
An in-Depth Requirements Change Evaluation Process using 
Functional and Structural Size Measures in the Context of Agile 

Software Development 

Hela Hakim1, Asma Sellami2 and Hanêne Ben Abdallah3 
1Mir@cl Laboratory, University of Sfax, FSEGS, BP 1088. 3018, Sfax, Tunisia 

2Mir@cl Laboratory, University of Sfax, ISIMS, BP 242. 3021, Sfax, Tunisia 
3Higher Colleges of Technology, Dubai, U.A.E. 

Keywords: Requirement Change RC, Functional Change FC, Structural Change SC, Functional Size Measurement 
FSM, Structural Size Measurement SSM, User Story Description, COSMIC-ISO 19761, Structural Size 
Measurement Method, Scrum, User Stories US, Agile. 

Abstract: The Agile methodology known as Scrum is increasingly used in software development as a response to the 
challenges of managing frequent requirements changes. However, a number of agile-based projects yield 
unsatisfactory results mainly because of a lack of a well-defined change evaluation process. In fact, such a 
process should be set-up early in the Software Life-Cycle (SLC). This paper proposes an in-depth evaluation 
process for requirements changes affecting either an ongoing sprint or an implemented sprint. This evalua-
tion process involves two levels of details: a functional change level and a structural change level based, re-
spectively, on the COSMIC functional size measurement method –ISO 19761 and the Structural Size Meas-
urement Method. We investigate the use of both COSMIC FSM and SSM methods for rapid and detailed 
evaluation-based measures of a requirement change request. 

1 INTRODUCTION 

Compared to other projects, software projects are 
more difficult to manage due mainly to invisibility, 
complexity, conformity and changeability of the 
software products (Fairley, 2009). In particular, at 
the beginning of the Software Life-Cycle (SLC), 
requirements are often unclear, ambiguous, and 
incomplete. Hence, they may change frequently 
throughout the Software Life-Cycle (SLC). In 
addition, other reasons may incur requirement 
changes (e.g., missing functionality, defects 
corrections, etc.) (Bano, 2012) and (Shalinka et al., 
2018). These SLC early changes have lower cost 
than requirements changes that occur at the later 
SLC phases (Fairley, 2009). 

Overall, researchers have adopted two strategies 
to reduce the cost of software requirements changes: 
anticipate changes, and use flexible models more 
adapted to embrace changes, such as Agile methods 
(Sellami et al., 2018) (Abdalhamid et al., 2017).  

Currently, agile methods (e.g., extreme 
programming, Scrum, crystal, etc.) are increasingly 
being adopted in software organizations. Two of the 
most popular agile methods are eXtreme 

Programming and Scrum (Hamed et al., 2013) 
(Dikert, 2016). These are more adapted to the 
software evolution and encourage an active 
collaboration between development teams and the 
product owner. Although Scrum is gaining 
popularity in comparison with other agile methods, 
61% of agile projects end in failure (Gilb, 2018). 

This is due mainly to the lack of comprehensive 
documentations in Scrum (Furtado, 2016), the 
inappropriate application of Scrum concepts, the 
limited use of standardized measures, and the poorly 
change evaluation. For a successful project 
development, Gilb reported that it is important to use 
standardized measurement on reviewing 
development progress, re-evaluating user stories 
priorities, etc. (Gilb, 2018).  

More specifically, requirements are seen at a 
high level of description in the functional level 
(black box), while these same requirements are 
described in detail in the structural level (white box). 
Consequently, a well-defined change evaluation 
process based on both functional and structural size of 
a change is required at any step of the Scrum process, 
even within an ongoing sprint. In this paper, we will 
focus on both ongoing and implemented sprints. 

Hakim, H., Sellami, A. and Ben Abdallah, H.
An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software Development.
DOI: 10.5220/0009876003610375
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 361-375
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

361



In practice, changes requested throughout the 
Scrum process are often evaluated by “expert 
judgment”. The development teams may have the 
required knowledge about the changed product and 
the required modifications that must be done with 
respect to the change request. However, a change 
evaluation that is based only on the expert judgment 
is hardly criticized because there is no guarantee of 
their effectiveness (Abran, 2015).  

Thus, we propose an in-depth requirements 
changes evaluation process that is based on the 
standardized COSMIC functional size measure (ISO 
19761) as well as the structural size measure (Sellami 
et al., 2015) to achieve more accurate results. An 
appropriate evaluation of a change request will help 
the decision makers responding to the change request.  

The remainder of this paper is organized as 
follows: Section 2 first overviews the Scrum 
process, the COSMIC FSM method (ISO/IEC 
19761), and the structural size measurement method. 
Secondly, it discusses some related works. Section 3 
presents our proposed evaluation process that 
development teams and other stakeholders can use to 
make appropriate decisions about a change request. 
Section 4 evaluates our approach. Section 5 
discusses several threats to validity. Finally, Section 
6 summarizes the presented work and outlines some 
of its possible extensions. 

2 BACKGROUND 

2.1 Overview of the Scrum Process 

Scrum process is a framework for a complete project 
management method developed and sustained by 
Scrum creators: Ken Schwaber and Jeff Sutherland 
(Ken Schwaber, et al., 2017). It allows the 
management of the development of complex 
applications. It involves Scrum Teams and their 
associated roles, events, artifacts, and rules. Each 
component within this framework serves a specific 
purpose and is essential to Scrum’s success and 
usage. It allows a better communication across the 
development team and the product owner. For a 
successful Scrum project, the development team 
must learn how to manage themselves efficiently. In 
addition, the product owner must be actively 
involved in every single phase of the software 
development. Scrum appears to work better with 
teams of 5 to 9 people, with large projects being 
typically handled by several scrum teams. 

Nevertheless, some companies adapt Scrum for 
large-scale projects (Dikert et al., 2016). The Scrum 

process, illustrated in Figure 1, starts with a high-
level definition of the project scope (requirements). 
Scrum uses the product backlog as a list of stories 
created by the product owners based on their initial 
requirements that clients/stakeholders/customers 
describe. Indeed, these stories may increase or 
decrease in size based on decisions made throughout 
the software development process. The list of stories 
is prioritized by the product owner to be used as an 
iterative input for different sprints (Iterations) 
(Schwaber et al., 2004). Thus, the active 
involvement of the product owner is mandatory to 
explain, elucidate the next iteration that should be 
implemented and evaluate/test the work done. 

 

Figure 1: Scrum software development process. 

For a single sprint, four types of meetings 
should be held: 1-sprint planning meeting, daily 
Scrum, sprint retrospective meeting, and sprint 
review meeting. The stories to be implemented in a 
sprint are captured during the planning meeting. 
They are selected from the product backlog 
according to their priorities and placed in a sprint 
backlog. In practice, usually, only the first two or 
three sprints are identified and planned. Daily stand 
up meetings are held during the sprint to discuss: 
what has been done, what to do, and what are the 
issues (Cohn, 2004) (Ken Schwaber et al., 2017). 
Each sprint is ended by a sprint retrospective 
meeting, during which the team reviews the sprint 
and decides which change will be made, and how 
they can improve their work in the next sprint. 

As we mentioned previously, Scrum uses the 
user stories to represent the user requirements at 
different levels of details. A user story is a 
requirement written in a specific way illustrating the 
type of user, feature or functionality that the user 
want to do in order to realize some benefit (Cohn, 
2004). The user story description adapted in practice 
is presented below. This description identifies who 
will do the user story or find it valuable, What it can 
be used for, and Why it is valuable or important. “As 
a user I want to … So that …”.Typically, 
development team members use the user story point 
to determine the effort required for the 

ICSOFT 2020 - 15th International Conference on Software Technologies

362



 

 

accomplishment of a user story compared to other 
user stories in the same product backlog. Although 
its popularity, user story point is not a good 
estimation technique. It has been widely criticized 
(cf., (Berardi et al., 2011), (Commeyne et al.,2016), 
(Desharnais etal.,2012), etc.) In fact, user story point 
is only meaningful for a specific development team 
and project. Thus, it is crucial to use a standardized 
measurement method (such as the COSMIC FSM 
method) as a means for sizing the work product 
(e.g., the user story). It is also required to use a 
combination of COSMIC method with structural 
size measurement method to exhibit a fine-grain 
measure of requirements. Many situations require a 
detailed description of requirements to derive 
estimations that are more accurate. In addition, the 
study in (Commeyne et al., 2016) reports on the 
performance of estimation models built using Story 
Points and COSMIC Function Points. The study 
showed that the use of COSMIC leads to estimation 
models with much smaller variances and 
demonstrates that the use of COSMIC allows 
objective comparison of productivity across tasks 
within a Scrum environment. For these reasons, we 
selected to use not only COSMIC FSM method but 
also structural size method for sizing respectively 
functional changes and structural changes, and 
therefore, provide a real and precise evaluation of 
the change request. 

2.2 COSMIC FSM Method–ISO19761 

COSMIC –ISO 19761 considers that a FUR involves 
a number of functional processes each of which is 
detailed by a set of sub-processes of two types: data 
manipulation and data movement. A data 
manipulation sub-process processes data 
internally/locally. In contrast, a data movement sub-
process moves a data group from/to a functional user 
(respectively Entry and eXit data movement) or 
from/to a persistent storage (respectively Read and 
Write data movement). The software size is 
measured by counting one CFP (COSMIC Function 
Point) for each data movement. The size of each 
functional process is measured separately, and the 
sizes of all functional processes are added to provide 
the whole software size.  

Compared to other Functional Size Measurement 
methods, COSMIC is the most straightforward 
method that measures the size of a change to 
software (COSMIC, 2020). It defines a functional 
change as “any combination of additions of data 
movements or of modifications or deletions of 
existing data movements” (COSMIC, 2017). To 

measure the Functional Size of a Functional Change, 
referred to as FS(FC), COSMIC attributes one CFP 
for each changed data movement, irrespectively of 
the change type (addition, deletion, or modification). 
FS(FC) is given by the aggregation of the sizes of all 
the added, deleted and modified data movements. 
The functional size of the software after a functional 
change is given as the sum of all added data 
movements minus the functional size of all removed 
data movements (COSMIC, 2017). 

2.3 Structural Size Measurement 
Method 

The Structural Size Measurement (SSM) is a 
measurement method proposed by (Sellami et al., 
2015) for UML sequence diagrams. It was designed 
by following the measurement process 
recommended in (Abran, 2010). The main reason for 
creating such method is the need of detailed 
measures to quantify data manipulation. 

The proposed Structural Size Measurement is 
applied to the combined fragments of a sequence 
diagram to measure its Structural Size (SS). The SS 
also called control structural size to refer to the 
structural size of both Conditional Control 
Structures (CCS) and Iterative Control Structures 
(ICS), described respectively through the alt, opt and 
loop constructs. The SS of a sequence diagram is 
defined at a fine level of granularity (i.e., the size of 
the flow graph of its control structures). 

The use of SS requires the identification of two 
types of data manipulation depending on the 
structure type CCS (alt and opt combined fragments 
in the flow graph) and/or ICS (loop combined 
fragment in the flow graph). 

Each data manipulation is equivalent to 1 CSM 
(Control Structure Manipulation) unit. The sequence 
structural size is computed by adding all data 
manipulations identified for every flow graph. 

2.4 Related Work 

Researchers and practitioners agree that agile 
development provides a rapid response methodology 
to handle requirements change. Thus, many research 
studies have addressed the issues of managing 
requirement changes in Scrum process  
In Scrum, a change priority in the backlog is the role 
of the Product Owner. In fact, the product backlog is 
the Product Owner’s tool. This implies that the 
elements of the backlog are ordered by priority. 

A Product Owner may need to change the order 
of priority for various reasons among which we cite 

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

363



the following: 
 each time a story is added to the backlog, it 

must be given higher priority over other 
elements. It is not necessarily placed last; 

 the better knowledge of a story can lead to 
change its priority; 

 the discovery of a bug or a problem can lead 
to a review of the priorities; 

 estimating the cost of developing a story can 
have an impact on its priority; and 

 planning a sprint can change priorities to 
adjust the scope to team engagement 

Change evaluation process followed by a 
Decision-making process in agile project has 
received an increased interest in recent years. In fact, 
the output of one process (change evaluation 
process) is the input of the second process 
(decisions-making process). For instance, Drury-
Grogan and O’Dwyer explored the decision-making 
in Scrum process and identified the factors that may 
influence the decisions made during the sprint 
planning and daily Scrum meetings (Drury-Grogan 
et al., 2013).In practice, Scrum teams follow 
sometimes a three-step process for making-decisions 
during the sprint planning and daily Scrum 
meetings: problem identification, solution 
development, and selection of best alternative. They 
make decisions in a collaborative manner and they 
may be influenced by three main factors, according 
to (Drury-Grogan et al., 2013): Sprint duration, 
experience and resource availability. However, the 
final decisions are usually made based on the Scrum 
team members’ experiences. Although expert 
judgment is much closer to reality, it is often 
considered as subjective (Abran, 2015).  

It is less transparent compared to any other 
techniques and depends mainly on the experts’ 
skills. Consequently, it is important to provide 
quantitative values (output of change evaluation 
process) as measurement results (derived from the 
use of both COSMIC functional and structural size 
measurement methods). These measurement results 
should both be accurate, and cover the functional 
and structural levels. 

In addition, there are many studies that addressed 
the issues of managing requirements changes not 
only in Scrum process but also in other areas of 
development (such as distributed agile) and its 
exploitation beyond its traditional use. 

For instance, in agility many types of problems 
have been identified. In (Lloyd et al., 2017), the 
authors addressed the problem of requirements 
changes during the software development in 
distributed agile development. They proposed a 

supporting tool to help managing requirements 
changes in distributed agile development. On the 
other hand, (Stålhane et al., 2014) proposed to 
analyze the impact of technical change requests. 
They focused on the safety requirements. Regarding 
the use of functionality measures in agile project, 
(Commeyne et al, 2016) proved that the use of ISO 
standards to measure the size of agile projects is 
mandatory. This study demonstrated the reliability 
of COSMIC in estimating the size and therefore, the 
effort required to accomplish the defined 
requirements. (Sellami et al., 2018) proposed a 
COSMIC-based tool for evaluating functional 
changes within the Scrum process. This tool assists 
the decision-makers to decide whether to accept, 
deny or defer a given functional change request. 

These findings are summarized in Table 1. 

Table 1: Summary of the proposals, focusing on changes 
in Scrum. 

Study Focus Type Findings 
(Lloyd et al., 
2017) 

Requirements 
change 
management in 
distributed agile 
development 

Experimental  A supporting 
tool 

(Commeyne 
et al.,2016) 

Evaluation of 
teams’ productivity
using COSMIC 

Experimental COSMIC is 
more reliable 
in estimating 
models with 
much smaller 
variances 

(Alsalemi 
and 
Yeoh, 2015) 

Product backlog 
change 
management and 
requirement 
traceability 

Survey Lack of 
requirement 
change 
traceability 

(Stålhane 
et al., 2014) 

Impact of technical 
changes in safety 
requirements 

Exploratory A supporting 
tool that 
ensures the 
validity of 
safety 

(Sellami et 
al., 2018) 

Evaluation of 
functional changes 
in Scrum process 
using COSMIC 

Exploratory Quantify FC 
request to 
make 
appropriate 
decisions 

Our study In-Depth 
Requirements 
Changes Evaluation 
Process based on 
functional and 
structural size 
methods 

Exploratory Quantify RC at 
functional and 
structural level  
to help in 
making 
accurate 
decisions  

From Table 1, we noticed that some studies 
focused on functional changes (cf., (Lloyd, 2017)), 
while other studies focused on technical changes 
(cf., (Stålhane et al., 2014). However, changes in 
these works have been always considered as new 
requirements. In addition, none of the previous 

ICSOFT 2020 - 15th International Conference on Software Technologies

364



 

 

studies used in-depth requirements changes 
evaluation process. This is due to the lack of detailed 
measurements and poorly defined scope (or 
requirements change requests). However, it is 
important to evaluate requirements’ changes at two 
levels of details and provide useful and accurate 
information for the right audience (e.g., the product 
owner or the development team).This will certainly 
help during the software maintenance as well as for 
new software development. 

In practice, usually, Scrum teams do not allow 
changes in the middle of iteration (sprint), since 
developers may already have preceded the 
implementation. In fact, practitioners consider that 
changes during an ongoing sprint may introduce 
defects. However, other authors (Sellami et al., 
2018) believe that some changes must be authorized 
during an ongoing sprint. For example, a change 
request that proposes the deletion of a user story 
selected in the current sprint must be authorized. 
Since it is useless to implement a user story that will 
be deleted in the next sprint. Nevertheless, changes 
introduced during an ongoing sprint need 
prioritization. In this paper, we believe that an in-
depth change evaluation within the Scrum process 
will increase its flexibility. 

3 AN IN-DEPTH EVALUATION 
PROCESS OF REQUIREMENTS 
CHANGES 

This section describes an in-depth requirements 
changes evaluation process. We will focus on how to 
evaluate a requirement change request that occurs 
within the Scrum process and that it may affect 
functional requirements and-or structural 
requirements. In Scrum, requirements are 
represented in a user story format and epics. This 
format does not represent all the COSMIC FSM 
concepts (e.g., data movement’s identification) nor 
the SSM concepts (e.g., data manipulations). Thus, 
we propose a detailed description of a user story that 
provides the information required to apply both 
COSMIC (COSMIC, 2020) and structural size 
method (Sellami et al., 2015). Thereafter, we 
propose a number of algorithms to provide size-
driven prioritizations of user stories (when 
requirements changes occur).We also propose a set 
of measurement formulas to be used for sizing 
requirements as described in the user stories formats 
at different levels of details (i.e., functional and 
structural levels).  

The six generic steps described herein provide a 
structured in-depth evaluation process that 
development teams use to evaluate the status of 
requirements changes. These steps are presented 
below. 

1. Refining and grooming the User Story 
description 

2. Mapping of the US concepts with 
measurement concepts 

3. Sizing requirements from the US description 
4. Prioritizing US in the product/sprint backlog  
5. Evaluating the status of requirements changes 

requests 
6. Facilitating ‘good’ decision-making 

Each of the change evaluation steps is described in 
the following sections. 

3.1 Step 1: Refining and Grooming the 
User Story Description 

Refining the user story description sets the stage for 
applying software size measurement methods. 
Clearly, well-defined requirements changes avoid 
ambiguity and misinterpretations. It can be evaluated 
with a high level of accuracy. In contrast, unclear 
requirements changes are prone to different 
interpretations and judgments. They can be 
evaluated approximately. In (Ken Schwaber et al., 
2017), a set of rules are established to provide the 
meaning of a “good” User Story. It should be: i) 
Independent: there is no independency from other 
User Stories in the backlog (it is sufficient on its 
own to avoid dependencies with other User Stories. 
Because any dependency generates planning and 
testing issues.) ii) Negotiable: it is a support for 
discussion with a view to improving the initial need 
(It can be modified and refined until it is integrated 
into an iteration or Sprint). iii) Valuable: the creation 
of one User Story must perform service to the user 
(It only makes sense if it brings business value).iv) 
Estimable: it must be well-defined to be easily 
estimable. v) Small: it must be achievable on a 
sprint, either sufficiently small or cut so that it can 
be deployed on a single sprint and minimize the 
tunnel effects over several sprints. And, vi) testable: 
it must tell a story from which the acceptability 
criteria and the tests must flow clearly to facilitate its 
validation. 

Different templates are proposed to determine 
what the users will need the software for (Sellami et 
al., 2018). However, there is no standardized 
representation of a user story. Some rules are 
proposed to define what Is a ‘good’ user story, but it 
is defined at a high level of details (Desharnais et al., 

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

365



2011). This is not sufficient for an in-depth change 
evaluation. 

Thus, we propose a detailed description of a user 
story that expands the previous template (Sellami et 
al., 2018), and represents all the information 
required to apply not only the COSMIC FSM 
method but also the structural size measurement 
method (see Table 3). Some of the detailed US 
statements that need to be described includethe 
following: 

 <If(condition)><Then> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 

It describes the first type of alternative scenario in 
a detailed description of a user story. This 
typically means that there is an option and the 
corresponding concept in the SSM method is the 
‘opt’ combined fragment. 

 <If(condition)> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 

          <else> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 

It describes the second type of alternative 
scenario in the detailed description of a user story. 
That means that there are two alternatives (i.e., 
two scenarios), and the corresponding concept in 
the SSM method is the ‘alt’ combined fragment. 

 <If(condition)> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 
           <elseif> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 

            <else> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 

It describes the third type of alternative scenario 
in the detailed description of a user story. This 
means that there are more than two alternatives 
(i.e., more than two scenarios), and the 
corresponding concept in the SSM method is also 
the ‘alt’ combined fragment. 

 <Loop(condition)[n]> 

<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 

<end loop> 

It describes the iterative scenario in the detailed 
description of a user story. This means that there 
are n iterations to be executed (i.e., iterative 
scenarios), and the corresponding concept in the 
SSM method is the ‘loop’ combined fragment. 

3.2 Step 2: Mapping of the User Story 
Concepts with the Measurement 
Concepts 

Step 1 produces a detailed description of a user story 
(i.e., a new refined format of a US). This description 
serves as the basis for sizing requirements/ 
requirements changes at different levels of details. 
For this reason, it is important to map the US 
concepts with those of COSMIC and structural size 
methods. 

Table 2 presents a mapping of US concepts (as 
described in step 1) with those of COSMIC 
functional and Structural size methods. 

Table 2: Mapping of US concepts with measurements 
methods’ concepts. 

User Story COSMIC FSM 
Concepts 

SSM 
Concepts 

<UserType> Functional User  or 
System or 
Persistent storage 

Not Applied  

<Object> Object of interest  Not Applied  

<Action> Data movement  Not Applied  
<value or expected 
benefit>: 

Optional Not Applied 

<NFR> Optional Not Applied  

<User/System> 
Functional user, 
System, and 
Persistent storage. 

Not Applied  

<DataTransfered> Data Group Not Applied  
<ActionType> Data movements 

(Entry,Read,  
Write,eXit) 

Not Applied  

<Action> Data movement  Not Applied  
<If (condition)> 
<Then > 

Not Applied Optcombined 
fragment(one 
alternative in the 
flow graph) 

<If (condition)> 
 
<else > 

Not Applied Altcombined 
fragment (two 
alternatives in the 
flow graph) 

<If (condition)> 
<else if> 
 
<else > 

Not Applied Altcombined 
fragment (more than 
two alternatives in 
the flow graph) 

<Loop 
(condition)[n]> 
<end loop> 

Not Applied LoopCombined 
fragment(n 
iterations in the 
flow graph) 

ICSOFT 2020 - 15th International Conference on Software Technologies

366



 

 

3.3 Step 3: Sizing Requirements from 
the User Story Description 

Once the requirements/ requirements changes are 
clearly identified and described in the US format, 
software size measurements can be applied. Thus, 
sizing requirements or sizing requirements changes 
can be determined according to a set of measurement 
formulas that are based on the refined US format.  

Using measurement formulas will facilitate the 
measurement process. Based on the established 
formulas, requirements functional size with their 
corresponding structural size is easily generated. Note 
that the requirements size (either requirements 
functional size or requirements structural size) derived 
from the product backlog are different from the 
requirements size derived from the increment product. 
Because, most often changes occur during the Scrum 
process (Schwaber et al, 2017). Hence new functionality 
may appear with or without a structural requirement, 
while others may be modified or deleted. The 
product/sprint backlog/USfunctional size and 
respectively the product/sprint backlog/USstructural 
size are determined using COSMIC functional size 
measurement method and respectively the structural 
size method. Of course, the Product backlog size 
depends on the size of all sprints initially identified. 
The functional size, respectively, the structural size of 
the product backlog or the increment product is the 
sum of all the functional sizes, respectively; the 
structural sizes of all the sprints it includes (see 
Equation 1 and Equation 1’).  

𝐹𝑆ሺ𝑃ሻ ൌ ∑ 〖𝐹𝑆ሺ𝑆〗ሻ
ୀଵ   (1)

𝑆𝑆ሺ𝑃ሻ ൌ ∑ 𝑆𝑆ሺ𝑆

ୀଵ ሻ  (1’)

Where: 
• FS(P)is the functional size of the product 

backlog or the increment product.  
• SS(P)is the structural size of the product 

backlog or the increment product. 
• FS(Si) is the functional size of sprinti. 
• SS(Si) is the structural size of sprinti. 
• n is the number of sprints initially identified in 

the case when sizing the product backlog or the 
number of implemented sprints in the case 
when sizing the increment product. 

The functional size, respectively, the structural size of 
a sprint is the sum of all the functional sizes, 
respectively, the structural sizes of all the user stories 
(US) it includes (see Equation2 and Equation2’). 

𝐹𝑆ሺ𝑆ሻ ൌ ∑ 𝐹𝑆ሺ𝑈𝑆ሻ
ୀଵ   (2)

𝑆𝑆ሺ𝑆ሻ ൌ ∑ 𝑆𝑆ሺ𝑈𝑆ሻ
ୀଵ   (2’)

Where: 
• FS(Si) is the functional size of sprinti(1≤i≤n).  
• SS(Si)is the structural size of sprinti(1≤i≤n).  
• FS(USij)is the functional size of the USj in 

Si. 
• SS(USij)is the structural size of the USj in Si. 
• m is the number of user stories in sprint Si. 

Note that FS(USij)is the sum of all the functional 
sizes of its actions(see Equation 3).TheSS(USij) is 
the sum of all the Structural sizes of its alternatives 
(conditional and iterative) (see Equation 3’). 

𝐹𝑆ሺ𝑈𝑆ሻ ൌ ∑ 𝐹𝑆ሺ𝐴𝑐𝑡

ୀଵ ሻ  (3)

𝑆𝑆ሺ𝑈𝑆ሻ ൌ ∑ 𝑆𝑆ሺ𝐴𝑙𝑡ሻ
ୀଵ   (3’)

where 
• FS(USij) is the functional size of the USjin Si. 
• SS(USij) is the structural size of the USjin Si. 
• FS(Actijk)is the functional size of action 

Actijk in USij(1≤i≤nand1≤j≤m). 
• SS(Altijk) is the structural size of alternative 

Altijkin USij(1≤i≤nand1≤j≤m). 
• p is the number of actions in user storyj. 
• r is the number of Alternatives in user story j. 

3.4 Step 4: Prioritizing User Stories in 
the Product/Sprint Backlog 

Prioritizing US that clearly states the product owners’ 
expectations is essential to software project success.  

In Scrum, user stories are prioritized as requested 
by the product owner. However, the product owner 
perspective may not have enough knowledge about 
the implementation details. Hence, ordering user 
stories based only on priority is not sufficient. In 
fact, the developer’s view is also important in the 
user stories prioritization. Taking into account the 
developer’s perspective is important to maximize the 
business value released at the end of every sprint.  

Therefore, it is important to adopt comprehensive 
product owner/development team perspectives 
according to three parameters: US importance, US 
priority, and a combination of a US functional size 
with its structural size. The priority of user stories is 
defined by the product owner. For example, P(US1)1 
is more prior than P(US2), and P(US2) is more prior 
than P(US3), etc.  

The importance of a user story is defined by the 
development teams and it can be Essential or 
Desirable. For example, User stories importance 
(noted by I(US1) and I(US2))in the same cluster of 
classes (the same data base, service, etc.) address the 

                                                      
1 P(US1) that is put the US 1 on top priority. 

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

367



same importance(i.e., I(US1)= I(US2)2then I(US1) 
and I(US2) have the same importance(regardless of 
there are Essential or desirable).  

The US functional size is determined according 
to COSMIC FSM method, while the US structural 
size is determined using the structured size 
measurement method.  

Use of Algorithm 1 provides a basis for 
prioritizing which user stories to select in the product 
backlog. The Algorithm 1 can also be used to 
reorganize user stories in an on-going sprint when 
requirements changes occur.  

Algorithm 1: Prioritizing user stories. 

Aim: Prioritizing user stories taking into account 
inputs defined as below. 

Inputs: P(US) the priority of a User Story (US), 
I(US) the importance of a US, FS(US) the functional 
size of a US, SS(US) the structural size of aUS. 

Outputs: User stories are organized by taking into 
account their priorities, importance and then their 
functional sizes and structural sizes. 
BEGIN 

1. If I(USi) == I(USj) && P(USi)!= P(USj) then  
a. Select the more prior user story (US); 

2. Else if I(USi) != I(USj) && P(USi) != P(USj) || 
P(USi) == P(USj) then  

a. Select the most important (Essential) 
US 

3. Else if I(USi) == I(USj) && P(USi) == P(USj) 
&& FS(USi) != FS(USj) && SS(USi) == 
SS(USj)  then  

a. Select the user story with minimum 
functional size;  

4. Else if I(USi) == I(USj) & P(USi) == P(USj) & 
FS(USi) == FS(USj) & SS(USi) != SS(USj)  
then 

a. Select the user story with minimum 
Structural size; 

5. Else if  I(USi) == I(USj) && P(USi) == P(USj) 
&& FS(USi) != FS(USj) && SS(USi) != 
SS(USj) then 

a. Select the user story with minimum 
Structural size and minimum 
functional size 

6. Else 
a. Select the user story that requires less 

demand on resources (time or budget)  
END 

On the other hand, developers identify the status 
of a user story that can be used to control the 
development progress. Thus, the status of a user 
story can be: 

• New is the status of a user story in the 
product backlog.  

                                                      
2 I(US1) that is put the US 1 on top importance  

• To do is the status of a user story assigned to 
an on-going sprint 

• In Progress is the status of a user story 
currently being implemented?  

• To Verify is the status of a user story ready 
for testing.  

• Done is the status of a user story tested with 
success in the customer environment. 

When changes occur throughout the Scrum 
process, it may affect US independently of its status. 
Thus, we keep only two main status “done” and 
“undone” (including “new”, “to do”, “in progress”, 
and “to verify”). 

3.5 Step 5: Evaluating Requirements 
Changes Requests Status 

This step is the basis core of the RC evaluation 
process. It focuses on how to evaluate the status of a 
Requirements Changes request. RC request may occur 
within an Ongoing Sprint or an Implemented Sprint. 
Each identified RC is evaluated separately (i.e., when 
only FC occurs, or when only SC occurs, or when 
both FC and SC occur) as depicted in Figure 2. RC 
may be handled with or without extra cost/time. 
Consequently, every RC needs to be evaluated 
based on the Functional Change (FC) and its 
corresponding Structural Change (SC).  

 

Figure 2: Evaluating requirement changes described in a 
US Format. 

Functional and structural change measurements 
represent a means for guiding the evaluation process 
so that the right decision can be made. This 
evaluation is used later to provide recommendations 
to the decision-makers to accept, defer or deny a RC 
request. It depends on three main factors: the FS of 
the changed US, the SS of the changed US and the 
US status (done or undone).  

Note that a RC request (either FC or SC or both) 
can be requested by the PO or the development 
team. First, it should be described in the US 
refinement format (see section 3.1) to identify the 

ICSOFT 2020 - 15th International Conference on Software Technologies

368



 

 

US affected by the change (referred to as USc). The 
USc should have a current status that can be “done” 
(i.e., this change occurs in an implemented sprint) or 
“undone”(i.e., this change occurs in an ongoing 
sprint). In the case of an ongoing sprint, we identify 
the attributes of the sprint where the change occurs 
(e.g., the sprint size, start date), and then we measure 
the FS(FC), the FS(USc), and the functional sizes of 
all the undone user stories, respectively, the SS(SC), 
the SS(USc), and the Structural sizes of all the 
undone user stories in the same sprint. In the case of 
an implemented sprint, we measure the FS(FC) and 
the FS(USc), respectively, the SS (SC) and the 
SS(USc).  

3.5.1 Evaluating RC Status in an Ongoing 
Sprint 

When a RC occurs in an ongoing sprint, it may 
contain both “done” and “undone” user stories. This 
RC request can be a FC request or SC request or 
both of them (FC and SC). Thus, we propose to 
evaluate each RC request separately (i.e., the cases 
when FC occurs, SS occurs, or both of them). 

a) The case when FC occurs 
When the status of USc (the user story affected by a 
change) is either “undone” or “done”, we propose to 
compare the FS(FC) to the functional size of all the 
undone user stories (USundone), respectively, to the 
functional size of all the done user stories(USdone) 
in the same sprint. Hence, different baselines will be 
used to evaluate the status of the FC (see Table 3). 

A “High” FC is a change with a functional size 
greater than the total functional sizes of undone/done 
user stories in the same sprint. It will have a 
potential impact on the software development 
progress. However, a “Low” FC has a functional 
size of 1 CFP. This change can be handled without 
any impact on the software development progress. 
Where as a “Moderate” FC is a change with 
functional size lowest than the functional size of 
undone/done user stories in the same sprint. It will 
produce few changes in the software development 
progress. 

Table 3: Evaluating a FC request when USc status = un-
done/done. 

Low Moderate High 
𝐹𝑆ሺ𝐹𝐶ሻ
ൌ 1𝐶𝐹𝑃 

2𝐶𝐹𝑃  𝐹𝑆ሺ𝐹𝐶ሻ
 𝐹𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒
/𝑈𝑆𝑑𝑜𝑛𝑒ሻ 

𝐹𝑆ሺ𝐹𝐶ሻ
 𝐹𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒/𝑈𝑆𝑑𝑜𝑛𝑒ሻ

 

b) The case when SC occurs 
In an analogical way, if the status of the changed 

user story (USc) is either “undone” or “done”, we 
propose to compare the SS(SC) to the Structural size 
of all the undone user stories respectively, to the 
structural size of all the done user stories in the same 
sprint. Different baselines will be used here to 
evaluate the status of the SC (see Table 4). 

A “High” SC is a change with a structural size 
greater than the total structural sizes of undone/done 
user stories in the same sprint. This change will 
increase the complexity of the code and the costs of 
the project, since it will have a potential impact on 
the software development progress. However, a 
“Low” SC has a structural size of 1 CSM. This 
change can be handled without any impact on the 
software development progress. Whereas, a 
“Moderate” SC is a change with structural size 
lowest than the structural size of undone/done user 
stories in the same sprint. It will produce few 
structural changes. It means that there is few 
alternative scenario, no complexity in the code, and 
no impact on the software development progress. 

Table 4: Evaluating a SC request when USc status = un-
done/done. 

Low Moderate High 
𝑆𝑆ሺ𝑆𝐶ሻ
ൌ 1𝐶𝑆𝑀 

2𝐶𝑆𝑀  𝑆𝑆ሺ𝑆𝐶ሻ
 𝑆𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒
/𝑈𝑆𝑑𝑜𝑛𝑒ሻ 

𝑆𝑆ሺ𝑆𝐶ሻ
 𝑆𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒
/𝑈𝑆𝑑𝑜𝑛𝑒ሻ 

c) The Case when FC and SC occurs 
simultaneously 

When the status of the changed user story (USc) is 
“undone” or “done”, we propose to compare at the 
same time SS(SC) to the Structural size of all the 
undone/done user stories, respectively, we compare 
the FS(FC) to the functional size of all the undone 
user stories in the same sprint. Table5 shows the RC 
status evaluation.  

A “High” RC is a change with a structural size 
bigger than the total structural sizes of undone user 
stories and having a functional size bigger than the 
total functional sizes of undone/done user stories in 
the same sprint. It will have a potential impact on the 
software development progress. However, the RC is 
considered as “Low” if it has a functional size of 1 
CFP and a structural size of 1 CSM. This change can 
be handled without any impact on the software 
development progress. Whereas, a “Moderate” RC 
(summarizing both a SC and a FC) is a change with 
structural size lowest than the structural size of 
undone/done user stories and having a functional 
size lowest than the functional size of undone/done 
user stories in the same sprint.  

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

369



Table 5: Evaluating RC (FC and SC) request when USc 
status = undone/done. 

Low Moderate High 
𝑆𝑆ሺ𝑆𝐶ሻ
ൌ 1𝐶𝑆𝑀&& 

FSሺFCሻൌ1 
CFP 

2 𝐶𝐹𝑃 ൏ 𝐹𝑆ሺ𝐹𝐶ሻ
൏ 𝐹𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒
/𝑑𝑜𝑛𝑒ሻ&& 2𝐶𝑆𝑀  𝑆𝑆ሺ𝑆𝐶ሻ
 𝑆𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒/𝑈𝑆𝑑𝑜𝑛𝑒ሻ 

𝐹𝑆ሺ𝐹𝐶ሻ
 𝐹𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒
/𝑑𝑜𝑛𝑒ሻ && 𝑆𝑆ሺ𝑆𝐶ሻ
 𝑆𝑆ሺ𝑈𝑆𝑢𝑛𝑑𝑜𝑛𝑒
/𝑈𝑆𝑑𝑜𝑛𝑒ሻ

3.5.2 Evaluating RC Status in an  
Implemented Sprint 

An implemented sprint in the increment product 
includes a number of done user stories. In this study, 
we assume that a RC request (including FC request 
and-or SC request) affecting a “done” US means that 
the work that has already been done must be 
changed depending on the change request types (FC 
or SC or both). Thus, an additional time and effort 
may be required to take into account this change. 

As it is described in section 3.5, requirements 
change request evaluation is done separately, 
depending on the nature of the requirement change 
(functional change or structural change or both of 
them) in an Implemented Sprint. 

a) The case when FC occurs 
A “High” FC is a change with a functional size 
bigger than the functional size of the user story 
changed in the implemented sprint (USc). An 
important effort may be required to implement this 
change. However, a “Low” FC has a functional size 
of 1 CFP. This change can be handled without any 
required effort. However, a “Moderate” FC is a 
change with functional size less than the functional 
size of the user story affected by the change in the 
implemented sprint. A little effort may be required 
to implement a “Moderate” change. 

b) The case when SC occurs 
A “High” SC is a change with a structural size 
bigger than the structural size of the user story 
changed in the implemented sprint (USc). An 
important effort may be required to implement this 
change. However, a “Low” SC has a structural size 
of 1 CSM. This change can be handled without any 
required effort. However, a “Moderate” SC is a 
change with structural size less than the structural 
size of the user story affected by the change in the 
implemented sprint. A little effort may be required 
to implement a “Moderate” change. 

c) The case when both FC and SC occur 
simultaneously 

A “High” RC (i.e., FC and SC) is a change with a 
structural size bigger than the structural size of the 
user story affected by the change, respectively; its 
functional size is bigger than the functional size of 

the user story affected by the change in the 
implemented sprint (USc). An important effort may 
be required to implement this change. However, a 
“low” RC is a change with a “Low” SC having a 
structural size of 1 CSM, respectively a FC of 1 
CFP. This change can be handled without any 
required effort. However, a “Moderate” RC involves 
FC having functional size less than the functional 
size of the user story affected by the change, and the 
SC having structural size less than the structural size 
of the user story affected by the change in the 
implemented sprint. A little effort may be required 
to implement a “Moderate” change. 

3.6 Step 6: Facilitating ‘Good’  
Decision-Making 

In this step, we focus on how to facilitate change 
decisions. We believe that good decision making 
depends not only on the accuracy of requirements, but 
also on the use of the right measures. Thus, important 
decisions are made regarding many criteria including 
software size measurements. In fact, software size can 
be used for many exploitations, such as effort/cost 
estimations, quality, etc. (Abran, 2015).  

In addition to these considerations, software size 
measurement could be viewed from different 
perspectives during the evaluation process. And 
therefore, quickly and specific recommendations that 
decision-makers (cf., product owner, development 
team and the Scrum master) can apply to contribute 
to the software project success. Recall that a RC 
may affect either an ongoing sprint or an 
implemented sprint. Thus decisions can be made to: 

 accept the RC request (FC and-or SC 
Requests) that is implement the RC in the 
current sprint. 

 deny the RC request (FC and-or SC 
Requests) that is if the RC proposes a new 
software, then restarting the development 
from the beginning. 

 defer the RC request to the next sprint (FC 
and-or SC Requests)that is accept the RC and 
implement it in the next sprint not in the 
current one. 

3.6.1 Deciding on RC Requests That Occur 
in an Ongoing Sprint 

When the RC request (FC and-or SC) is a 
modification and affects a US in an ongoing sprint, 
we propose Algorithm 2that provides 
recommendations to help in making decisions. These 
recommendations are based mainly on: 

ICSOFT 2020 - 15th International Conference on Software Technologies

370



 

 

• The comparison between the FS(FC), the 
functional size of all undone user stories in the 
current sprint referred to as FS(USundone) in 
Algorithm 2, and the functional size of the 
changed user story referred to as FS(USc) in 
Algorithm 2.   

• The comparison between the SS(SC), the 
Structural size of all undone user stories in the 
current sprint referred to as SS(USundone) in 
Algorithm 2, and the structural size of the 
changed user story referred to as SS(USc)in 
Algorithm 2).   

For the purpose of demonstrations, we assume that 
the FC and SC are both included in the same user 
stories and in the same sprint. For instance, if the 
FS(FC) is greater than the total functional size of all 
the undone user stories. And, if the SS(SC) is greater 
than the total sizes of all the undone user stories in 
this same current sprint, we recommend to defer 
both FC and SC. Then, the user story changed (after 
the FC and the SC) is deleted from the current sprint 
and added after modification with respect to the 
change to the next sprint. 

In the case when the FS(FC) is less than the total 
functional size of all the undone user stories. And, if 
the SS(SC) is less than the total size of all the undone 
user stories in the same current sprint, it is required to 
compare the FS(FC) to the FS(USc) before the change 
(referred to as FS(USc)i in Algorithm 2), respectively, 
we compare the SS(SC) to the SS(USc) before the 
change (referred to as SS(USc)i in Algorithm 2). 

Thus, if the FS(FC) is greater than the FS(USc)i. 
And, if the SS(SC) is greater than the SS(USc), we 
recommend to defer the FC, the SC and the USc after 
the change (referred to as (USc)f in Algorithm 2) to 
the next sprint.  

On the other hand, if the FS(FC) is less than the 
FS(USc)i and if the SS(SC) is less than the SS(USc)i, 
the decision will be made based on the impact of the 
change on the FS(USc)i, respectively, the impact of 
the change on the SS(USc)i. 

In the case when a FC proposes the addition of a 
user story without changing any user story in the 
sprint, a comparison must be done between the 
FS(FC) and the functional size of all the undone user 
stories.  

In the same way, we compare the SS(SC) to the 
structural size of all the undone user stories in the 
sprint. Hence, if the FS(FC) is less than the 
FS(USundone) and the SS(SC) is less than the 
SS(USundone), then both the FC and the SC should 
be accepted. Otherwise, the FC and the SC is deferred 
to the next sprint.  

A deletion of FC request and a SC request do not 

have any influence on the development progress. 

Algorithm 2: Deciding on a RC based FC and SC in an 
ongoing sprint. 

Aim: Deciding on a FC and SC in an ongoing sprint 
Require: FS(FC), SS(SC), FS(USundone), SS(USundone), 
FS(USc), and SS(USc).  
BEGIN 

1. if FS(FC)>FS(USundone) 
&&SS(SC)>SS(USundone)  then 

a. Defer the FC to the next sprint; 
b. Defer the SS to the next sprint; 
c. Delete (USc)i from the ongoing sprint; 
d. Add (USc)f to the next sprint;  

2. else if FS(FC) <FS(USundone)&&SS(SC) < 
SS(USundone)  then 

3. if FS(FC)>FS(USc)i && SS(SC)>SS(USc)i  
then 

a. Defer the FC to the next sprint; 
b. Defer the SC to the next sprint; 
c. Delete (USc)i from the current sprint; 
d. Add (USc)f to the next sprint; 

4. else ifFS(FC)<FS(USc)&& SS(SC)<SS(USc)  then 
5. if FS(USc)f>FS(USc)i && SS(USc)f>SS(USc)i  

then 
6. IfRemainingtime(USc)f 

<requiredtime&&teamprogress= early then 
a. Accept the FC; 
b. Accept the SC; 
c. Delete(USc)i from the current sprint; 
d. Add(USc)f to the current sprint; 

7. else 
a. Defer the FC; 
b. Defer the SC; 
c. Delete (USc)i 
d. Add (USc)f to the next sprint; 

8. else if FS(USc)f<FS(USc)i && 
SS(USc)f<SS(USc)i then 

a. Accept the FC; 
b. Accept the SC; 
c. Delete(USc)i from the current sprint; 
d. Add (USc)f to the current sprint; 

9. else if FS(FC) == 1 CFP &&SS(SC) == 1 CSM 
then 

a. Accept the FC; 
b. Accept the SC; 
c. Delete (USc)i from the current sprint; 
d. Add (USc)f to the current sprint; 

10. END 
 

3.6.2 Deciding on RC Requests That Occur 
in an Implemented Sprint 

When one or more user stories are already 
developed in a sprint, any change may involve 
further discussion with the product owner. After all, 
the product owner will validate the final product’s 
acceptance test results. 

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

371



In this case, we suggest to deny the requirements 
change (whether FC or SC or both of them). 
However, the Product Owner’ needs must be taken 
to handle his/her requested changes. For this end, we 
provide some analysis that allows the Product 
Owner to determine the importance of the change 
request, such as a comparison among the time spent 
to implement the changed user story (noted T) and 
the time predicted to re-develop the user story after 
the change (noted Tpre). We propose for this end the 
analysis below:  
If(I(Usa)is essential and T<Tpre) analyze 1:“the US 
is essential”. 
If (P(USa) is less than the priorities of the number of 
all US n divided by2  (P(n/2))and (T<Tpre) analyze 
2:“the US is prior”.  
Else analyze 3: “The US is complicated and must be 
re-developed”. 

These analysis does not offer decision-makers 
with an answer on a RC request, but it highlights 
when it is required to discuss with the Product 
Owner the importance of the RC(whether it is really 
needed or not.) 

4 CASE STUDY 

The case study “IT-commerce” is developed by a 
team of engineers. The web site allows the customer 
to buy IT equipment on-line. This web site has been 
delivered after six sprints each one lasts for two 
weeks. It includes initially ten user stories. We 
provide the detailed measurement results that are 
given in Table 6. 

The development team defined the first sprint S1 
backlog. By choosing the user stories organized 
according to their importance/priority. US5, US6, and 
US7 have been implemented during the sprint S1. All 
the user stories have the importance = Essential noted 
by “E” and the priority = P1. In sprint S2, and based 
on the importance/ priority of user stories in the 
product backlog, US4, US8, US9 and US10 have 
been chosen to be implemented in S2. As mentioned 
in Table 6, US4 is with importance = “E” and priority 
= P2. Whereas, US8, US9 and US10 are with 
importance = Essential and priority = P3. Hence, the 
development team starts by US4. 

After the implementation of US4 (i.e., the US4 
status is done), the PO proposes to add US11, US12, 
and US13(See Table 7). Where: 
FS(US11) = 4 CFP, FS(US12) = 3 CFP,FS(US13) = 
3 CFP. And, SS(US11) =2 CSM, SS(US13)= 3CSM 
and the importance/priority for all the added user 
stories is (Essential/P3). Note that the status of the 

user stories initially in the sprint is: US4 status = 
done and US8 status = US9 status = US 10 status = 
undone. (Colored in red in the table 7) 
The question here is whether to accept the RC that 
may include FC and-or SC (in other words, 
implement RC in the current sprint S2 or defer the 
(FC and-or SC) to the next sprint S3).To do this, we 
must apply our proposed an in-depth process. 

First, we apply the step1, 2 and 3 respectively 
(refinement and grooming step, mapping step and 
sizing step) Table 6 lists these results. 
Second, we apply the step 4 in which user stories 
are prioritized based not only on their priority and 
importance but also on their functional and structural 
sizes. For this end, based on the proposed Algorithm 
1, the results of step 4 are provided in Table 
7.Hence, the user stories will be organized as 
follows: US9, US12, US11, US8, US13, and US10.  

After that, we apply step5 to evaluate the RC 
status. Recall that the RC (FC and-or SC)in this case 
occur in an ongoing sprint and propose the addition 
of three user stories (US11,US12,US13) without 
changing any user story in the sprint This RC is 
considered as a moderate change (see Table 5) 

Finally, we apply the step 6: The total 
functional size of undone user stories has the value 
of 12 CFP (US8, US9, and US10). While, the FC 
has a functional size of 10 CFP (US11, US12, and 
US13). The total structural size of undone user 
stories has the value of to 4 CSM (US8, US9, and 
US10). While the SC has a structural size of 5 CSM 
(US11, US12, US13) 
Thus, after applying Algorithm 2, we make the 
following decisions: 
 Accept US 9(FC and SC), US 12 (FC and SC), 

and US 11(FC and SC), 
 Defer US 8(FC and SC), US 13 (FC and SC), 

and US 10 (FC and SC), to the next sprintS3. 

Table 6: Product Backlog initially organized. 

 ToDo LIST 

Sprint User 
Stories

FS(US)
CFP 

SS(US)
CSM 

Status I (US) P(US)

Sn US1 3  2 New D P3 
US 2 3  2 New D P3 
US 3 3  0 New D P3 

S2 US 4 3  1 New E P2 
 

S1 
US 5 4  2 New E P1 
US 6 6  2 New E P1 
US 7 6  2 New E P1 

S2 US 8 3  2 New E P3 
US 9 3  1 New E P3 
US 10 6  0 New E P3 

ICSOFT 2020 - 15th International Conference on Software Technologies

372



 

 

Table 7: Product Backlog after change. 

 ToDo LIST 

Sprint User 
Stories 

FS(US) 
CFP 

SS(US)
CSM 

Status I(US)
 

P(US)

Sn US1 3  2 New D P3 
US 2 3  2 New D P3 
US 3 3  0 New D P3 

S2 US 4 3  1 Done  E P2 
 

S1 
US 5 4  2 done E P1 
US 6 6  2 done E P1 
US 7 6  2 done E P1 

S2 US 8 3  2 undone E P3 
US 9 3  1 undone E P3 
US 10 6  0 undone E P3 

S2 US11 4 2 New  E P3 

US12 3 0 New  E P3 

US13 3 3 New E P3 

5 THREATS TO VALIDITY 

The proposed process in this paper has been 
illustrated through the case study “IT-commerce”. 
However, the validity of the above results is subject 
to two types of threats (internal and external) 

(Wohlin et al., 2000): 
 The internal validity threats are related to four 

issues. The first issue affecting the internal va-
lidity of our process is its dependence on a de-
tailed description of the user story; such details 
may not always be available. Thus, for further 
work, we consider that approximate/ rapid RC 
evaluation is required especially for an urgent 
RC request. The second issue is related to the 
productivity of the development team. In fact, 
two functional processes with exactly the same 
functional size or the same structural size do 
not require always the same development time. 
Moreover, the rapidity of the development 
team at the beginning of the sprint and the end 
of the sprint are not the same (this depends on 
the development team skills). Thus, for further 
work, we will use other criteria. The third is-
sue is related to the evaluation of the FC which 
is based only on the FS(FC) without taking in-
to account the FC type (deletion, addition or 
modification). However, we consi-der that this 
factor is important in the evaluation of a FC 
request. Finally, in this study we did not take 
into account the relationship between the user 
stories. In fact, a FC affecting a use story may 
lead to an impact on the functional size and  
the   structural   size  of  other  use stories.  For 

  

Table 8: Summary of the detailed user story refinement description format. 

User story 
US(Sellami et al., 
2018) 

/*description*/ 
As a <UserType>I want to <Action><Object>so 
that <value or expected benefit><NFR> 

/*Scenario nominal description*/ 
<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive> 
<DataTransferred><Action> 

User story with 
refinement 
different  
alternatives 
scenario 

/*description*/ 
US  
/*Scenario alternative 
description 1*/ 
<If  (condition)> 
<Then > 
<User/System><ActionType: 
Entry, Read, Write, 
eXit,Expletive> 
<DataTransferred><Action> 
 

/*description*/ 
US 
/*Scenario alternative 
description 2*/ 
<If  (condition)> 
<User/System><ActionType: 
Entry, Read, Write, eXit, 
Expletive><DataTransferred>
<Action> 
<else > 
<User/System><ActionType: 
Entry, Read, Write, eXit, 
Expletive><DataTransferred
><Action> 

/*Scenario alternative description 3*/
<If  (condition)> 
<User/System><ActionType: Entry, 
Read, Write, 
eXit, 
Expletive><DataTransferred><Action>
<else if> 
<User/System><ActionType: Entry, 
Read, Write, eXit, 
Expletive><DataTransferred><Action>
<else > 
<User/System><ActionType: Entry, 
Read, Write,eXit, 
Expletive><DataTransferred><Action>

User story with 
refinement 
iterative scenario 

/*description*/ 
US 
/*Scenario iterative description 4*/ 
<Loop  ( condition)[n]> 
<User/System><ActionType: Entry, Read, Write, 
eXit, Expletive><DataTransferred><Action> 
<end loop> 

 

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

373



further work, we will focus on the relationships 
between user stories and change propagation. 

 The external validity threats deal with the 
possibility to generalize the results of this study 
to other case studies including the usability of 
the proposed process and the making decision 
algorithms. The first issue is the limited number 
of case studies used to test the proposed 
process. In fact, only one case study has been 
used: the ‘IT-commerce”. Thus, testing the 
proposed process and algorithms in an industrial 
environment is required in order to get the 
feedback from the practitioners.  

6 CONCLUSION AND FUTURE 
WORK  

This work proposed an in depth requirement change 
evaluation process based on the use of US functional 
and structural size measurement methods. Thus, user 
stories are expressed in terms of CFP units using the 
standard COSMIC FSM method, and respectively, 
in terms of CSM units using the structural size 
measurement method. In addition, Requirement 
Changes are measured and evaluated so that the 
decision-makers will be guided to decide which RC 
request should be accepted, deferred or denied. 

Finally, other works will focus necessary on the 
automation of this in-depth requirement change 
evaluation process and a tool will be so promoted to 
help making the right decision that can be used by 
the PO in the Scrum method. This tool may be 
developed as an API to be integrated into JIRA or 
any other developed solutions for software 
organization 

REFERENCES 

Abran, A. (2010). Software Metrics and Software Metro- 
logy. IEEE Computer Society. 

Abran, A. (2015). Software Project Estimation: The Fun- 
damentals for Providing High Quality Information to 
Decision Makers. Wiley-IEEE Computer Society Pr, 1st 
edition. 

Abdalhamid, S. and Mishra, A., 2017. Adopting of agile 
methods in software development organizations: sys-
tematic mapping. TEM Journal, 6(4), p.817 

Al Salemi, A. M. and Yeoh, E. T. (2015). A survey on 
product backlog change management and require- ment 
traceability in agile (Scrum). In the 9th Malay- sian 
Software Engineering Conference (MySEC), pa- ges 
189–194. 

Ambler, S. W. (2014). User Stories: An Agile Introduction. 
Bano, M., Imtiaz, S., Ikram, N., Niazi, M., and Usman, M. 

(2012). Causes of requirement change - a systematic lit-
erature review. In EASE 2012. 

Berardi E., Buglione L., S. L. S. C. T. S. (2011). Guideline 
for the use of cosmic fsm to manage agile projects, v1.0. 

Cohn, M. (2004). User Stories Applied: For Agile Software 
Development. Addison-Wesley Professional. 

Commeyne, C., Abran, A., and Djouab, R. (2016). Effort 
Estimation with Story Points and COSMIC Function 
Points: An Industry Case Study. 

COSMIC (2017). The COSMIC Functional Size Measure- 
ment Method, Version 4.0.2, Measurement Manual. 

COSMIC (2020). The COSMIC Functional Size Measure- 
ment Method, Version 5.0,Announcement of Version 5.0 
of the COSMIC Measurement Manual – March 31, 
2020 

Drury-Grogan, M., O’Dwyer, O.: An investigation of the 
decision-making processin agile teams. Int. J. Inf. Tech-
nol. Decis. Mak. 12(6), 1097–1120 (2013) 

Desharnais, J. M., Kocaturk, B., and Abran, A. (2011). 
Using the cosmic method to evaluate the quality of the 
documentation of agile user stories. In 2011Joint Con-
ference of the 21st International Workshop onSoft-
wareMeasurementandthe6thInternationalConference on 
Software Process and Product Measurement, pag-
es269–272. 

Dikert, K., Paasivaara, M., and Lassenius, C. (2016). Chal-
lenges and success factors for large-scale agile trans-
formations. Journal of Systems and Software, 
119(C):87–108. 

Fairley, R. E. (2009). Managing and Leading Software Pro- 
jects. Wiley-IEEE Computer SocietyPr. 

Furtado, F., Zisman, A.: Trace++ (2016): a traceability 
approach to support transitioningto agile software engi-
neering. In: The 24th International Requirements Engi-
neering Conference (RE), pp. 66–75. 

Gilb, T. (2018). Why agile product development systemati- 
cally fails, and what to do about it! 

Haoues, M., Sellami, A., and Ben-Abdallah, H. (2017). 
Functional change impact analysis in use cases: An ap-
proach based on COSMIC functional size measu- re-
ment. Science of Computer Programming, Special Is-
sueonAdvancesinSoftwareMeasurement,135:88– 104. 

Hamed, A.M.M and Abushama, H.Popular Agile Ap-
proaches in Software Development: Review and Analy-
sis. Computing, Electrical and Electronics Engineering 
(ICCEEE), 2013 International Conference on (2013), 
pp. 160-166. 

Ken Schwaber and Jeff Sutherland, TheScrum Guide™  The 
Definitive Guide to Scrum: The Rules of the Game No-
vember 2017. 

Lloyd, D., Moawad, R., and Kadry, M. (2017). A suppor- 
ting tool for requirements change management in  
distributedagiledevelopment.FutureComputingandInfor-
matics Journal, 2(1):1–9. 

Schwaber, K. (2004). Agile Project Management with 
Scrum (Developer Best Practices).  Microsoft Press; 
1edition. 

ICSOFT 2020 - 15th International Conference on Software Technologies

374



 

 

Sellami, A., Hakim, H., Abran, A., and Ben-Abdallah, H. 
(2015). A measurement method for sizing the struc- ture 
of UML sequence diagrams. Information & Soft ware 
Technology, 59:222–232. 

Sellami, A., Haoues, M., Borchani, N., & Bouassida, N. 
(2018, July). Guiding the Functional Change Decisions 
in Agile Project: An Empirical Evaluation. 
In International Conference on Software Technolo-
gies (pp. 327-348). Springer, Cham. 

Sellami, A., Haoues, M., Borchani, N., & Bouassida, N. 
Orchestrating Functional Change Decisions in Scrum 
Process using COSMIC FSM Meth-
od. ICSOFT 2018: 516-527 

Sellami, A., Haoues, M., Borchani, N., & Bouassida, 
N.Towards an Assessment Tool for Controlling Func-
tional Changes in Scrum Process. IWSM-
Mensura 2018: 34-47 

Shalinka Jayatilleke, Richard Lai, A systematic review of 
requirements change management , Information and 
Software Technology 93 (2018) 163–185 

Stålhane,T.,Hanssen,G.K.,Myklebust,T.,andHaugset,B. 
(2014). Agile change impact analysis of safety cri- tical 
software. In Bondavalli, A., Ceccarelli, A., and Ortmei-
er,F.,editors,ComputerSafety,Reliability,and Security, 
pages444–454. 

Verwijs, C. (2016). 10 useful strategies for breaking down 
large user stories (and a cheatsheet). 

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Regnell, 
B., and Wessln, A. (2000). Experimentation in Software 
Engineering: An Introduction. Kluwer Academic Pub-
lisher. 

An in-Depth Requirements Change Evaluation Process using Functional and Structural Size Measures in the Context of Agile Software
Development

375


