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Abstract: In this work, we propose ProteiNN, a privacy-preserving neural network classification solution in a one-to-
many scenario whereby one model provider outsources a machine learning model to the cloud server for its
many different customers, and wishes to keep the model confidential while controlling its use. On the other
hand, these customers take advantage of this machine learning model without revealing their sensitive inputs
and the corresponding results. The solution employs homomorphic proxy re-encryption and a simple additive
encryption to ensure the privacy of customers’ inputs and results against the model provider and the cloud
server, and to give the control on the privacy and use of the model to the model provider. A detailed security
analysis considering potential collusions among different players is provided.

1 INTRODUCTION

The rapid evolution and utilisation of the Internet of
Things (IoT) and cloud computing technologies re-
sults on the collection of large amounts of data. Com-
panies inundated with such data can use machine
learning (ML) techniques to learn more about their
customers and hence improve their businesses. Nev-
ertheless, the data being processed are usually privacy
sensitive. Given the recent data breach scandals1,
companies face increasing challenges with ensuring
data privacy guarantees and compliance with the Gen-
eral Data Protection Regulation (GDPR) while trying
to bring value out of them. Furthermore, in addition
to the processed (usually personal) data, companies
that actually created/computed the machine learning
models, may also wish not to make these publicly
available. By hosting their machine learning models
to cloud servers, companies are worried about losing
their intellectual property.

We consider a scenario whereby a model provider
owns a ML model and wishes to sell the use of
this model to its customers that we name queriers.
These queriers would like to obtain the classifica-
tion/prediction of their inputs using the actual ML
model. We assume that the model is outsourced to
a cloud server who will be responsible for applying

1https://www.theguardian.com/news/2018/mar/17/camb-
ridge-analytica-facebook-influence-us-election

this model over queriers’ inputs. As previously men-
tioned, both the ML model and the queriers’ inputs
are considered confidential. All parties are assumed
to be potential adversaries: The model provider does
not want to disclose its model to any party including
the cloud server and the queriers; Similarly, a querier
does not want to disclose its input and the result to
any party including the cloud server and the model
provider.

In this work, we focus on neural networks (NN).
The problem of privacy-preserving NN classification
has already been studied by many researchers (see
(Azraoui et al., 2019) for a state of the art). Most
of these works consider that the party who performs
the NN operations is the model provider and is suf-
ficiently powerful. On the other hand, (Hesamifard
et al., 2018) and (Jiang et al., 2018) allow the out-
sourcing of these operations to the cloud server but
the only querier, in this case, is the model provider.
In both cases, the goal is to perform NN operations
over queriers’ inputs without leaking any information
including the model. We propose to extend this sce-
nario that we name the one-to-one scenario, by en-
abling one model provider to securely outsource its
model to a cloud server and consider a one-to-many
scenario whereby different customers can query the
model. Additionally, while delegating the NN oper-
ations to the cloud server, the model provider also
wishes to maintain the control over the use of this
model by legitimate and authorised queriers, only.
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To cope with the previously mentioned chal-
lenges, we propose ProteiNN, a privacy-preserving
one-to-many NN classification solution that uses ho-
momorphic proxy re-encryption. A homomorphic
proxy re-encryption (H-PRE) scheme is a public-key
encryption scheme that, on the one hand, thanks to
its homomorphic property, enables operations over
encrypted data, and, on the other hand, allows a
third-party proxy to transform ciphertexts encrypted
with one public key into ciphertexts encrypted with
another public key without leaking any information
about the underlying plaintext. With such a technique,
the third-party cloud server can easily serve multi-
ple different queriers without having access to the in-
puts, the results, and the model, and only the destined
querier can decrypt the result. ProteiNN also makes
use of a simple additive encryption scheme in order to
let the model provider keep control over the queriers
and to prevent potential collusions among ProteiNN
parties. Our contributions can be summarized as fol-
lows:

• We develop ProteiNN which enables a model
provider to delegate NN operations to a cloud
server to serve multiple queriers while keeping
control on the model use. As previously men-
tioned, ProteiNN combines H-PRE with a simple
additive encryption in order to ensure the confi-
dentiality of the model, the queriers’ inputs, and
their results. Only authorized queriers can decrypt
their results.

• We consider potential collusions among any pair
of players at the very design phase, namely: collu-
sions between the cloud server and queriers, col-
lusions between the cloud server and the model
provider, and collusions between queriers and
the model provider. We show that ProteiNN is
collusion-resistant under the honest-but-curious
security model.

• We implement ProteiNN as a proof-of-concept
using the PALISADE library2 and evaluate its
performance with a particular NN model used
for heart arrhythmia detection (Mansouri et al.,
2019).

Outline. Section 2 introduces the problem of
privacy-preserving NN in a one-to-many scenario and
describes the threat model. H-PRE is formally de-
fined in Section 3. Section 4 describes ProteiNN in
details. The security and performance evaluation of
ProteiNN is provided in Section 5 and Section 6, re-
spectively.

2https://git.njit.edu/palisade/PALISADE

2 PROBLEM STATEMENT

The literature features a number of privacy-preserving
neural network (NN) solutions that enable queriers to
request NN predictions without revealing their inputs
and results to the model provider. Yet, these solutions
are suitable to a specific setting whereby either the
model provider is powerful and performs all opera-
tions on its side or, if the model provider outsources
its operations, the only one who can query the model
later on, is itself. In this section, we first overview the
existing solutions, and further define our new setting
and the threat model.

2.1 Prior Work

A neural network (NN) is a layered machine learn-
ing technique consisting of interconnected processing
units called neurons that compute specific functions
in each layer. The first and last layers are defined as
the input and the output layers, respectively. Each
intermediate layer, named hidden layers, evaluates a
function over the output of the previous layer and the
result becomes the input to the next layer. These
hidden layers usually consist of either linear opera-
tions such as matrix multiplications (fully connected
or convolutional layers) or more complex operations
such as sigmoid or max computation (activation lay-
ers or pooling layers). The reader can refer to (Tillem
et al., 2020) for more information on the operations
for each NN layer.

Performing neural network operations over confi-
dential data requires the use of advanced privacy en-
hancing technologies (PETs) such as homomorphic
encryption (HE) or secure multi-party computation
(SMC) that unfortunately incur a non-negligible over-
head. To efficiently integrate these PETs with neural
networks, the design of the latter needs to be revisited.
In particular, complex operations should be approxi-
mated to operations that can be efficiently supported
by these PETs (such as low degree polynomials). Be-
cause such approximations have an impact on the ac-
curacy of the underlying NN model, the goal of exist-
ing solutions mainly consists of addressing the trade-
off between privacy, efficiency, and accuracy. Solu-
tions either use HE (Gilad-Bachrach et al., 2016; Cha-
banne et al., 2017; Hesamifard et al., 2017; Ibarrondo
and Önen, 2018; Bourse et al., 2018; Sanyal et al.,
2018; Hesamifard et al., 2018; Jiang et al., 2018;
Chou et al., 2018) or SMC (Mohassel and Zhang,
2017; Liu et al., 2017; Mohassel and Rindal, 2018;
Rouhani et al., 2018; Riazi et al., 2018; Dahl et al.,
2018; Wagh et al., 2019; Mansouri et al., 2019), or the
combination of both (Barni et al., 2006; Orlandi et al.,
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2007; Juvekar et al., 2018). Yet, most of these solu-
tions do not take advantage of the cloud computing
technology unless the cloud server has access to the
model. Few solutions (Hesamifard et al., 2018; Jiang
et al., 2018) rely on the existence of a cloud server and
propose the idea of training NNs over encrypted data
and classifying encrypted inputs: The model provider
supplies the training data encrypted with its public
key and the server builds the model. Nevertheless,
during the classification phase, because the model is
encrypted with the model provider’s public key, the
only party who can make queries (encrypted with the
same public key) and have access to the classification
results, is the model provider. Hence, other potential
customers cannot query the model.

We propose to extend this one-to-one scenario to a
one-to-many scenario and consider the case whereby
a model provider outsources the encrypted NN model
to a cloud server and many customers/queriers can
issue classification requests without revealing the
queries and the corresponding results.

2.2 Environment

To further illustrate the importance of the one-to-
many setting, we define a scenario whereby one party
such as a healthcare analytics company owns a NN
model M to classify a particular disease. This com-
pany can later use M to decide whether a particular
patient suffers from this disease or not. Moreover, this
company wants to make M profitable to many of its
customers (such as hospitals or doctors) who are will-
ing to diagnose the disease over their input denoted I
using M. With this aim, M is outsourced to the cloud
server. Before outsourcing M, the healthcare analyt-
ics company needs to encrypt M to protect its intellec-
tual property. Later on, customers who want to query
M, send their encrypted input I to the cloud server.
The cloud server basically applies encrypted M over
encrypted I originating from authorized customers.

More formally, our scenario illustrated in Figure 1
involves the following three players:

Queriers

Model
Provider

Cloud Server

I

I

I
R

R

R

Figure 1: Players in the one-to-many scenario.

• The Model Provider. (MP) who owns a NN
model (M): MP outsources encrypted M to an un-

trusted cloud server. MP wishes to have control
over queriers who are willing to classify their in-
put.

• Querier. (Qi) who queries the encrypted model
M: Each querier Qi encrypts its input I. Later
on, Qi receives the corresponding result R and can
decrypt it correctly only if authorised by MP.

• The Cloud Server. (CS) who stores the encrypted
model M received from MP and performs the del-
egated NN operations over encrypted inputs re-
ceived from different queriers.

2.3 Threat Model

Our threat model differs from the previous ones since
the NN model is unknown to CS and we also con-
sider potential collusion attacks. More specifically,
we assume that all potential adversaries are honest-
but-curious, i.e., parties adhere to the protocol steps
but try to obtain some information about the model,
the input or the result. Moreover, given the one-to-
many setting and the introduction of the additional
cloud server, we assume that collusions between CS
and Qi, between CS and MP, and between Qi and MP
may exist. In this threat model, queriers aim at keep-
ing their input I and the corresponding result R secret
from CS and MP. On the other hand, MP does not
want to disclose M to CS and Qi. To summarize, Pro-
teiNN considers the following potential adversaries:
(i) An external adversary (who does not participate
in ProteiNN) who should not learn any information
about model M, input I, and result R; (ii) Qi who
should not learn any information about model M even
if Qi and CS collude3; (iii) CS who should not dis-
cover model M4, input I, and the corresponding result
R even if CS colludes with MP or querier(s); (iv) MP
who should not learn anything about input I and its
result R even when it colludes with CS or querier(s).

Based on this threat model, we define the follow-
ing privacy requirements: (i) Model M is unknown to
all parties in the protocol except MP. This requirement
is usually not addressed by state-of-the-art solutions.
(ii) Input I and result R are only known by the actual
querier Qi and this, only if authorised by MP.

3Similar to previous works, we omit the attacks whereby
Qi can try to re-build the model based on the authorised
results that it receives.

4Apart from its architecture.
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3 HOMOMORPHIC PROXY
RE-ENCRYPTION

To cope with the one-to-many scenario, ProteiNN
builds up on a homomorphic proxy re-encryption
scheme which allows operations over encrypted data
even when these are encrypted with different keys. In
this section, we provide the formal definition of a ho-
momorphic proxy re-encryption and briefly present
the existing schemes. Table 1 sums up the notation
used throughout the paper.

Table 1: Notations.
Symbol Explanation
λ Security parameter
N Plaintext modulus
(pki,ski) Public-secret keys of party i
reki→ j Re-encryption key from party i to party j
n Number of queriers
l Number of queries from the querier Qi

a ∈R A a is chosen randomly from A
ri j, r′i j, si j, and s′i j Randomly generated vectors in ZN

[·]pk H-PRE encryption with public key pk

3.1 Formal Definition

As its name indicates, a Homomorphic Proxy Re-
encryption (H-PRE) is the combination of two cryp-
tographic constructions: (i) homomorphic encryption
(HE) which enables operations over encrypted data
(e.g. (Gentry, 2009b; Fan and Vercauteren, 2012;
Halevi et al., 2018)); (ii) proxy re-encryption (PRE)
which allows a third-party proxy such as a cloud
server to transform ciphertexts encrypted with a pub-
lic key into ciphertexts encrypted with another public
key without learning any information on the plaintext
((Derler et al., 2018) provides an overview of existing
PRE schemes).

More formally, a H-PRE scheme consists of the
following six polynomial-time algorithms:

• (pk,sk) ← KeyGen(1λ): This probabilistic key
generation algorithm takes the security parameter
λ as input, and outputs a pair of public and secret
keys (pk,sk).

• reki→ j←ReKeyGen(ski,pk j): This re-encryption
key generation algorithm takes secret key ski
and public key pk j as inputs and returns a re-
encryption key, reki→ j.

• c← Enc(pk,m): This randomized algorithm en-
crypts message m using public key pk and returns
the resulting ciphertext c.

• c ← Eval( f ,c(1), · · · ,c(t)): Given func-
tion f and ciphertexts c(1), · · · ,c(t) where

c(i) = Enc(m(i),pk), the algorithm outputs ci-
phertext c which corresponds to the encrypted
evaluation of f. In general, a HE scheme has three
separate methods for homomorphic addition,
subtraction, and multiplication called EvalAdd,
EvalSubt, and EvalMult, respectively.

• c j ← ReEncrypt(reki→ j,ci): This re-encryption
algorithm transforms a ciphertext ci into cipher-
text c j using re-encryption key reki→ j.

• m← Dec(sk,c): This algorithm decrypts the re-
ceived ciphertext c using secret key sk and outputs
plaintext m.

According to (Gentry, 2009a; Halevi, 2017), any HE
scheme can be transformed into a H-PRE scheme and
its correctness implies the correctness of the result-
ing H-PRE. Furthermore, the same studies show that
a H-PRE scheme is semantically secure (IND-CPA
secure) if the underlying HE scheme is semantically
secure.

3.2 Existing H-PRE Solutions

The most relevant H-PRE schemes to ProteiNN are
described in (Ding et al., 2017) and (Polyakov et al.,
2017). Nevertheless, neither solution considers col-
lusion attacks. Moreover, in (Polyakov et al., 2017),
the publisher, who could be considered as a model
provider in our scenario, does not have any control on
subscribers. Finally, model M has to be re-encrypted
as many times as the number of subscribers. In Pro-
teiNN, we aim at extending the H-PRE scheme from
(Polyakov et al., 2017) while ensuring all the privacy
requirements defined in Section 2. Our threat model
also takes collusion attacks into account and only au-
thorised queriers can receive and decrypt the results
of their classification queries.

4 ProteiNN

We consider the following two main problems arose
by the one-to-many scenario: (i) each party uses a
different public key to encrypt its data (model for
MP and inputs for Qi) and (ii) queries received from
Qi should only be processed if these are authorised
by MP. This setting implies that both the model and
the queries should be encrypted with the same key at
the classification step. With this aim, we introduce a
Trusted Third Party (TTP) and use its public key as
the common encryption key for both the model and
the queries. TTP is considered as being offline: It
does not play any role during the classification phase;
it only distributes keying materials. H-PRE is used
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Figure 2: ProteiNN - Classification phase.

towards the end of the classification phase, i.e., when
Qi needs to decrypt the actual result: Indeed, the re-
sult encrypted with TTP’s public key needs to be re-
encrypted with the Qi’s public key.

A preliminary setup phase where each party
reaches TTP in order to receive their relevant keying
material is first defined. TTP is considered offline dur-
ing the subsequent classification phase.

4.1 Setup Phase

During the setup phase, all the relevant keying ma-
terial is distributed and the encrypted model is sent
to the cloud server. Namely, each querier Qi gen-
erates a pair of public-secret keys; TTP generates a
pair of public-secret keys and a set of re-encryption
keys allowing re-encryption from TTP’s public key to
queriers’ public key (one for each querier). The rea-
son why TTP generates re-encryption keys is to en-
able MP to authorise a given classification request.
Once public keys and re-encryption keys are received,
MP encrypts its model with the public key of TTP and
sends it to CS.

In more details, the setup phase consists of the fol-
lowing steps:

1. Given security parameter λ, TTP and Qi (1 ≤
i ≤ n) execute KeyGen and respectively obtain
(pkTTP,skTTP) and (pkQi ,skQi).

2. TTP generates re-encryption keys
rekTTP→Qi = ReKeyGen(skTTP,pkQi), ∀ 1≤ i≤ n.

3. MP encrypts M with pkTTP, and sends it to CS.

4. MP also generates random vectors ri j and r′i j for
Qi where 1 ≤ j ≤ l is the query number. MP
encrypts ri j with pkTTP., and stores them locally.
Further, [ri j]pkTTP is sent to Qi. Finally, MP com-
putes M ∗ r′i j for each classification, encrypts the
results of M ∗ r′i j with pkTTP, and stores them lo-
cally.

Remark. Let M be the NN model and I be the input
to be classified using M. (∗) denotes the application
of model M to input I, and results in R = M ∗ I. (∗)

consists of a combination of low-degree polynomial
operations.

4.2 Classification Phase

The classification phase of ProteiNN that is described
below is illustrated in Figure 2. As previously men-
tioned, TTP is not involved in this phase.

1. Qi encrypts Ii j with pkTTP and randomises it with
vector [ri j]pkTTP received from MP. The result is
further sent to CS.

1.1. [Ii j]pkTTP = Enc(pkTTP,Ii j).
1.2. [Ii j + ri j]pkTTP = EvalAdd([Ii j]pkTTP , [ri j]pkTTP).

2. CS randomises the value received in Step 1.2 and
forwards the result to MP together with [ri j]pkMP
and the identifier of the querier (Idi).

2.1. [Ii j + ri j + si j]pkTTP
= EvalAdd([Ii j + ri j]pkTTP , [si j]pkTTP).

3. If Qi is authorised5, MP performs the following
homomorphic operations over the received query
and sends the outcome to CS.

3.1. [Ii j + si j]pkTTP
= EvalSubt([Ii j + ri j + si j]pkTTP , [ri j]pkTTP).

3.2. [Ii j + si j + r′i j]pkTTP
= EvalAdd([Ii j + si j]pkTTP , [r

′
i j]pkTTP).

4. CS subtracts [si j]pkTTP from the value received in
Step 3.4, performs the classification, randomises
the result once again, and sends this value to MP.

4.1. [Ii j + r′i j]pkTTP
= EvalSubt([Ii j + si j + r′i j]pkTTP , [si j]pkTTP).

4.2. [R′i j]pkTTP = [M]pkTTP ∗ [Ii j + r′i j]pkTTP .

4.3. [R′i j + s′i j]pkTTP
= EvalAdd([R′i j]pkTTP , [s

′
i j]pkTTP).

5If/whenever MP does not want to authorise querier Qi,
MP can send a reject message to CS, and thus, CS would
terminate the protocol.
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5. MP re-encrypts the received value with rekTTP→Qi

and sends it to CS6.

5.1. [Ri j + s′i j]pkTTP
= EvalSubt([R′i j + s′i j]pkTTP , [M∗ r′i j]pkTTP).

5.2. [Ri j + s′i j]pkQi
= ReEncrypt(rekTTP→Qi , [Ri j + s′i j]pkTTP) .

6. CS homomorphically removes s′i j ∈R ZN from this
value and sends the result to Qi.

6.1. [Ri j]pkQi
= EvalSubt([Ri j + s′i j]pkQi

, [s′i j]pkQi
).

7. Qi decrypts this value with its private key in order
to obtain the classification result Ri j.

7.1. Ri j = Dec(skQi , [Ri j]pkQi
).

5 SECURITY ANALYSIS

We analyze the security of ProteiNN considering our
newly introduced threat model and show that it sat-
isfies the privacy requirements defined in Section 2.
We propose to conduct this security analysis incre-
mentally, by taking each adversary into account, one-
by-one, and the potential collusions. As described
in Section 2, all ProteiNN parties are considered as
honest-but-curious adversaries. Furthermore, we as-
sume that the H-PRE scheme that ProteiNN uses is
semantically secure and that the encrypted addition
of random vectors ri j, r′i j, si j, and s′i j is considered as
a perfectly secure.
Privacy against External Adversaries. During the
classification phase, all parties encrypt their input, re-
sult or model using H-PRE. Hence, an external ad-
versary can only obtain encrypted information ex-
changed among ProteiNN players. Given the seman-
tical security of H-PRE and the perfect secrecy of the
simple additive encryption scheme, an external adver-
sary who does not participate in ProteiNN and who
does not hold any keying material, cannot learn any
information about M, I, and R.
Privacy against Adversary Qi. The goal is to
achieve model privacy against Qi. In ProteiNN, M
is encrypted by with pkTTP. Assuming that the un-
derlying H-PRE is semantically secure and since Qi
does not know skTTP, Qi cannot recover M in plain-
text. Furthermore, Qi can also try to learn the input
of another querier Qt and the corresponding result. In
this case, Qi becomes an external adversary as it does
not have any role in the protocol executed between CS
and Qt . Hence, ProteiNN is also secure in this case.

6In case some revocation of Qi occurs, MP has, once
again, the opportunity to reject the query and will not do
any re-encryption.

Finally, even if multiple queriers collude, they do not
success in any leakage of the model.
Privacy against Adversary CS. All the information
that CS receives are encrypted with pkTTP or pkQi .
Thanks to the security of underlying building blocks,
a honest-but-curious CS cannot discover M (apart
from its architecture), I, and R.
Privacy against Adversary MP. A honest-but-
curious MP can try to discover queriers’ inputs and
the corresponding classification results. Since these
randomised information are encrypted with pkTTP and
pkQi , respectively, and since MP does not hold the cor-
responding secret keys, MP cannot learn these inputs
and results.
MP-CS Collusions. We have already shown that Pro-
teiNN is secure against MP and CS, individually. The
collusion of these two players do not help them dis-
cover additional information since all inputs and re-
sults are encrypted using the semantically secure H-
PRE with pkTTP and pkQi , and results are re-encrypted
with rekTTP→Qi .
Qi-CS Collusions. Collusions between Qi and CS do
not result in any leakage regarding M, other queriers’
inputs, and results. Indeed, thanks to the use of ran-
dom vectors ri j and r′i j at the classification phase, even
if a malicious Qi shares its keying material with CS
to discover I from another legitimate Qt , both adver-
saries cannot retrieve it because of its randomisation
with rQt j .
Qi-MP Collusions. Collusions between Qi and MP
do not result in any leakage regarding other queriers’
inputs and results thanks to the randomization of both
input and result. More precisely, even if malicious
Qi and MP collude to discover I and R of legitimate
Qt , they cannot retrieve them because of the use of
random vectors st j and s′t j.
Note on Qi-MP-CS Collusions. We consider that all
three players cannot collude since in this case there is
no need for privacy protection.
Note on Multiple MP Case. ProteiNN can easily be
extended to a many-to-many scenario involving many
model providers using multiple instances of ProteiNN
for each model provider and its queriers.

6 PERFORMANCE EVALUATION

We propose to evaluate the performance of Pro-
teiNN using an arrhythmia detection case study de-
scribed in (Mansouri et al., 2019) whereby MP owns
a NN model for the classification of heart arrhyth-
mia; Queriers’ inputs consist of the individuals’ Elec-
troCardioGram (ECG) data and the result is the ac-
tual arrhythmia type the patient suffers from. The
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underlying NN model has been built in (Mansouri
et al., 2019). It consists of two fully connected layers
and one activation layer implemented with the square
function. It involves 16 input neurons, 38 hidden neu-
rons, and 16 output neurons. The model provides
an accuracy of 96.34% (see Section 3.3 in (Mansouri
et al., 2019)).
Experimental Setup. To implement ProteiNN, we
have utilised the PALISADE library (v1.5.0) sup-
ports several HE schemes and their PRE versions.
The H-PRE scheme we employ for ProteiNN is H-
BFVrns (Halevi et al., 2018) mainly because it is
the most efficient in PALISADE. We follow the stan-
dard HE security recommendations (e.g., 128-bit se-
curity) indicated in (Chase et al., 2017) for H-BFVrns.
The ProteiNN steps for TTP and CS were carried out
using a desktop computer with 4.0 GHz Intel Core
i7-7800X processor, 128 GB RAM, and the Ubuntu
18.04.3 LTS operating system whereas the steps for
Qi and MP were performed using a laptop with 1.8
GHz Intel Core i7-8550U processor, 32 GB RAM,
and the Ubuntu 18.10 operating system.

Table 2: Performance results for ProteiNN.
Setup phase

ProteiNN Step Player Time (ms)
Step 1 - Key generation TTP 20.02
Step 1 - Key generation Qi 21.17
Step 2 - Re-encryption key generation TTP 267.57
Step 3 - Model encryption MP 1514.08
Step 4 - Random number generation, M ∗ r′i j & encryption MP 63.47

Classification phase of one input
ProteiNN Step Player Time (ms)
Step 1.1 - Input encryption Qi 31.72
Step 1.2 - Random addition to Input Qi 1.95
Step 2.1 - Input randomisation with random generation CS 31.73
Step 3.1 - Randomisation removal from the Input MP 1.96
Step 3.2 - Random addition to Input MP 1.95
Step 4.1 - Randomisation removal from the Input CS 1.77
Step 4.2 - Classification CS 26183.5
Step 4.3 - Result randomisation with random generation CS 31.78
Step 5.1 - [M∗ r]pkTTP removal from the Result MP 1.92
Step 5.2 - Result re-encryption MP 30.12
Step 6.1 - Randomisation removal from the Result CS 1.84
Step 7.1 - Result decryption Qi 5.57
TOTAL 26325.81

We have evaluated the performance of both the setup
and classification phases. Detailed results are de-
picted in Table 2. These results correspond to the
average from the execution of 100 individual simu-
lations. We observe that one ProteiNN classification
instance takes 26.33 s, approximately. Only the cloud
server performs costly operations. Indeed, the querier
takes around 31 and 5 ms, to encrypt and decrypt its
input and result, respectively. The cost of ReEncrypt
(about 30 ms) seems negligible when compared to the
cost of the classification phase. Among the operations
performed by MP, the most costly one is the encryp-
tion of M (about 1.5 s). It is worth to note that this op-

eration is performed during the Setup phase and only
once. The other remaining operations performed by
MP are in the order of 30 ms.

Table 3: Performance results for ProteiNN players.
Setup phase

ProteiNN Player Time (ms)
TTP 287.59
Qi 21.17
MP 1577.55

Classification phase
ProteiNN Player Time (ms)
Qi 39.24
MP 35.95
CS 26250.62

As shown in Table 3, we observe that while CS takes
26.25 s to classify a heartbeat, MP and Qi only take
36 and 39 ms, respectively. We have also evaluated
the classification cost for MP in a one-to-one scenario
in order to justify the need for cloud servers. In this
context, MP has to compute all costly operations over
the encrypted input and the cleartext model. With the
same HE library, MP takes 1.81 s. In the one-to-many
scenario, this cost is much smaller (only 36 ms). It
is worth to note that when dealing with deeper neural
networks, this gap will be much larger and hence the
use of cloud servers is justified.

To summarise, our study shows that outsourcing
machine learning operations in a privacy-preserving
manner, in a one-to-many scenario, is possible and
that relieves the computation burden from the model
provider to the cloud server which is assumed more
powerful.

7 CONCLUSION

We have proposed ProteiNN, a privacy-preserving
one-to-many NN classification solution that is based
on the use of H-PRE and a simple additive encryption.
ProteiNN achieves confidentiality for the model(s),
the inputs, and the results. Additionally, the model
provider also has control over the model outsourced
the cloud server. We have provided a detailed secu-
rity analysis by considering all potential adversaries
including collusions among them. We have imple-
mented ProteiNN as a proof-of-concept with a case
study and our work shows promising performance re-
sults and calls for future work to evaluate the scala-
bility of ProteiNN. We believe that with an appropri-
ate batched classification and a powerful cloud server,
ProteiNN could provide better performance and be
scalable with respect to the number of queriers.
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