization
Insufficient Modularization

Hub-like Modularization
 Cyclically dependent

Modularization

Hierarchy Design
Smells

Wide Hierarchy
Deep Hierarchy

Multipath Hierarchy
Cyclic Hierarchy

Rebellious Hierarchy
Missing Hierarchy

Figure 1 shows in detail the adopted process,
highlighting the role of the adopted tools.

To address RQ1, the occurrences of refactoring
that concurred with the removal of one or more code
smells were counted.

Figure 1: Toolchain of the Analysis Process.

ICSOFT 2020 - 15th International Conference on Software Technologies

214

To address RQ2, Fisher’s exact test (Fisher, 1962)
and Odds Ratio were used to compare the proportion
of refactoring that occur together with the removal of
code smells. More in detail, for each system, this
analysis was carried out by considering the individual
smells separately, then considering the categories of
smells, and finally all the smells together.

4 EXPERIMENTAL RESULTS

This section reports the results achieved in our study
and aims at answering our two research questions.

RQ1: To what extent are smelly file more subject to
refactoring actions?

It has been evaluated how many times a
refactoring activity has been applied on a file
containing at least one smell. Figure 2 depicts the co-
occurrence between Refactoring actions and Design
Smells, comparing with the blue bars, the set of files,
where both were contained, and with light blue bars
the set of files with just refactoring inside.

Figure 2: Number of commits with refactoring actions:
smelly file and clean files.

For each analysed system, the occurrences of
refactoring in the files have been measured together
with the presence of Design Smells. As shown in
Figure 2, the number of files containing both
refactoring and at least one Design Smell is
substantially higher in all the analysed systems.

More specifically, for Atlas, files with the
presence of refactoring and Design Smell represent
70% of the cases, while files containing only
refactoring represent only 30% of the cases, therefore
less than half.

In the case of Guice, the percentages are very
closed to those of Atlas.

The analysis of Junit confirms the trend, indeed
also, in this case, the number of files containing both
the refactoring and the Design Smell is greater, with
a percentage of 65%, compared to the number of files
containing only the refactoring which represents
35%. Results are similar also for the Log4j system,
where the percentage of smells and refactoring co-
occurrences is 68%, while the percentage of commits
on files with just refactoring detected is 32%.

Finally, in the case of Zookeeper, the highest
percentage is recorded. Here the number of files
containing both activities is more than three times
higher (76%) compared to the number of files with
only the refactoring inside them (24%).

Finally, the results indicate that, in general,
refactoring actions have much more chance of
occurring inside files that contain at least one code
smell.

RQ2: To what extent do refactoring actions and
Design Smells removals co-occur?

This analysis aims to highlight a possible correlation
between two main maintenance activities, that are
refactoring and the removal of the Design Smells. In
particular, the research objective is to understand if
refactoring actions contribute in some way to the
removal of Design Smells, or if both are generically
used in the context of the source code improvement.
Therefore, first of all, a comparison was made of each
file related to a commit, containing a Design Smell,
with the same file in the successive commit, to
understand if that Design Smell has been removed or
if it remains unchanged. Then, some statistical
analysis has been conducted to perform a deep
analysis of the occurrences. Fisher's exact test was
used to analyse the correlation between refactoring
and smells removal, to compare the proportion of
refactoring activities that occurred together with the
Design Smells removals.

Fisher’s test was applied to 3 different couples of
variables:

a) individual smells and refactoring;

b) smells by categories (as shown in Table 2) and
refactoring;

c) all the smells on the whole project and
refactoring.

From a statistical point of view, Fisher's exact test
was used to understand if refactoring is most used in
the files in which the removal of a code smell was
detected, or not. In this specific case, every single
smell was considered concerning refactoring.

Investigating on the Relationships between Design Smells Removals and Refactorings

215

Table 3: Proportion of refactoring involving Design Smell removal separately: Fisher’s exact test p-value and Odds Ratio.

Code smell Atlas Guice Junit4 Log4j Zookeeper
 p-

value
Odds
 Ratio

p-
value

Odds
Ratio

p- value Odds
Ratio

p-
value

Odds
Ratio

p-
value

Odds
Ratio

Imperative
Abstraction 1 0 1 0 1 0 1 0 0,29 7,41
Multifaced
Abstraction 0,036 4,43 1 1,01 0,57 0 1 0 1 0
Unnecessary
Abstraction 1 0 1 0 1 0 1 0 1 0
Unutilized
Abstraction 0,0098 0,66 0,001 0,47 0,000002 0,2 0,47 0,87 1 0,96
Deficient
Encapsulation 0,24 0,75 0,23 0,44 1 0,94 0,21 0,66 0,68 0,73
Unexploited
Encapsulation 1 0 1 1,51 1 0 1 0 1 0
Broken
Modularization 1 0 1 0 1 0 1 0 1 0
Cyclic‐
Dependent
Modularization 0,78 1,07 0,28 0,76 1 1,02 0,62 0,78 0,006 0,11
Insufficient
Modularization 0,17 1,3 0,01 0,46 0,24 1,9 0,06 0,46 0,63 0,7
Hub‐like
Modularization 1 0,86 0,11 0,19 1 0 1 0 0,007 inf
Broken
Hierarchy 0,02 0,42 0,77 0,69 1 0,95 0,14 1,63 0,01 0,12
Cyclic Hierarchy 1 0 1 0 1 0 1 0 1 0
Deep Hierarchy 1 0 1 0 1 0 1 0 1 0
Missing
Hierarchy 1 0 1 0,94 1 0 1 0 1 0
Multipath
Hierarchy 0,44 0 1 0 1 0 1 0 1 0
Rebellious
Hierarchy 1 0 1 0 1 0 1 0 1 0
Wide Hierarchy 1 0 1 0 1 0 0,16 15,19 1 0

Table 4: Proportion of refactoring involving smell code removal by category.

Table 5: Proportion of refactoring involving smell code
removal.

 p-value Odds Ratio
Atlas 0,001 0,74
Guice 0,0000003 0,52
Junit4 0,001 0,53
Log4j 0,09 0,82

Zookeeper 0,0007 0,54

Fisher’s exact test results are reported in Table 3,
where it is shown that a few number of times the
difference was statistically significant.

More in detail, in Atlas the test is significant in the
case of Multifaced Abstraction, Unutilized
Abstraction, and Broken Hierarchy. Only for the
smell Multifaced Abstraction the Odds Ratio is greater
than 1.

Code smell Atlas Guice Junit4 Log4j Zookeeper
 p-

value
Odds
 Ratio

p-
value

Odds
Ratio

p-
value

Odds
Ratio

p-
value

Odds
Ratio

p-
value

Odds
Ratio

Abstraction 0,02 0,7 0,001 0,49 0,0000004 0,19 0,43 0,87 1 0,995
Encapsulation 0,24 0,74 0,37 0,54 1 0,89 0,22 0,66 0,558 0,73
Modularization 0,25 1,18 0,003 0,6 0,24 1,54 0,065 0,61 0,101 0,52
Hieerarchy 0,007 0,39 0,389 0,59 1 0,88 0,22 1,53 0,006 0,11

ICSOFT 2020 - 15th International Conference on Software Technologies

216

In Guice, it is statistically significant only in the
case of Unutilized Abstraction, as previously, and
Insufficient Modularization.

For JUnit4 only one significance is found, in the
case of the smell Unutilized Abstraction.

In the case of Log4j, no smell is statistically
significant.

Finally, in Zookeeper, the following smells are
statistically significant: Cyclic-Dependent
Modularization, Hub-like Modularization, and
Broken Hierarchy.

The analysis of the dependence between the
presence of refactoring and the effective removal of

smell shows that the two phenomena are not related.
Only for some types of smells, there was a
dependence between refactoring and elimination of
smells, so it is possible to say that the elimination of
smell is more likely in the absence of refactoring.
Only in two particular cases, there was the opposite
trend, a high probability of removing smell in the
presence of refactoring (in Atlas for Multifaced
Abstraction, and in Zookeeper for Hub-like
Modularization). However, this evidence was only
observed in two different projects and for two
different types of smell designs.

a) b)

c) d)

e)

Figure 3: Number of files with and without refactoring actions: smelly file and clean files.

Investigating on the Relationships between Design Smells Removals and Refactorings

217

Another analysis considers smells by category.
As shown in Table 4, in the case of smells

belonging to the Abstraction category, the difference
is statistically significant for 3 projects (Atlas, Guice,
and Junit4) out of 5.

For Encapsulation, no project shows a significant
result, in line with the results obtained by considering
the smells separately.

For the Modularization category, only Guice
reports a statistical significance.

Finally, for the Hierarchy category, the
significance is found only in the case of Atlas and
Zookeeper.

In any case, we cannot speak of correlation
between refactoring activities and removal of smells,
because although in some cases the p-value is
significant, the Odds Ratio is always less than 1.

The latest analysis considered all smells with
refactoring activities on each project.

To better understand the data that was used in this
analysis, Figure 3 shows a graph for each system.

The graphs use: i) grey bars to describe the
number of files in which the removal of the smell was
identified and there is presence of the refactoring, ii)
the dark grey bars for the number of files in which the
removal of the smell was identified and there is
absence of the refactoring, iii) the blue bars for the
number of files where the smell has not been removed
but the presence of the refactoring has been identified,
and finally iv) the dark blue bars to describe the
number of files in which neither the smell has been
removed and there is not the presence of refactoring.

Table 5 shows the results of the exact Fisher test.
As you can see, the difference was statistically

significant for all projects, except for Log4j.
However, even in this case, as in the previous one, the
Odds Ratio is always less than 1.

5 THREATS TO VALIDITY

Threats to construct validity concern the relationship
between theory and observation. Such threats mostly
regard possible imprecision in our measurements.
Indeed, the Design Smells removals belong to a
dataset constructed and validated in this study, and we
considered refactoring actions as detected by the
Refactoring Miner tool. However, Tsantalis et al.
show, for it, high precision ('98%) and recall ('87%)
values (Tsantalis et al., 2018).

Threats to internal validity concerns factors
internal to our study that can influence the results. In
particular, we cannot, in general, claim a cause-effect
relationship between refactoring actions and Design

Smells removal. We mitigate this threat by analysing,
in RQ2, refactorings occurred on smelly files.

Threats to conclusion validity concern the
relationship between experimentation and outcome.
We used an appropriate statistical test (Fisher’s exact
test) and effect size measure (Odds Ratio) to support
our findings.

Threats to external validity concern the
generalizability of our findings. This is a small,
preliminary study, conducted on only 5 projects.
Results might be confirmed or contradicted when
analysing other projects.

6 CONCLUSIONS

The data collected for this study highlighted that in
the software project analysed, almost 70% of
refactoring is applied to classes affected by Design
Smell. Despite this, the analysis of the dependence
between the presence of refactoring activities and the
effective removal of these smell shows that the two
phenomena are not related.

Only for some types of smells, a co-occurrence
has been observed between refactoring and removal
of Design Smells, and surprisingly it refers that the
elimination of Design Smell is high also in case of
absence of refactoring.

In two particular cases, the opposite trend was
observed, namely a high probability of removing
smells in the presence of refactoring. However, this
evidence was only observed in two different projects
and for two different types of smell designs.

Future work aims at extending this work towards
several directions. In particular, we may perform an
in-depth quantitative and qualitative analysis of
commits to study general quality improvement
activities.

REFERENCES

L. Hochstein and M. Lindvall. Combating architectural
degeneration: A survey. Information and Software
Technology, 47(10):643–656, July 2005.

L. de Silva and D. Balasubramaniam. Controlling software
architecture erosion: A survey. Journal of Systems and
Software, 85(1):132–151, 2012.

J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic.
Toward a catalogue of architectural bad smells. In
QoSA, volume 5581 of LNCS, pages 146–162.
Springer, 2009.

F. Arcelli Fontana, I. Pigazzini, R. Roveda, D.A. Tamburri,
M. Zanoni, and E. Di Nitto. Arcan: A tool for
architectural smells detection. In 2017 IEEE ICSA

ICSOFT 2020 - 15th International Conference on Software Technologies

218

Workshops 2017, Gothenburg, Sweden, April 5-7,
2017, pages 282–285, 2017.

R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns:
The formal definition and automatic detection of
architecture smells. 2015, 12th Working IEEE/IFIP
Conf. on Software Architecture, pages 51–60, 2015.

M. Abbes, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, An
empirical study of the impact of two antipatterns, Blob
and Spaghetti Code, on program comprehension, 15th
European Conference on Software Maintenance and
Reengineering, CSMR 2011, 1–4 March 2011,
Oldenburg, Germany, IEEE Computer Society, 2011,
pp. 181–190.

F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, G. Antoniol, An
exploratory study of the impact of antipatterns on class
change- and fault-proneness, Empir. Softw. Eng. 17 (3)
(2012) 243–275.

F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto,
A. De Lucia, On the diffuseness and the impact on
maintainability of code smells: a large-scale empirical
investigation, Empir. Softw. Eng. (2017) 1–34.

D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus,
and T. Dybå. 2013. Quantifying the Effect of Code
Smells on Maintenance Effort. IEEE Transactions on
Software Engineering 39, 8 (Aug 2013), 1144–1156.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, D. Poshyvanyk, When and why your code
starts to smell bad, Proceedings of the 37th
International Conference on Software Engineering -
Volume 1, ICSE ’15, IEEE Press, Piscataway, NJ,
USA, 2015, pp. 403–414. [Online].

N. Moha, Y.-G. Guéhéneuc, L. Duchien, A.-F.L. Meur,
Decor: a method for the specification and detection of
code and design smells, IEEE Transaction on Software
Engineering, 36 (2010) 20–36.

D. Le and N. Medvidovic. Architectural-based speculative
analysis to predict bugs in a software system. In
Proceedings of the 38th International Conference on
Software Engineering Companion (ICSE ’16), pages
807–810, Austin, TX, USA, 2016.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D.
Poshyvanyk, A. De Lucia, Mining version histories for
detecting code smells, Softw. Eng. IEEE Trans. 41 (5)
(2015) 462–489.

N. Tsantalis, A. Chatzigeorgiou, Identification of move
method refactoring opportunities, IEEE Trans. Softw.
Eng. 35 (3) (2009) 347–367.

M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

J. Brunet, R. A. Bittencourt, D. Serey, and J. Figueiredo. On
the evolutionary nature of architectural violations. In
Reverse Engineering (WCRE), 2012 19th Working
Conference on. IEEE, 2012.

D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus,
and T. Dybå. 2013. Quantifying the Effect of Code
Smells on Maintenance Effort. IEEE Transactions on
Software Engineering 39, 8 (Aug 2013), 1144–1156.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta,
A. De Lucia, Denys Poshyvanyk. When and Why Your
Code Starts to Smell Bad.

 G. Suryanarayana, G. Samarthyam, and T. Sharma.
Refactoring for Software Design Smells: Managing
Technical Debt. Morgan Kaufmann, 1 edition, 2014.

 Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016.
Designite: a software design quality assessment tool. In
Proceedings of BRIDGE ’16, New York, NY, USA, 1–4.

N. Tsantalis, M. Mansouri, L. M. Eshkevari, D.
Mazinanian, and D. Dig, “Accurate and efficient
refactoring detection in commit history,” in
Proceedings of the 40th International Conference on
Software Engineering, ICSE 2018, Gothenburg,
Sweden, May 27 - June 03, 2018, 2018, pp. 483–494.

R. A. Fisher, “Confidence limits for a cross-product ratio,”
Australian Journal of Statistics, 1962.

M. Bernardi, M. Cimitile, Reducing Static Dependences
Exploiting a Declarative Design Patterns Framework,
in Proceedings of the 11th International Joint
Conference on Software Technologies - Volume 2:
ICSOFT-PT, ISBN 978-989-758-194-6, pages 154-
160.

Investigating on the Relationships between Design Smells Removals and Refactorings

219

