
Codeless Web Testing using Selenium and Machine Learning

Duyen Phuc Nguyen a and Stephane Maag b

Samovar, CNRS, Télécom SudParis, Institut Polytechnique de Paris, France

Keywords: Codeless Testing, Web Testing, Automation Testing, Selenium, Machine Learning, SVM.

Abstract: Complexity of web systems lead to development processes always more tough to test. Testing phases are
crucial in software and system engineering and are known to be very costly. While automated testing methods
appear to take over the role of the human testers, the issues of reliability and the capability of the testing
method still need to be solved. In our paper, we focus on the automation of functional tests of websites. A
single web page may contain a huge set of important functionalities leading to the execution of critical web
service operations. Besides, testing all of these functionalities implemented in a web page service is highly
complex. Two current popular research areas for automation web-based testing are Codeless Functional Test
Automation and Machine Learning/Artificial Intelligence (ML/AI) in test automation. We therefore define
and implement a framework to figure out how to automate the web service product under test, the machine can
detect or predict the change and adapt those changes to suitable generic test cases. In our work, we examine
on Selenium and the benefits of using machine learning in automated web application testing.

1 INTRODUCTION

Software systems and their complexity distributed
through diverse components, sometimes virtualized
using different platforms (e.g., Xaas) (Patel et al.,
2016), lead to development processes always more
complicated to test. However, testing phases are cru-
cial in software and system engineering (Kassab et al.,
2017). They are known as very costly necessitating
resources (including time and people) spent to pre-
pare testing architectures, test case scenarios and their
execution. That cost is estimated to be between 40%
and 80% of the total cost of the service/system devel-
opment (Heusser and Kulkarni, 2018). While auto-
mated testing methods appear to take over the role of
the human testers, the issues of reliability and the ca-
pability of the testing method still need to be solved.
In our paper, we focus on the functional tests of web-
sites. A single web page may contain a huge set of
important functionalities leading to the execution of
critical web service operations. Besides, testing all of
these functionalities implemented in a web page ser-
vice is highly complex. For that purpose, several au-
tomation tools are available to help the testers and to
facilitate the execution of testing processes (Hynninen
et al., 2018; Raulamo-Jurvanen et al., 2019). Among

a https://orcid.org/0000-0003-3740-3586
b https://orcid.org/0000-0002-0305-4712

them, we may cite the well known and adopted tools
in the industry: Selenium and OpenScript. Recently,
it has been shown that Selenium (Selenium, 2020)
is very efficient for testing applications which are
browser based (Jain and Rajnish, 2018). It runs spe-
cific tests on diverse installed browsers and return re-
sults, alerting you to failures in browsers as they crop
up.

However, automated web-based testing tools like
Selenium still have major drawbacks. Indeed, tests
have to be repetitive and require resources and a lot
of maintenance. A very small change or modification
in the content of a web page may cause a test fail.
Furthermore, many tests scripts are manually handled
which increases the costs and time for testing (Shariff
et al., 2019; Ameur-Boulifa et al., 2019). Researchers
and industrials are studying and defining optimized
approaches to deal with this challenge. Two cur-
rent popular research areas for automation web-based
testing are Codeless Functional Test Automation and
Machine Learning/Artificial Intelligence (ML/AI) in
test automation. In here, algorithms are defined and
implemented to figure out how to automate the soft-
ware/web service product under test, the machine can
detect or predict the change and adapt those changes
to the suitable test cases. Thanks to codeless testing,
testers can drastically reduce the cost of test automa-
tion creation, test execution, and maintenance. In our

Nguyen, D. and Maag, S.
Codeless Web Testing using Selenium and Machine Learning.
DOI: 10.5220/0009885400510060
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 51-60
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

51



work, we examine on Selenium and the benefits of
using machine learning in automated web applica-
tion testing. The motivation is to utilize the selenium
framework in the world of automated testing and uti-
lize a machine learning approach for codeless testing,
enabling to test multiple functional web pages with-
out using code.

The main contributions of our paper are:

• Defining a framework named “codeless testing”
by combining Selenium and machine learning
technique,

• Implementing and applying our framework to run
generic test cases in order to test the functionality
search that is present in multiple web pages,

• Through our experiment results, we show that the
success of generic test cases may help to con-
tribute in decreasing implementation and main-
tenance costs of automated tests of functional
browser based applications.

Finally, our paper is organized as it follows. In Sec-
tion 2, we present the state of the art about automated
codeless testing techniques and tools. Then in Sec-
tion 3, we depict the basis used in our paper. Our ML
based web testing framework is defined in the Sec-
tion 4 and evaluated in the Section 5 in which relevant
experimental results are presented. We conclude and
give perspectives in Section 6.

2 RELATED WORKS

In the literature, there are several papers introduc-
ing approaches for automation web-based applica-
tions testing by applying machine learning tech-
niques (RJ Bhojan, 2019) (Rosenfeld et al., 2018)
(Nguyen et al., 2018) (Joshi, 2016). Although we
got inspired of these works, none of them has pro-
posed novel codeless web service testing. With the
same observation, codeless testing approaches have
been recently proposed. We may cite (Isha and Re-
vathi, 2019) in which the authors proposed an auto-
mated API testing tool in providing a GUI with sup-
port for codeless testing. However, they do not in-
tend to use any learning techniques that could im-
prove their work and the problematic we are tackling
in our paper. We may note the same lack in (Brueck-
mann et al., 2017). Though the technique proposed is
not entirely codeless, the authors proposed a frame-
work to implement a simple business process by in-
tegrating existing services in a mashup with codeless
engineering processes. However, they still do not in-
tegrate any learning techniques.

Moreover, in the market area, many start-up com-
panies with several tools have entered the market re-
cently, all with the promise of solving the coding skill
conundrum. While no-code or low-code concepts
become a trend (following the recent Google patent
(Arkadyev, 2017)), companies such as Salesforce pro-
mote plug-and-play offers. Some testing tools such
as Testcraft1, Ranorex2, Tricentis3, Leapwork4, etc.
advertise that they can provide this functionality by
building a user-friendly UI on top of the code layer
and also enabling switching between two modes. The
companies promote that testers can still write scripts
and receive detailed feedback but skip the coding part.
However, when it comes to test automation, an issue
is often raised on how codeless is being interpreted.
Moreover, none of these codeless testing tools pro-
posed by those companies are open-source.

In our approach, we cope with these above men-
tioned issues by defining a machine learning based
approach for codeless web automation testing.

3 BASICS

3.1 Selenium

Selenium (Selenium, 2020) is a suite of automation
testing techniques and tools which allows the testers
to run the tests directly on the target browser, drive
the interactions on the required web pages and rerun
them without any manual inputs. Selenium has be-
come very popular among testers because of the var-
ious advantages it offers. With its advent in 2004,
Selenium made the life of automation testers easier,
highly improved the testing time, costs, detected fail-
ures and is now a favorite tool for many automation
testers. Selenium was invented with the introduc-
tion of a basic tool named as JavaScriptTestRunner,
by Jason Huggins at ThoughtWorks to test their in-
ternal Time and Expenses application. Now it has
gained popularity among software testers and devel-
opers as an open-source portable automation testing
framework. Nowadays, Selenium is currently used
in production in many large companies as Netflix,
Google, HubSpot, Fitbit, and more. According to
(Enlyft, 2020), there are 42,159 companies that use
Selenium, taking 26.83% market share in software
testing tool (see Figure 1).

The primary reason behind such overwhelming

1https://www.testcraft.io/
2https://www.ranorex.com/
3https://www.tricentis.com/
4https://www.leapwork.com/

ICSOFT 2020 - 15th International Conference on Software Technologies

52



Figure 1: Selenium used by company size.

popularity of Selenium is that it is open source. This
not only helps keep the costs in check but also en-
sures that companies are using a tool that will get
continually updated. Other reasons include the multi-
dimensional flexibility that it offers in terms of script-
ing languages, operating systems, browsers, and in-
tegration with other tools. This widens the scale of
reach and test coverage, enabling enterprises to de-
liver a web application that is highly reliable and
functional. Selenium test scripts can be written in
Java, Python, C#, PHP, Ruby, Perl and .Net. This al-
lows a large number of testers to easily use it without
any language barriers. It can be carried out on Win-
dows, MacOS, and Linux, using any browsers out of
Mozilla Firefox, Internet Explorer, Chrome, Safari,
and Opera. This enables a thorough cross browser
compatibility testing with strong environment sup-
port.

Selenium suite includes three major components
(Figure 2), each tool has its own approach for au-
tomation testing. The testers or developers can choose
tools out of it depending upon the testing require-
ments.
• Selenium IDE.

Selenium IDE, earlier known as Selenium
recorder, is a tool used to record, edit, debug and
replay functional tests. Selenium IDE is imple-
mented as an extension to the Chrome browser
and add-on in Firefox browser. With Selenium
IDE plugin, the testers can do simple record-and-
playback of interactions with the browser, they
can also export tests in any of the supported
programming languages like Ruby, Java, PHP,
Javascript, etc.

• Selenium Grid.
Selenium Grid allows the testers to run paral-
lel automated tests on multiple machines and
browsers at the same time. The main function
of this tool is to save time. If the test suite is
large, the testers can use Selenium Grid to reduce
the time running. Considering how scripts nor-
mally run slow on a browser, using performance-

improving techniques such as parallel testing can
help with the problem. Testers can also use it to
test one application in different browsers in par-
allel, when one machine is running Firefox, the
other Chrome, and so on. Testers can also cre-
ate different configurations with Grid, combining
different versions of browsers and operating sys-
tems. Needless to say that when used in large pro-
duction environments, Grid is a huge time-saver.

• Selenium Webdriver.
Selenium Webdriver (which is also known as Se-
lenium 2.0 or 3.0 currently version) is an en-
hanced version of Selenium RC and the most used
tool. Selenium Webdriver is by far the most im-
portant component of Selenium Suite. It pro-
vides a programming interface to create and ex-
ecute automation scripts. It accepts commands
via client API and sends them to browsers. Se-
lenium WebDriver allows testers to choose a pro-
gramming language of their choice to create test
scripts. Test scripts are written in order to iden-
tify web elements on web pages and then desired
actions are performed on those elements. Sele-
nium Webdriver currently supports most popular
browsers (Chrome, Firefox, Opera, etc.). Every
browser has different drivers to run tests. In our
”codeless testing framework”, we use Selenium
Webdriver to conduct the automated tests on mul-
tiple popular web browsers.

Figure 2: Selenium suite components.

3.2 Codeless Testing

Despite the advantages above listed, Selenium still
has limitations. The most challenge of using Sele-
nium in automation testing is steep learning curve.
Testers require high technical skills to accurately
design and maintain test automation. Maintenance
including modifications and updating Selenium test
code in an efficient way is a very common problem
in automated test. The impact of the changes occur
in the web page or application under test could suf-
fer during its development. Changes or modifications
from web User Interface (UI) or from its structure to
its elements or its attributes could make the whole

Codeless Web Testing using Selenium and Machine Learning

53



test suites collapse. For that purpose, one of auto-
mated testing trends, namely Codeless Testing, was
introduced to try resolving those issues.

Codeless Testing for web services refers to the
methodology which utilizes a generic test case to
test multiple websites. This approach allows any
tester without deep programming knowledge to per-
form tests. Organizations started adapting tools and
approaches to simplify test automation and empower
team members who lacked sophisticated program-
ming skills. Codeless tools were originally meant to
help the tester avoid the hours of programming that
are usually necessary to get the most out of testing
logic. While their objective was to address program-
ming complexity, most tools in the market adapted a
no-code approach by avoiding the code, but not really
addressing the logical complexity in testing. A com-
mon misconception is that codeless test automation
tools should completely avoid code. We believe this
is actually a disservice, as very soon users will start
hitting roadblocks. Testing requirements are typically
as vast as application development. It is hard to be-
lieve that all testing requirements could be addressed
with some canned, pre-packaged solution. Some level
of logic development flexibility is required, but in a
way so that the user does not get bogged down by
the syntactical complexities. Note that, though the
name codeless testing, it does not mean it is com-
pletely code free. While a tester can generate most of
the tests code free, certain tests may still need some
coding. Testers can use codeless testing for keeping
up with the deployment needs.

3.3 Support Vector Machines

A support vector machine (SVM) (Vapnik and Vap-
nik, 1998) is a linear classifier defined by a separat-
ing hyperplane that determines the decision surface
for the classification. Given a training set (supervised
learning), the SVM algorithm finds a hyperplane to
classify new data. Consider a binary classification
problem, with a training dataset composed of pairs
(x1,y1), . . . , (xl,yl ), where each vector xi ∈ Rn and
yi ∈ {−1,+1}. The SVM classifier model is a hyper-
plane that separates the training data in two sets corre-
sponding to the desired classes. Equation (1) defines
a separating hyperplane

f (x) =wTx+b = 0 (1)

where w ∈ Rn and b ∈ R are parameters that control
the function. Function f gives the signed distance
between a point x and the separating hyperplane. A
point x is assigned to the positive class if f (x) ≥ 0,
and otherwise to the negative class. The SVM al-
gorithm computes a hyperplane that maximizes the

distance between the data points on either side, this
distance is called margin. SVMs can be modeled as
the solution of the optimization problem given by (2),
this problem maximizes the margin between training
points.

min
w,b

1
2
‖w ‖2

subject to: yi(wTxi+b) ≥ 1, i = 1, . . . , l
(2)

All training examples label −1 are on one side of the
hyperplane and all training examples label 1 are on
the other side. Not all the samples of the training data
are used to the determine the hyperplane, only a sub-
set of the training samples contribute to the definition
of the classifier. The data points used in the algorithm
to maximize the margin are called support vectors.

4 A ML-BASED WEB TESTING
FRAMEWORK

The architecture overview of our codeless testing
framework is illustrated in Figure 3.

Figure 3: Our architecture of codeless testing framework.

As mentioned in the previous sections, our frame-
work is combined of Selenium and a machine learning
algorithm. It is composed by four main components.
• Selenium Webdriver Component.

This is the major module, it plays a role as an en-
gine to drive the browser for automating website
and for testing. As referring in Figure 2, Sele-
nium Webdriver (web, 2020) is the core module
of our testing framework. Selenium WebDriver
plays as a browser automation framework that ac-
cepts commands and sends them to a browser. It
is implemented through a browser-specific driver.
It controls the browser by directly communicating
with it. The flexibility that Selenium Webdriver
provides is almost unmatched in the test automa-
tion world.

• Scraping Data Component.
We implemented our scraping tool in Python.
Besides, we utilize BeautifulSoup (Richardson,
2020) as a web scraping library to pull data out
of DOM in HTML or XML format.

ICSOFT 2020 - 15th International Conference on Software Technologies

54



• Processing Data Component.
This component has a role to process the data af-
ter pulling from HTML DOM file, its main goal is
to clean up and extract the useful data, then trans-
form the cleaned data to the next stage for train-
ing.

• SVM Model.
A machine learning model to recognise and/or
predict the search element pattern which appears
in HTML data of testing website.

4.1 Scraping and Processing Web Data

Figure 4: The structure of our scraping tool.

The general architecture of our scraping tool is
showed in Figure 4. Its main target is exactly as its
name - to collect HTML data and their position in the
DOM tree from the website which is driven by Se-
lenium Webdriver. We use both Selenium Webdriver
and Request library to send a HTTP request to the
URL of the webpage we want to access. We discover
that some websites with heavy render JavaScript will
not response to the request module. Also, some web-
sites can detect the request is performed in an auto-
mated way (not by human browsing but expected to
be a bot) by their tool, it will deny to establish the con-
nection. Selenium Webdriver works fine with almost
all major websites, however the speed is recorded
as very slow since Selenium needs to open the real
browsers to perform tasks. Moreover, using differ-
ent browsers (Chrome, Firefox, Opera, etc.) may
lead to obtain different behaviours of navigation web-
sites. For example, some websites are optimized for
Chrome but not Firefox or vice versa, or some website
may crash down on Microsoft Edge browser. There-
fore, we use both modules Selenium Webdriver and
Request library (Pypi, 2020) to ensure that our scrap-
ing tool can adapt with most of the websites to col-
lect as most as data it can. First, using request library
for speeding up the test, if a request fails, then Sele-
nium Webdriver will easily detect it. Moreover, each
website has its different DOM structure, thousands
of websites will have thousands of DOM structures,
therefore it is a challenge process to retrieve in an au-
tomated way the data from multiple of websites con-

currently. Nevertheless, our scraping tool enables to
scrape and collect variety of websites. Our scraping
tool follows two tasks:
1. Query the website using requests or Selenium

WebDriver and return its HTML content.
2. Using BeautifulSoup (Richardson, 2020) and

LXML (LXML, 2020) libraries to go through the
HTML structure of each website, parse HTML
content and extract the expected data useful to
tested the targeted functionality embedded in the
website.

4.2 Our SVM Model

In considering that web HTML elements are keep
changing dynamically in both structure and attribute
values, it is a very challenging task to adapt test suites
with the websites changes. In our proposed frame-
work, the objective of SVM model is to recognize the
pattern of web elements corresponding to the search
box in each website as illustrated in Figure 5. Specif-
ically, the SVM model will learn the HTML structure
of each website, in case of any modification in terms
of web elements, the SVM model will find the similar
pattern of HTML web and adjust its model according
to the changes.

Figure 5: SVM model detects search box pattern.

For the next testing step, if the website has
changed, the SVM model detects its changes and
guides the Selenium code to adapt automatically with
it. In this case, the test code will not be broken and
can be reused. More specifically, the goal of the SVM
is to train a model that assigns new unseen web ele-
ments into a particular category. It achieves this by
creating a linear partition of the feature space into
two categories. In each website, structured data is
extracted for each HTML element, they have to be
turned into proper feature vectors. We use SVM
model to recognize the relevant feature of each web
element corresponding to its density and apply in the
feature importance property of our model. Many fea-
tures and preprocessing steps are performed as part

Codeless Web Testing using Selenium and Machine Learning

55



of our cross-validation process, and we kept the ones
yielding best performance and moved them in the fi-
nal model. Feature importance gives a score for each
feature attribute, the higher of the score, the more im-
portant or more relevant of the feature is. Therefore,
the weight for each element attribute is assigned ac-
cording to its frequency and informative ranking.

4.3 Data Collection and Analysis

In order to have the dataset for our training SVM
model, we need to gather the large amount of data. By
using the scraping tool described above, we are suc-
cessful to retrieve the data from the list of 5000 web-
sites provided by the Alexa database. This database
contains more than one million URLs on top rank-
ing of Alexa (Helme, 2020). Our tool can scrape any
website that has the search functionality, it pulls down
all the web elements corresponding to the search box.

However, these elements are collected as raw data
in an undesired format, unorganized, and extremely
large. Furthermore, these elements may be different
from one page to another. We need, for further steps,
to use the processing tool to enhance the data quality
and, related to our experiments, in particular to extract
the elements linked to the search box (our testing pur-
pose).

The main steps for preprocessing data are format-
ting and cleaning. Data cleaning is applied to remove
messy data, duplicate data and manage missing val-
ues. Formatting is required to ensure that all vari-
ables within the same attribute are consistently writ-
ten. Once structured data is extracted for each HTML
element, they have to be turned into proper feature
vectors.

After this preprocessing phase, vectors with rele-
vant features is obtained, our training dataset is built.
For that purpose, an important task of labelling is
then performed to classify our vectors depending on
the structure of the ”search box”. We labeled 1000
webpages to provide three classes according to the
three cases detailed in Section 5.1. From this training
dataset, an SVM model has been obtained as above
explained.

5 EXPERIMENTAL STUDIES
AND RESULTS

5.1 Use Case Studies

To test our codeless testing framework, our expe-
riences focus on testing the search-functionality of

websites. To be concrete, let us follow the following
scenario: if the users want to use Google to search for
the term Codeless Testing, they normally open their
favourite browser, let say Chrome, to navigate to the
website of Google. After the official site of Google
page fully loaded, the users need to locate the search
box, then type the search term Codeless Testing. All
of this manual steps performed by human can be com-
pletely replaced those steps by our codeless testing
framework. However, although these steps can be in-
deed easily automated for this scenario, our codeless
testing approach intends to make it generic enough
to test the search functionality on diverse websites.
By analyzing the multiple search activities on various
websites, we group the search scenario in three use
cases:
• Case 1 (Traditional Search): we call it traditional

because the search box is appeared directly in the
website interface, the user can easily locate it and
enter the search query. We studied that 80-90%
search websites are designed in this case 1 (Fig.
6). For example: google, youtube, yahoo, ama-
zon, etc.

Figure 6: Case 1 search type: traditional search.

• Case 2 (Hidden Bar Search): The search bar is
hidden, the users are required extra step by click-
ing the search button to activate/open the search
bar. Once the search bar appears, the user can en-
ter his search query (Fig. 7).

Figure 7: Case 2 search type: hidden search box.

• Case 3 (Pattern/Condition Search): the websites
have many filters/criteria for search, the users

ICSOFT 2020 - 15th International Conference on Software Technologies

56



must select the right criteria to proceed. For in-
stance, some hotel or housing websites only al-
low users to select the special search key in their
pattern database (region, type of house, size of
house, price, number of rooms, etc.). Further-
more, particular websites only allow the users to
perform the search on specify content provided in
their database. If the users type a random search
query, or the query does not correspond to a spe-
cific form, nothing is returned (Fig. 8).

Figure 8: Case 3 search type: filters/criteria search.

In order to test the search functionality in a website,
we defined three verdicts within our generic test case:
pass, fail, error, as it follows.

• The test is considered as pass if a browser has
fully loaded the website, the “search term” is en-
tered in the search box, the website returns the an-
swer corresponding to the “search term”.

• The test is considered as fail if the browser was
unable to load the website under test and to navi-
gate to the search box.

• The test is considered as error if the website un-
der test does not contain any search box or does
not have the search functionality in its services.

Based on these verdicts and the three above men-
tioned use cases, we define other verdicts as it fol-
lows:

• When entering “search term” in the search box of
the webpage under test, “search term” has to ap-
pear into the targeted search box, if not, we deliver
the verdict fail.

• The targeted search box has to accept any type of
query as input (number, text, special characters,
etc.). If not, we deliver the verdict error.

• We do not consider webpages where there
are condition/limit/boundary/criteria for the input
search (case 3 as described above). In this case,
we deliver the verdict error.

• If a website requires more than a step rather than
type search term (case 3), we deliver the verdict
error.

• A website has to provide the response for the
search term. If an answer belonging to the class
“no result found or nothing found” is returned, we
deliver the verdict pass.

5.2 Experiments Setup

In the experiment phase, we test our framework on the
dataset as described in Section 5.3.1.
Testbed.
• OS: x86-64 Microsoft Windows 10 Pro, version

10.0.18363, Build 18363

• Processor: Intel Core i7-7500U CPU @
2.70GHzx2

• Memory: 16GB

• SSD: 512GB

• Dataset:

– Metadata: 1.3 Mb in csv format. 1000 rows x 7
columns

– Training set: 70% metadata in npy format
(numpy array)

– Test set: 20% metadata in npy format (numpy
array).

From this training dataset, our tool processed the
SVM model in average 7 minutes using the de-
pendencies below mentioned.

• Browsers are detailed in the Table 1

Table 1: Browser Version.

Chrome 78.0.3904.70 (64-bit)
Firefox 70.0 (64-bit)
Opera 76.0.3809.132

Internet Explorer 11.418.18362
Microsoft Edge 44.18362.387.0 Build 18362

Project Tools.
In order to run the experiments, we setup our system
environment as in the following:

• Python 3.6.8,

• Dependencies: Keras/Tensorflow, scikit-learn:
core platform to analyse/process data and training
SVM model,

• Libraries: Selenium, Request HTTP, Beautiful
Soup, LXML,

• Jupyter Notebook App: online web-based plat-
form to visualize the data.

Codeless Web Testing using Selenium and Machine Learning

57



5.3 Results and Discussions

5.3.1 Automation Testing against Multiple
Websites

To evaluate the efficiency of our framework, we con-
ducted the tests using a generic test case through 1000
websites chosen randomly on the list of Alexa de-
scribed above. First, the learning approach has been
processed. A sample of raw data with 10 features has
been scraped (Fig. 9).

Figure 9: Sample of raw data.

The preprocessing phase and specifically the
cleaning step allowed to obtain the seven features and
one thousand lines of our training dataset. An illus-
tration of these lines are presented in the Fig. 10.

Figure 10: Training dataset sample.

Our testing search functionality has been imple-
mented in Selenium, the testing results are showed in
the table below (Table 2).

Table 2: Testing against 1000 web sites.

Pass Fail Error
Chrome 48% 18% 34%
Firefox 57% 16% 27%
Opera 47% 12% 41%

Internet Explorer 9% 19% 72%
Microsoft Edge 17% 19% 64%

First, we may be surprised by the number of fail
and error verdicts. Nevertheless, the high percentage
of results getting error does not mean that our frame-
work is defective. After analysis, we noted that it is
due to the fact that we did the test on 1000 websites
chosen randomly. Therefore, there are websites that
do not have the search functionality. From Table 2,
we can see that Internet Explorer and Microsoft Edge
perform the worst. It makes sense since Microsoft

has stopped support for Internet Explorer. Microsoft
Edge is replaced as the main and fast browser for the
Windows OS. However, the Selenium Webdriver for
Microsoft Edge is not fully supported and still under
development. We encountered that Internet Explorer
and Microsoft Edge crashed when testing more than
20 websites concurrently.

Figure 11: Automation testing against multiple web sites.

Through our experimental results for automation
testing the search functionality showed in Figure 11,
Firefox performs the best in terms of pass cases.
Chrome is the best browser to handle the verdicts er-
ror. We experienced that Chrome is a good choice
when testing the websites which are rendered heavily
with JavaScript, while Firefox still suffers for those
sites. Opera is fairly good in our test. We were also
surprise with the performance of Opera considered
that it is not as popular as Chrome and Firefox.

5.3.2 Testing with Extension (Add-on)

During our experiments, we noticed that our tests
were interrupted if a pop-up windows suddenly ap-
pears during the test. The pop-up can be of any type
(advertisement, data privacy, etc.) but the main met
one was the pop-up which requires to accept the term
and privacy when browsing the website as seen in Fig-
ure 12. Without clicking the accept button, there is no
way to browse the website further. Considering that
the test is running automated under Selenium code,
there is no interference by manual hand to click the
accept button. Therefore, the tests were most of the
time broken when facing with pop-up windows.

In order to solve this problem, we decided to add
a blocking pop-up extension to the browsers. This led
to a trade-off, adding this extension allows to test pop-
up websites, but in return, the test speeds decreased.
The reason is that we modified our Selenium scripts
in order to detect such pop-up windows and then to
add such an extension when it occurs. Therefore, the
webdriver had to trigger automatically the extension

ICSOFT 2020 - 15th International Conference on Software Technologies

58



Figure 12: Pop-up blocks the browser in Yahoo website.

in the targeted browser, reducing at the same time the
performance of our tests (in terms of response time -
obtained verdicts).

For the experiments, we chose two extensions be-
low due to their efficiency in blocking pop-up win-
dows, there are more than 10 millions users using
those extensions:

• Ublock: (ubl, 2020) is a free and open-source,
cross-platform browser extension for content-
filtering, including ad-blocking.

• I dont care about cookie: (Kladnik, 2020) This
browser extension removes cookie warnings from
almost all websites and saves thousands of unnec-
essary clicks, very useful for our codeless testing
approach.

Since the above extensions are only fully supported
for Chrome and Firefox, the experiments in this sec-
tion were only run on these two browsers. The tests
were run on 20 random websites concurrently on each
browser in two modes: with extension and without ex-
tension. The Table 3 and Fig. 13 illustrate our results.

Table 3: Verdict results when testing with/without exten-
sions.

With Extension Without Extension
Pass Fail Error Pass Fail Error

Chrome 12 2 6 9 5 6
Firefox 11 3 6 9 5 6

Figure 13: Running time with extensions testing.

Within Table 3, we can note that using extension
to block the pop-up is very effective during the tests.
It helps to enhance the pass case and reduce the fail
one. However, the running time when executing the
tests with addons is reduced (Fig. 13). We also note
that Firefox is more efficient than Chrome in terms
of time performance in both cases (with and without
extensions).

6 CONCLUSION AND
PERSPECTIVES

In this paper, we proposed a framework to test multi-
ple websites in an automation way. The approach is
able to use a generic test case to test a single func-
tionality through multiple websites by leveraging ma-
chine learning technique and selenium on web ele-
ment locators. Our technique can adapt dynamically
to the changes of the website. This framework called
“codeless testing automation” aims to help the tester
in reducing the time and efforts that are commonly
spent to change or modify the test codes. In our exper-
iments, we focus on testing the search functionality of
a web service. The test scenario is the following: us-
ing our framework, without modify the test code, the
framework must be able to test the search functional-
ity of multiple websites. Note that the categorization
of websites is not a matter, the framework enable to
check with any website. From the experiments, the
results show that our framework can be efficient to
perform the automation testing with most of standard
websites by using the generic test case without rewrit-
ing the test code into Selenium.

From this work, we intend several perspectives.
First, we have to tackle all the use cases mentioned
in our paper and in particular the third case in which
constraints are given on the search functionality. Fur-
thermore, we aim at testing several behaviors at the
same time. This aspect will need another testing ar-
chitecture to consider the huge amount of data needed
to be trained and analysed through our framework.
Besides, we expect to propose APIs and generic test
scripts to the community in order to assess our tech-
nique on diverse functional tests. This is will lead to
interesting and relevant comparisons with other ap-
proaches. Finally, other learning techniques such as
neural based mechanisms are studied.

REFERENCES

(2020). Selenium webdriver document. https:
//selenium-python.readthedocs.io/locating-elements.

Codeless Web Testing using Selenium and Machine Learning

59



html. Accessed: 2020-04-02.
(2020). Ublock blocking popup extension. https://github.

com/gorhill/uBlock. Accessed: 2020-04-02.
Ameur-Boulifa, R., Cavalli, A. R., and Maag, S. (2019).

Verifying complex software control systems from test
objectives: Application to the ETCS system. In Pro-
ceedings of the 14th International Conference on Soft-
ware Technologies, ICSOFT 2019, Prague, Czech Re-
public, July 26-28, 2019, pages 397–406.

Arkadyev, A. (2017). Codeless system and tool for testing
applications. US Patent 9,697,110.

Brueckmann, T., Gruhn, V., Koop, W., Ollesch, J., Pradel,
L., Wessling, F., and Benner-Wickner, M. (2017).
Codeless engineering of service mashups-an experi-
ence report. In 2017 IEEE International Conference
on Services Computing (SCC), pages 402–409. IEEE.

Enlyft (2020). Companies using selenium. https://enlyft.
com/tech/products/selenium. Accessed: 2020-04-02.

Helme, S. (2020). List of top one million websites on alexa
ranking. https://crawler.ninja/files/https-sites.txt. Ac-
cessed: 2020-04-02.

Heusser, M. and Kulkarni, G. (2018). How to reduce the
cost of software testing. CRC Press.

Hynninen, T., Kasurinen, J., Knutas, A., and Taipale, O.
(2018). Software testing: Survey of the industry prac-
tices. In 2018 41st International Convention on In-
formation and Communication Technology, Electron-
ics and Microelectronics (MIPRO), pages 1449–1454.
IEEE.

Isha, A. S. and Revathi, M. (2019). Automated api testing.
International Journal of Engineering Science, 20826.

Jain, V. and Rajnish, K. (2018). Comparative study of soft-
ware automation testing tools: Openscript and sele-
nium. Int. Journal of Engineering Research and Ap-
plication, 8(2):29–33.

Joshi, N. (2016). Survey of rapid software testing using
machine learning. International Journal of Trend in
Research and Development.

Kassab, M., DeFranco, J. F., and Laplante, P. A. (2017).
Software testing: The state of the practice. IEEE Soft-
ware, 34(5):46–52.

Kladnik, D. (2020). Idontcareaboutcookie blocking popup
extention. https://www.i-dont-care-about-cookies.
eu/. Accessed: 2020-04-02.

LXML (2020). Lxml toolkit. https://lxml.de/. Accessed:
2020-04-02.

Nguyen, D. M., Do, H. N., Huynh, Q. T., Vo, D. T., and
Ha, N.-H. (2018). Shinobi: A novel approach for
context-driven testing (cdt) using heuristics and ma-
chine learning for web applications: An analysis of
chemosensory afferents and the projection pattern in
the central nervous system. In Topographic Organiza-
tion of the Pectine Neuropils in Scorpions. INISCOM.

Patel, M., Patel, M., et al. (2016). Survey paper on analysis
of xaas. International Journal For Research In Ad-
vanced Computer Science And Engineering, 2(2):13–
18.

Pypi (2020). Request library. https://pypi.org/project/
requests/2.7.0/. Accessed: 2020-04-02.

Raulamo-Jurvanen, P., Hosio, S., and Mäntylä, M. V.
(2019). Practitioner evaluations on software testing
tools. In Proceedings of the Evaluation and Assess-
ment on Software Engineering, pages 57–66.

Richardson, L. (2020). Beautiful soup documentation.
https://www.crummy.com/software/BeautifulSoup/.
Accessed: 2020-04-02.

RJ Bhojan, K Vivekanandan, R. G. (2019). A machine
learning based approach for detecting non- determin-
istic tests and its analysis in mobile application test-
ing. International Journal of Advanced Research in
Computer Science.

Rosenfeld, A., Kardashov, O., and Zang, O. (2018).
Automation of android applications functional test-
ing using machine learning activities classification.
IEEE/ACM 5th International Conference on Mobile
Software Engineering and Systems (MOBILESoft).

Selenium (2020). Selenium automates browsers. https://
selenium.dev/. Accessed: 2020-04-02.

Shariff, S. M., Li, H., Bezemer, C.-P., Hassan, A. E.,
Nguyen, T. H., and Flora, P. (2019). Improving the
testing efficiency of selenium-based load tests. In
2019 IEEE/ACM 14th International Workshop on Au-
tomation of Software Test (AST), pages 14–20. IEEE.

Vapnik, V. N. and Vapnik, V. (1998). Statistical learning
theory, volume 1. Wiley New York.

ICSOFT 2020 - 15th International Conference on Software Technologies

60


