
Fault Detection and Co-design Recovery for Complex Task within IoT
Systems

Radia Bendimerad1, Kamel Smiri2 and Abderrazek Jemai3
1Université de Tunis El Manar, Faculté des Sciences de Tunis, Laboratoire LIP2, 2092, Tunis, Tunisie

2Université de Carthage, Ecole Polytechnique de Tunisie, Laboratoire SERCOM, ISAM, 2010, Manouba, Tunisie
3Université de Carthage, Ecole Polytechnique de Tunisie, Laboratoire SERCOM, INSAT, 1080, Tunis, Tunisie

Keywords: Internet of Things (IoT), Complex Task, Sub-task, Fault Detection, Co-design Recovery.

Abstract: Internet of things (IoT) allows the implementation of embedded devices that guarantee multiple application
processing. A device contains a processor core (CPU) but also hardware accelerator (FPGA) to permit a
hardware-software (HW-SW) partitioning depending on its complexity. However, these devices have limited
capacities, so they are exposed to faults. Thus, the system needs to be adapted in such a way to detect device
faults, continues to function normally and perform tasks to produce correct output. In this paper, a holistic
approach dealing with fault detection and recovery for complex tasks within the IoT was outlined. It offers a
technique to diagnose the state of processing elements. Then it combines task scheduling in HW and SW parts
(Co-design) in such a manner to ease the process of recovery when a system fault is detected. The proposed
work ensures a better performance for the entire system. An experimental study validates the effectiveness of
the present strategy without impacting system performances thanks to the contributions defined in this paper.

1 INTRODUCTION

IoT is a combination of the physical and digital world
(Min et al., 2014) with features as the integration of
heterogeneous devices essentially based on multipro-
cessors system on chip (MPSoC). The main perfor-
mance issue in IoT is to guarantee data processing
within a given time and constraints. However, in these
systems, data requirements are ensured by embedded
devices that are exposed to faults. The replacement
of these components in the execution time is costly in
deployment in case of fault. (Su et al., 2014)In some
proposed approaches, researchers rely on the sensor’s
fault because they have less risk of fault, but other de-
vices should not be excluded(Zieliski et al., 2019).

In this paper, we are dealing with problems related
to performance of the IoT like the deduction of faults
as early as possible and recovery strategy with run-
time solutions to enable a gain of time.

The rest of this paper is organized as follows. In
Section 2, we present the related works. In Section 3,
we formalize the IoT system and concepts associated
with the IoT application. Section 4 discusses the con-
tributions for faults detection and recovery strategy.
Section 5 tests and evaluates the proposed solutions.
Section 6 concludes with some perspectives.

2 RELATED WORKS

Over the last decades, many researchers have aimed to
work on various topics related to the IoT. In many IoT
systems, there is an important number of works re-
lated to fault detection and system recovery. Roberto
et al proposed in (Casado-Vara et al., 2019) a new
strategy based on game theory and prediction of er-
rors that could be made in the future to enhance fault-
tolerant tracking using control algorithm.

Andreas S. Spanias integrates into (Spanias, 2017)
a smart monitoring device (SMD) associated with vi-
sion algorithm in individual solar panel. As a result,
these panels behave as nodes in an internet of things
system for fault detection purposes.

According to the search reported in (Lee, 2017),
detected signals by IoT device are analyzed by the
cloud server to identify the relationship between the
signals and defects.

Also, a method called DICE for faulty IoT de-
vices detection with context extraction is developed
in (Choi et al., 2018). The DICE is a system installed
in a gateway that is connected to a cloud server. The
DICE system records the IoT environment to ana-
lyze information. The information is sent to the cloud
through the gateway in order to identify faults.

484
Bendimerad, R., Smiri, K. and Jemai, A.
Fault Detection and Co-design Recovery for Complex Task within IoT Systems.
DOI: 10.5220/0009869304840491
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 484-491
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



(Zieliski et al., 2019) uses the MM method for the
conjunction of all possible results of comparison tests
with a comparator node that orders his neighboring
the same task and compares between results.

To avoid fault occurrence in the future, (Kan-
nan et al., 2019) presents Minimal Relevant Feature
Extraction-based Class-Specific Support Vector Ma-
chine (CS-SVM) methodology to extract the relevant
features and classify the faults accordingly within the
IoT service in the cloud platform.

(Power and Kotonya, 2019) provides a hybrid ar-
chitecture in terms of including preemptive migration
and self-healing and reactive policies. The output of a
node is confirmed by an acceptance test according to
execution time checking. Otherwise, the task will be
assigned to another node. (Tsai et al., 2019)built
up a detection system architecture to avoid the abnor-
mality among the sensors by exploring the correlation
between sensors based on machine learning, classify
faults on two groups and propose a fault recovery for
each type by providing prediction value, adding the
bias read by the faulty sensor, or find out the degrada-
tion rate of fault sensor.

In (Di Modica et al., 2019) a layered architecture
is used in fog environment for fault detection and re-
covery. The idea is that if a given layer is faulty, the
upper layer is responsible for handling faults that may
occur while the IoT application runs and recovers by
acting upon the entity that generated the fault.

After the conducted studies on related works, we
have made several notes. As aforementioned, there
are many research works focused on faults detection
and system recovery. Generally, the previous works
were based on periodic component test but none of
them thought about the consequences such as time-
consuming while the component may work well. For
example, (Chudzikiewicz et al., 2015)applies a com-
parative test between neighbor nodes before each task
processing. In our paper, testing is triggered by an ab-
normal device behavior. On another note, researchers
turn over prediction using machine learning. It helps
to monitor the system but it’s not certain for real-
time systems. Also, the provided solution is based
on a controller that could be centralized or decentral-
ized. The latter consists of dividing the network into
sub-networks and deployed many control-head that
are continuously surveyed by a master-control. How-
ever, it is better to solicit the control station only in an
anomaly case.

In our approach, we propose a suspicious behav-
ior detection to trigger the main controller in order to
reduce the required response time. Also, we propose
a recovery solution depending on hardware accelera-
tion to keep the system working.

3 REQUIREMENTS
FORMALIZATION

In this section, we describe the structure of an IoT sys-
tem by modelling formally all used elements. Internet
of things system (IoTS) is expected to be an interre-
lated embedded system devices and wireless sensor
to transfer data over a network. Figure 1 illustrates an
example of a small IoTS.

3.1 System Model

An IoT system includes a set of devices D and set of
network link L. The devices are composed of process-
ing units (CPU) and may contain a material accelera-
tor (FPGA) that communicate together via a bus com-
munication. The architecture is heterogeneous with
different characteristics and capacities, i.e.:

• SIoT =(D,L).

• D =SPC
⋃

MA
⋃

STAT E(Di) where:
i) SPC is the software processing core,
ii) MA is the material accelerator when the FPGA
exists,
iii) STAT E(Di) is the state of a task running on a
device Di.The state could be ”exec” or ”exit”, i.e.,

STAT E(Di) =

{
exec, i f a task is running
exit, i f a task is stopped

• L is a set of network links l defined by the band-
width Bd.

3.1.1 Graph Modeling

A complex task is assigned to a device. The device
shares sub-tasks and awaits a result from other de-
vices in the system by selecting components in the
proximity since there is a risk of loss of information
from them. For this purpose, we will consider all de-
vices in the system as a graph Gr = (V d,Ed). The
components are the nodes Vd in the graph and edge
Ed is information shared between the one responsi-
ble for distributed sub-tasks and near components. In
graph theory, we can associate Laplacian matrice.

Laplacian matrice: is a symmetric matrix with one
row and a column for each node. It is formed by the
combination of a degree matrix and adjacency ma-
trix. The first one is a diagonal matrix and refers to
the number of edges related to each node. In the sys-
tem, it indicates how many neighbors a component
has. The second one is a square matrix to denote if
two nodes are adjacent or not. In the system, it means
if two components are neighbors or not.

Fault Detection and Co-design Recovery for Complex Task within IoT Systems

485



Figure 1: IoT architecture.

3.2 Application

An application in IoT is composed of a set of sub-
applications. In this paper, each application is con-
sidered as combination of simple task and a com-
plex task and it is formalized by a graph such that
G=(Ctki ,STi,Edgesi ,Dli) where: (i) Ctkti : nodes ex-
pressing a complex task (composed of sub-tasks), ii)
STi refers to simple task (composed of one task only),
(iii) Edgesi : edges to allow information exchange be-
tween nodes, (iv) Dli: the deadline of application.

Hence, we can define the application to be the
union of complex tasks and simple tasks as in equa-
tion (1):

G =Ctki

⋃
STi

⋃
Edgesi

⋃
Dli (1)

3.2.1 Complex Task

A complex task (Bradley and Strosnider, 1998) CTi,
i = 1, ..,m is represented by a sub directed acyclic
graph DAG, CTi = (Stki ,Ei,CDli), where: (i) Stki is a
set of nodes that refers to sub-tasks, (ii) Ei is a set of
arcs which outlined the connection between sub-tasks
and (iii) CDIi is the deadline relating to complex task
which is the deadline of the leaf nodes of sub-task.

3.2.2 Sub-tasks of Complex Task

We define a sub-task to be an elementary entity de-
noted by Stki with i = 1, ..,n. We assume that sub-
tasks can be of three types:

• hardware sub-task (HWStk ) are sub-tasks mapped
on device with MA,

• software sub-task (SWStk ) are sub-tasks mapped
on SW part of the same device,

• and other tasks that are assigned on the remaining
devices containing SPC only.

A sub-task is formalized by Stki = (ETi,Prstatici)
where: (i) ETStki

is the required time for the execution

of a sub-task, defined by the equation (2). it is
equal to ETs if the sub-task is mapped on a SW unit
of a device with MA and it is equal to ETh if the
sub-task is allocated to a HW part of a device with
MA. Otherwise, it is equal to ETo if the sub-task is
allocated to a device incorporating a SPC only i.e.,

ET =

 ET = ETs, i f Stki ∈ alloc(SW )
ET = ETh, i f Stki ∈ alloc(HW )
ET = ETo, Otherwise

(2)

where alloc(SW), alloc(HW) expressed, respec-
tively, two functions that group sub-tasks assigned
to software part and sub-tasks assigned to hardware
part. (ii) Prstatici is the priority between sub-tasks to
be computed firstly as reported in (Radia Bendimerad,
2019).

3.2.3 SW-HW Partitioning (Co-design)

A sub-task can be affected to the SPC or mapped
to the MA (FPGA). This concept is well known as
co-design. A SW sub-task is defined by its software
required time ReqTs. A HW sub-task is defined by
the sum of its required hardware time ReqTh and
reconfiguration time RT multiplied by ω(STi j) where
ω(STi j) is the percentage of sub-task, that will be
mapped on HW part, need to be reconfigured. They
are given respectively in equation (3):

ETs = ReqTs +WTs
ETh = ReqTh +WTh +RT ∗ω(STi j)

(3)

where WTh expressed the waiting time for a task to be
assigned to a device that is WTs plus the waiting time
for the bus communication between SW part and HW
part.

3.3 Shared Data

A function denoted by φ(Stki ,Stk j) represents the rate
x of shared data between two sub-tasks: a sub-task
Stki and its successors in order to regroup similar sub-
tasks. For example if φ(Stk3 ,Stk4) = 60% that means
that sub task Stk3 and sub-task Stk4 shares 60% of sim-
ilar data.

3.4 Scheduling Tables

Two types of tables are defined for scheduling:

• Scheduling table for detection: is denoted
SchedT (Di) and allocates tasks to devices accord-
ing to occasionned mutexes that confers to tasks a
dynamic priority noted Pr Sched(Stki j)

ICSOFT 2020 - 15th International Conference on Software Technologies

486



• Scheduling table for recovery: is denoted Γ. The
function insert(Stki) has the role of ordering sub-
tasks according to their arrived time AT. The
scheduler table is associated to ranked devices and
it includes all sub-tasks to be computed, i.e

Γ j = {Stki ∈CTi, j ∈ [0,1,2]} (4)

where 0, 1, 2 are the rank of device that will en-
sure sub-tasks processing. Every device performs the
execution of sub-task recorded in the table according
to the order of the sub-task position and the rank of
device.

3.5 System Constraints

The verification of constraints allows to guarantee the
efficient operation of each component of the system:

• Device state constraint: The execution state of all
devices in the system have to be maintained. This
condition is defined by:

∀ Di ∈ SIoT , STAT E(Di) == exec (5)

• Task priority constraint: According to the
scheduler table SchedT (Di), priority of tasks
Pr Sched(Stki j) have to be conserved. The
condition is verified by:

∀ ((Stki j),(Stki j+1)) ∈CTi,
PSchd(Stki)≤ PSchd(Stki+1) =⇒ True (6)

• Time execution constraint A device that works
properly means, also, that the completion time is
respected. This implies that the waiting time in
addition to requested time must not be exceeded
by the execution time result as in equation (7):

ET (Stk ji)≤WTStk ji
+ReqTStk ji (7)

3.6 Problems

We consider the assignment of a complex task com-
posed of n subtasks Stk1 , ...,Stkn on a set of m devices
D1, ...,Dm. The purpose is to:

• Respect the constraints relating to sub-tasks exe-
cution time.

• Respect the priority between tasks.

• Check the state of task running on device.

• The violation of the constraints or state checking
leads to trigger the controller station. Then, the
strategy must enabling the execution of task with
the remaining devices.

4 STRATEGY OVERVIEW

In this section, we present an overview about the pro-
posed methodology. It is divided on 2 parts for fault
detection and recovery solution.

4.1 Methodology for Fault Detection in
IoT System

The basic idea is to empower a master device to han-
dle a complex task, distribute sub-tasks on slave de-
vices over the system and trigger the control station
when an abnormal behavior on a device occurs ac-
cording to the defined constraints. The control station
isolates the suspicious device as it can propagate to
others and test it in order to specify the kind of fault.
The proposed methodology is given in figure 2:

• Device selection and sub-tasks distribution: It in-
cludes mainly two inputs. The first type of in-
put is a DAG: CTi = (Stki ,Ei,CDli) represent-
ing a complex task with sub-task features Stki =
(ETi,Prstatici) as explained previously. The sec-
ond input for our methodology is the devices Di
existing in the IoT system for task execution. To
start, a sub-graph constituted of a set of sub-tasks
is attributed to a device that we call a master de-
vice. As soon as the master device receives the
DAG, it determines the neighbor devices, by us-
ing a Laplacian matrix, called slave nodes to con-
tribute in the execution operation. The master
emits to slaves sub-tasks nodes.

• Constraints verification: each slave device node
sends first to master the STATE(Di) of the cur-
rent sub-task that should be equal to exec to con-
tinue the verification of the rest of constraints. A
schedule table SchedT (Di) is drawn up where the
scheduled sub-tasks depending on dynamic prior-
ity Pr Sched(Stki j), must be verified. When prior-
ity constraint is respected the sub-task execution
time is checked and should be less than estimate
value. Finally, the results are sent to the master.
Using these informations, the master device de-
cides whether or not constraints are violated and
which device has anomalous behavior to trigger
the controller.

• Base station control: when an abnormal event
has occurred on the device, the controller is
triggered and a diagnose of the suspicious device
has to be performed. It applies a series of tests
to specify the malfunction origin. The test is a
vector denoted Vec[Di] where the device Di is the
row and the column refers to a test. The test may
be related to a hardware or software problem.

Fault Detection and Co-design Recovery for Complex Task within IoT Systems

487



Figure 2: Strategy overview.

Vector is a Boolean value that can be as follow:

Veq[Di] =

{
1, if device is f ault
0, otherwise. (8)

As output, the fault devices are determined in the
IoT system.

4.2 Methodology for System Recovery
in IoT System

The key point here is to find an alternative solution
in response to the isolated component. For this pur-
pose, an available hardware part of the functional de-
vice will be reconfigured equally to the deficient one.
Three modules with policy collaborate together to en-
sure the safe running of the system: Terminal, exami-
nator, and scheduler.
• Terminal: considers the output of fault detection

and generates a list containing available devices
operating properly. It applies a categorization
method to separate between the devices including
material accelerator and the device without MA.
This method allows to obtains a list where the de-
vices are ranked by the function Rank(Di) where
Rank(Di) ={ 0, f or the HW part o f devices including MA

1, f or the SW part o f devices including MA
2, f or other devices that include SPC only

• Examinator: The main function of the examina-
tor is to take into account the list of available
ranked devices produced by the terminal, then to
map tasks to the SW part or HW part. It re-
ceives the sub-tasks arrived at time AT and analy-
ses each of them according to the similarity be-
tween tasks. In fact, to map a task to the SW

part, it needs only a computation time, unlike the
HW part which requires supplemental time in ad-
dition to computation time consisting of the con-
figuration. However, the reconfiguration opera-
tion is time-consuming and acceleration resources
are limited(Jeong et al., 2000). In line with this
concern, the trick is to minimize the time spent in
reconfiguration by comparing between tasks and
grouping those with the same type as the similar-
ity between data reduces the total reconfiguration.
A function denoted by φ(Stki ,Stk j) represents the
rate x% of data sharing between two tasks. The
maximum value is the one that will be taken, i.e :
Maxφ(Stki ,Stk j).

• Scheduler: The output of previous modules are
the input in the scheduler. This process permits to
tasks to be assigned to the right ranked devices.
the goal of the scheduler is to obtain a scheduling
table Γ where are inserted tasks according to
their priority in the relevant column. The table Γ

contains a number of tasks arrived at time ATi.
For a given sub-task STi, the insertion in the table
Γ will be as follow :{

insert(Stki) = 1st column, i f Γ = /0,
insert(Stki) = jth column, otherwise. (9)

For this, we admit that table columns contains
sub-tasks with priority Pri. They will be allocated
to ranked resources denoted by 0, 1 or 2.
– Tasks allocated to 0 are tasks with highest pri-

ority. It corresponds to tasks with the maximum
value φ(Stki ,Stk j) computed in previous module
for similar data of tasks. The task selected will
be moved to the ith column of the table.

– Tasks allocated to 1 are tasks with second pri-
ority. For this we study the estimate’s execu-

ICSOFT 2020 - 15th International Conference on Software Technologies

488



tion time, then we compare it to time used for
reconfiguration. In fact a HW computation in
material accelerator (FPGA) and a SW compu-
tation in CPU cannot run concurrently. Hence
we associate a HW reconfiguration to a SW
computation. As a consequence the execution
time of one or more software task will be ap-
proximately equal to the reconfiguration time,
i.e, ∑

n
Stk=1 ReqSW ' RTHW . The task selected is

shifted to the i+1th column of the table.
– Tasks allocated to 2 are tasks with lowest pri-

ority. It concerns devices not equipped with an
accelerator. Thereupon, the estimated time ex-
ecution is checked, then the task is placed in
the table according to available matching de-
vice, i.e, [i+2,.., i+n].

5 EXPERIMENTATION

5.1 Case Study

We consider the surveillance area application. It is
composed of a group of cameras attached to the Rasp-
berry Pi device through the PiCamera module, capa-
ble of capturing images and high definition videos.
RaspberryPi provides access to the internet allow-
ing connection with devices for automatic execution
functionality. The system is essentially composed of a
kit of heterogeneous devices as well as Raspberry Pi,
Arduino (system on chip(SoC) with SW part only).
Also, the system contains devices of a Zedboard type
(SoC with SPC associated with an MA area. The sim-
ulation was done by using Python that supports the
code to run on any kind of computer.

5.1.1 Device Fault Detection

The data recorded by each camera is considered as
sub-application that will be supported by a master de-
vice noted D1 and choose the nearby devices via the
Laplacian matrix called slave devices and noted from
D2 to D4. Let’s take the case where a problem oc-
curs with D3. We suppose that the dynamic priority of
the ordering table SchedT (Di) has not been respected,
i.e. Pr Sched(Stki j) ≤ Pr Sched(Stk ji+1) and that the
device is still executing the task Stki j . The report is
then sent to the D1, which suspends D3 and triggers
the controller (Figure 3). The control base applies a
series of tests. If the value of the result is equal to
1, the device is deactivated. Otherwise, the problem
is considered as temporary failure and the device will
be reset.

Figure 3: Device fault detection.

5.1.2 Co-design Recovery

- the second part concerns the allocation of sub-tasks
on the remote devices. Let’s suppose that D3 is defi-
cient. The rest of devices: D1, D2 (slave device with
SW part only) and D4 (slave device with SW/HW
parts) have the respective ranks in scheduler table Γ

(0, 1 and 2), i.e: rank(D4) = 0 for MA in the ith col-
umn, rank(D4) = 1 for SW part in the i+1th column
and rank(D2) = 2 in the i+ 2th column. We applied
the proposed Co-Design recovery strategy to a set of
HEVC standard tasks (Alvarez-Mesa et al., 2012).
Table 1 shows some examples of HEVC tasks arrived
at time ATi and the measured φ expressing the ratio of
shared data between every pair of tasks.

• The maximum value of measured rate will be the
one selected and will be inserted in the ith column
of Γ that corresponds to rank(D4) = 0 and means
a HW reconfiguration. According to the Table 1,
the max value of phi is taken which is 0.4% (pink
cell) corresponds to IT and entropy tasks (gray
cells) as in equation (10):{

Entropy encoding ∈ alloc(HW )
IT ∈ alloc(HW )

(10)

• For tasks for which insert(Stki) = i + 1th col-
umn, Table 2 indicates in millisecond the esti-
mated SW execution time for tasks. One task or
more could be chosen as long as ∑

n
i=1 ReqSW '

RTHW that corresponds to rank(D4) = 1. Ac-
cording to Table 2 ReqSW (IQ)+ReqSW (ALF) =
210+40 = 250ms. In another hand RTHW (IT )+
RTHW (entropy) = 197 + 63 ≤ 260ms. This im-
plies that ∑

ALF
Stk=IQ ReqSW ' RTHW . In this study

we neglected the time spent in communication
between the SW and HW part.

• For tasks that do not meet the requirements
(SAO), the insertion will be in the i+2th column

Fault Detection and Co-design Recovery for Complex Task within IoT Systems

489



Table 1: Values of φ for HEVC standard tasks.

Entr encod IQ IT SAO ALF
Entr encod 1 0.1 0.03 0.05 0.15

IQ 0.25 1 0.22 0.23 0.26
IT 0.4 0.01 1 0.16 0

SAO 0.38 0.09 0.05 1 0.2
ALF 0.01 0.27 0.3 0 1

Table 2: Estimation for execution time for reconfiguration
and required software time (ms).

RTHW ReqSW
Entr encod 63 71

IQ 190 210
IT 197 160

SAO 432 500
ALF 29 40

and fits with rank(D2) = 2. Table 3 summarizes
the obtained results.

5.2 Performace Evaluation

The proposed strategy impacts the overall perfor-
mance of the IoT system in terms of efficiency and
robustness. it applies a supervising method for faults
devices and keeps the system running with fewer de-
vices. For this study, we select two metrics: detected
fault rate and recovery time gained.

• Detected Fault Rate: Denoted by Ψ(IoTS) and
represents the total detected faults counted com-
pared with the total number of given faults. The
formula is given in (11):

Ψ(IoTS) =
Nbr. o f f aults recorded

Nbr. o f total f aults (11)

For the case study, the Detected fault rate
Ψ(IoTS) = 82%

• Total Gained Time in Recovery: - Denoted by
Ω(IoTS). It relates to the time gained through-
out the recovery step by using material accelera-
tor MA comparing with using software processing
core SPC only. The formula is given in (12):

Ω(IoTS) =
ETsystem

2 ∗ ETSW
(12)

Where ETsystem is the ET computed by the sum of
ETHW and ETSW . In this study Ω(IoTS) = 69%
We suppose that the number of faults in the system
varies from 1 to 10 faults and generate many trials.

Table 3: Schedular table for HEVC tasks.

insert(Stki) = i i+1 i+2
Rank(Di) = 0 1 2

Stki Entropy, IT ALF, IQ SAO

0 5 10 15 20 25
0

2

4

6

8

10

Trials

N
um

be
ro

fd
et

ec
te

d
fa

ul
ts

Be f ore using method
A f ter using method

(a) Accuracy in fault detection.

0 20 40 60 80 100
0

100

200

300

400

Trials period

E
xe

cu
tio

n
Ti

m
e(

m
s)

SPC+MA
SPC

(b) Execution time rate in IOT system.

Figure 4: Performance evaluation in terms of accuracy in
fault detection and execution time in IoT system.

Figure 4(a) shows the increase number of detect-
ing fault before and after using the proposed method
(in green color) that is more accurate. Figure 4(b)
compares in execution time between recovery solu-
tion that uses SPC only (in blue) and the one that
uses SPC and MA and proves that the second one (in
red)consumes less time.

6 CONCLUSIONS

In this paper, we proposed a new methodology to re-
solve the faults in the IoT system and define a Co-
design recovery in order to avoid losing time in exe-
cution with defective devices. The experiments show
the enhancement of performances with the reduction
of execution time and the increase of faults detection
due to the proposed solution.

ICSOFT 2020 - 15th International Conference on Software Technologies

490



In future works, we intend to differentiate between
the multiple faults that can occur all at once by us-
ing smart IoT devices. Also, we investigate for re-
ducing time for fault type identification by inserting a
database knowledge directive. Finally, we plan to add
a policy to manage and actions to handle the overloads
devices.

REFERENCES

Alvarez-Mesa, M., Chi, C. C., Juurlink, B., George, V.,
and Schierl, T. (2012). Parallel video decoding in the
emerging hevc standard. In 2012 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 1545–1548. IEEE.

Bradley, K. and Strosnider, J. K. (1998). An application
of complex task modeling. In Proceedings. Fourth
IEEE Real-Time Technology and Applications Sympo-
sium (Cat. No. 98TB100245), pages 85–90. IEEE.

Casado-Vara, R., De la Prieta, F., Rodriguez, S., Sitton, I.,
Calvo-Rolle, J. L., Venayagamoorthy, G. K., Vega, P.,
and Prieto, J. (2019). Adaptive fault-tolerant tracking
control algorithm for iot systems: Smart building case
study. In International Workshop on Soft Computing
Models in Industrial and Environmental Applications,
pages 481–490. Springer.

Choi, J., Jeoung, H., Kim, J., Ko, Y., Jung, W., Kim, H.,
and Kim, J. (2018). Detecting and identifying faulty
iot devices in smart home with context extraction. In
2018 48th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN),
pages 610–621. IEEE.

Chudzikiewicz, J., Furtak, J., and Zielinski, Z. (2015).
Fault-tolerant techniques for the internet of military
things. In 2015 IEEE 2nd World Forum on Internet of
Things (WF-IoT), pages 496–501. IEEE.

Di Modica, G., Gulino, S., and Tomarchio, O. (2019). Iot
fault management in cloud/fog environments. In Pro-
ceedings of the 9th International Conference on the
Internet of Things, pages 1–4.

Jeong, B., Yoo, S., Lee, S., and Choi, K. (2000). Hardware-
software cosynthesis for run-time incrementally re-
configurable fpgas. In Proceedings 2000. Design
Automation Conference.(IEEE Cat. No. 00CH37106),
pages 169–174. IEEE.

Kannan, R., Manohar, S. S., and Kumaran, M. S. (2019).
Iot-based condition monitoring and fault detection for
induction motor. In Proceedings of 2nd International
Conference on Communication, Computing and Net-
working, pages 205–215. Springer.

Lee, H. (2017). Framework and development of fault de-
tection classification using iot device and cloud envi-
ronment. Journal of Manufacturing Systems, 43:257–
270.

Min, D., Xiao, Z., Sheng, B., Quanyong, H., and Xuwei, P.
(2014). Design and implementation of heterogeneous
iot gateway based on dynamic priority scheduling al-

gorithm. volume 36, pages 924–931. Sage Publica-
tions Sage UK: London, England.

Power, A. and Kotonya, G. (2019). Providing fault toler-
ance via complex event processing and machine learn-
ing for iot systems. In Proceedings of the 9th Inter-
national Conference on the Internet of Things, pages
1–7.

Radia Bendimerad, Kamel Smiri, A. J. (2019). Performance
estimation within iot system. In IINTEC. 2019 inter-
national conference on Internet of Things. Embedded
Systems and Communications. IEEE.

Spanias, A. S. (2017). Solar energy management as an in-
ternet of things (iot) application. In 2017 8th Interna-
tional Conference on Information, Intelligence, Sys-
tems & Applications (IISA), pages 1–4. IEEE.

Su, P. H., Shih, C.-S., Hsu, J. Y.-J., Lin, K.-J., and Wang, Y.-
C. (2014). Decentralized fault tolerance mechanism
for intelligent iot/m2m middleware. In 2014 IEEE
World Forum on Internet of Things (WF-IoT), pages
45–50. IEEE.

Tsai, F.-K., Chen, C.-C., Chen, T.-F., and Lin, T.-J. (2019).
Sensor abnormal detection and recovery using ma-
chine learning for iot sensing systems. In 2019 IEEE
6th International Conference on Industrial Engineer-
ing and Applications (ICIEA), pages 501–505. IEEE.

Zieliski, Z., Chudzikiewicz, J., and Furtak, J. (2019). An
approach to integrating security and fault tolerance
mechanisms into the military iot. In Security and
Fault Tolerance in Internet of Things, pages 111–128.
Springer.

Fault Detection and Co-design Recovery for Complex Task within IoT Systems

491


