
A Systematic Literature Mapping of Artificial Intelligence Planning in
Software Testing

Luis F. de Lima, Leticia M. Peres, André R. A. Grégio and Fabiano Silva
Department of Informatics, Federal University of Paraná, Av. Cel. Francisco H. dos Santos, 100, Curitiba, PR, Brazil

Keywords: Software Testing, Artificial Intelligence Planning, AI Planning, Planning Technique.

Abstract: Software testing is one of the most expensive software development processes. So, techniques to automate
this process are fundamental to reduce software cost and development time. Artificial intelligence (AI) plan-
ning technique has been applied to automate part of the software testing process. We present in this paper a
systematic literature mapping (SLM), using Petersen et al. (2015) approach of methods, techniques and tools
regarding AI planning in software testing. Using the mapping, we identify 16 papers containing methods,
techniques, frameworks and tools proposals, besides a survey. We identify testing techniques, testing phases,
artifacts, AI planning techniques, AI planning tools, support tools, and generated plans in these selected pa-
pers. By mapping data analyses we identify a deficiency in the use of white-box and error-based testing
techniques, besides the recent use of AI planning in security testing.

1 INTRODUCTION

The main objective of the software testing process is
to run a program in a controlled environment to re-
veal faults (Myers, 1979). This process consumes the
most effort during software development (Pressman,
2016). In this way, it is essential to plan the software
testing, allowing us to estimate how much work, time
and resources will be needed. Besides, the growing
demand for quality systems has motivated the search
for new techniques, methods and testing tools.

Testing activity involves producing and running
the system with test cases, which are indicated by test-
ing criteria. Testing criteria are defined from testing
techniques, such as functional, structural and error-
based (Maldonado et al., 2007), occurring with the
system functionalities knowledge, with the system in-
ternal logic knowledge, and through the most com-
mon system errors, respectively. These testing tech-
niques are usually used in the context of unit, integra-
tion, system and acceptance testing phases (Pressman,
2016).

Several artificial intelligence (AI) techniques have
been associated with the software testing techniques
and phases. Srivastava and Kim (2009) use genetic
algorithms in software testing. Malz et al. (2012)
present a concept for an automated prioritization of
test cases using software agents and fuzzy logic. Jiang
et al. (2018) apply fuzzy logic in software test metrics
to increase accuracy in software testing. Zhu and Jiao
(2019) apply genetic algorithms to automate testing

data generation.
Another AI technique used in software testing is

AI planning. This technique consists in the automatic
elaboration of a sequence of actions to reach an ob-
jective (Russell and Norvig, 2016). We can associate
the sequential execution of actions of an AI planning
problem with a test case execution, allowing the mod-
eling of software testing that has the goal of finding
unexpected system behavior.

The present study presents a systematic literature
mapping (SLM) of methods, techniques and tools re-
garding the AI planning technique applied in software
testing. We opted to perform an SLM as a method of
scientific investigation that brings relevant studies of
a research field. We based the SLM search method on
Petersen et al. (2015) approach.

The main goal of this work is to provide a quan-
titative research area overview, identifying the fre-
quency of publications over time, testing techniques,
testing phases, used artifacts, AI planning techniques,
AI planning tools, support tools, and generated arti-
facts. Another goal is to identify a weakness in the
state-of-the-art related to AI planning in software test-
ing.

We organized this paper as follows: Section 2 pro-
vides software testing concepts and AI planning def-
initions. Section 3 presents a systematic literature
mapping methodology. Section 4 presents and dis-
cusses the mapping results. Section 5 presents related
works. Section 6 presents the final considerations and
discusses future work.

152
F. de Lima, L., Peres, L., Grégio, A. and Silva, F.
A Systematic Literature Mapping of Artificial Intelligence Planning in Software Testing.
DOI: 10.5220/0009829501520159
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 152-159
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



2 BACKGROUND

2.1 Software Testing

The software development process is divided into
phases. A phase is a period in which activities with
specific objectives are realized (Wazlawick, 2013).
Software testing is one of the software development
phases, performed with the application of testing cri-
teria that are defined by different testing techniques.

The most common software testing techniques are
black-box testing, white-box testing, and error-based
testing (Maldonado et al., 2007). Black-box testing,
also known as functional testing, permits software
testing looking at its functionalities, disregarding its
implementation. White-box testing, or structural test-
ing, uses the software implementation and its internal
structural knowledge for its testing. Error-based test-
ing uses the most frequent errors in software develop-
ment to perform its verification and validation.

Testing activity is usually divided into the fol-
lowing phases: unit testing, integration testing, sys-
tem testing, and acceptance testing. In unit testing,
each unit is a procedure or function in a procedu-
ral programming language or a class in an object-
oriented programming language, and the programmer
tests each unit separately from one another (Wazlaw-
ick, 2013).

Integration testing occurs when the units have al-
ready been tested separately and will be integrated
into a new system version. System testing occurs
with the system totally integrated, to verify possible
errors according to the system specification. Integra-
tion testing and system testing are made by the testing
team. Acceptance testing is performed by system end
users, with the purpose of performing system valida-
tion regarding user requirements (Wazlawick, 2013).

2.2 Artificial Intelligence Planning

Artificial intelligence (AI) planning is defined as
the automatic elaboration of an action sequence to
achieve the aim of a problem (Russell and Norvig,
2016). A planning problem is described as a quadru-
ple (P, I,G,A) where P is a set of predicates, I is the
initial state of the problem, G is the goal state of the
problem, and A is a set of actions.

Predicates p ∈ P represents a first-order logic for-
mula and are used to define all actions a ∈ A. All
states of the problem are specified by predicates that
are true in these states. Actions are described in terms
of preconditions and effects (functions pre(a) and
post(a), respectively). If pre(a) of an action a is true

in a state S then a is executed. After the action a ex-
ecution, the transition to another state S′ occurs, i.e.,
S a→ S′. After the transition, post(a) effects are auto-
matically considered valid in state S′.

Plan possibly solves an AI planning problem. A
plan is a set of n actions whose sequential execution
takes from the initial state to the goal state of the prob-
lem, i.e., I

a1→ S1
a2→ S2...

an→ G. Different plans can
be generated according to the AI planning algorithm
used to solve the problem. Plan is an artifact resulting
from an AI planning tool execution.

Planning problems are usually represented by for-
mal languages, e.g., STRIPS (Fikes and Nilsson,
1971), ADL (Pednault, 1989), and PDDL (McDer-
mott et al., 1998). AI planning tools, also known
as planners, use AI planning problems in formal lan-
guages as inputs to generate plans. Some planners are
ABSTRIPS (Sacerdoti, 1974), which uses a STRIPS
input, UCPOP (Penberthy et al., 1992), for ADL in-
puts, and Metric-FF (Hoffmann, 2003), for PDDL in-
puts.

3 METHODOLOGY OF
SYSTEMATIC MAPPING

The main objective of a systematic literature map-
ping (SLM) isto summarize a field of interest through
classification, concerned with structuring the research
area (Petersen et al., 2008). We chose the Petersen
et al. (2015) approach to conduct our SLM because
these authors performed a SLM in the software en-
gineering area. We composed our SLM methodol-
ogy by five steps for definitions of objective, research
questions, search strategy, studies selection and data
extraction, described in the following subsections.

3.1 Step 1: Objective

The first step of the SLM is to identify its objective.
This SLM aims to review and analyze the state-of-the-
art of AI planning theories, implementations, meth-
ods, techniques, and tools in software testing.

3.2 Step 2: Research Questions

The following SLM step is to define the research
questions (RQs). The RQs determine what should be
answered at the end of the mapping. First, we define
the following main RQ.

• RQ: How AI planning is used in software testing?

In addition, another eight RQs were defined to
reach the SLM objective.

A Systematic Literature Mapping of Artificial Intelligence Planning in Software Testing

153



• RQ1: What is the proposal of AI planning use in
software testing?

If tool:
– RQ1.1: What is the proposed tool?
– RQ1.2: Is the tool’s code open?

• RQ2: What is the testing phase?

• RQ3: What is the testing technique used?

• RQ4: What is the AI planning technique used?

• RQ5: What is the artifact used by AI planning?

• RQ6: What is the planner used?

• RQ7: What are the support tools used?

• RQ8: What does the generated plan represent?

3.3 Step 3: Search Strategy

The next methodology step is the search strategy defi-
nition. In this step, the search bases are chosen and the
search strings are elaborated. We chose ACM1, IEEE
Xplore2, Scopus3 and Springer4 databases. The fol-
lowing search string was used to search: “(“Software
Engineering” AND (“Software Test” OR “Software
Testing”) AND (“AI Planning” OR “Artificial Intelli-
gence Planning”))”. In each database the search string
had some syntactic changes according to the base pat-
tern.

We selected the “computer science” area and
“software engineering” discipline in the databases
that offered these options. Restrictions about type,
location, and year of publication were not applied.
Searches were conducted at the Department of In-
formatics of the Federal University of Paraná, and
were initialized in the middle of September 2018 and
completed early October 2018, resulting in 149 pa-
pers. Table 1 shows the number of search results
per database. These 149 selected papers were sub-
mitted to study selection. As a complement to these
results, an additional manual search was performed in
November 2019, which is described below.

Table 1: Number of studies per database.

Database Search results
ACM Digital 4

IEEE 136
Scopus 2

SpringerLink 7

1Available in: https://dl.acm.org/
2Available in: http://ieeexplore.ieee.org
3Available in: https://www.scopus.com
4Available in: https://link.springer.com

3.4 Step 4: Study Selection

We realized the studies selection step was realized af-
ter the searches in databases. We divide this method-
ology step into two phases. In the first phase, the ti-
tles, keywords and abstracts of all selected papers in
the databases searches are read. After that, papers are
selected according to include criteria (IC). The sec-
ond phase exclude papers selected in the first phase
according to exclude criteria (EC).

We used one criteria to include papers:

IC1: papers using AI planning in software testing.

And four criteria to exclude papers:

EC1: papers that are not fully available;

EC2: papers that appear in more than[] one
database;

EC3: papers that are not in English; and

EC4: books and grey literature.

Although the search string defined is specific to
AI planning, we found some false positives. As the
search string presents “test” , “testing” and “plan-
ning”, some works related to “testing planning” were
found in the most varied areas. So, the IC application
was important to studies selection. The IC1 appli-
cation included 15 out of 149 papers selected in the
database search. The ECs application has not elim-
inated any paper. So, we selected 15 papers in this
process.

In addition, we also conducted research in Google
Scholar5 search engine in November 2019 perform-
ing manual technique and 1 more paper was included,
increasing the number of included papers to 16. Se-
lected papers publication occurred between 1995 and
2019. Figure 1 shows the number of papers during the
studies selection process.

Figure 1: Number of included papers during the study se-
lection step.

5Available in: https://scholar.google.com.br/

ICSOFT 2020 - 15th International Conference on Software Technologies

154



3.5 Step 5: Data Extraction

Data extraction is the last step of the SLM methodol-
ogy. The 16 papers selected in Step 4 were submit-
ted to full reading and data extraction. Based on the
RQs defined, a data extraction template was elabo-
rated, allowing posterior data classification and anal-
ysis. We associated an identifier (ID) to each pa-
per, and identified the paper link (URL), paper ti-
tle, paper authors, year of publication, authors depart-
ment, authors country, information about publication
congress/event, an overview of the paper proposal,
and informations refers to the predefined RQs.

4 RESULTS AND DISCUSSION

This section presents and discusses the results ob-
tained with data extraction. Data extraction results
in the 15 papers selected in the SLM are presented
by RQ. Manual searching results and discussions are
presented in Subsection 4.8. Table 2 presents an
overview of all selected papers.

4.1 AI Planning in Software Testing
(RQ1)

In order to answer RQ1 we identified the follow-
ing proposals of IA planning in software testing.
Frameworks in (Feather and Smith, 2001), (Yen
et al., 2002), (Razavi et al., 2014), and (Bozic and
Wotawa, 2018); tools in (Memon et al., 2001), (Gupta
et al., 2007), and (Li et al., 2009); models in (Mraz
et al., 1995), (Howe et al., 1995), (Howe et al.,
1997), (Scheetz et al., 1999), (von Mayrhauser et al.,
1999); and techniques in (Memon et al., 1999), (von
Mayrhauser et al., 2000), and (Wotawa, 2016).

• Tools and Codes (RQ1.1 and RQ1.2)

Memon et al. (2001) propose Planning Assisted Tester
for grapHical user interface Systems (PATHS), a
graphical user interface test cases generation tool;
Gupta et al. (2007) propose Means-Ends Analysis
Graphplan (MEA-Graphplan), a test data generation
tool that constructs the problem graph from the goal
state to the initial state and then uses the standard
Graphplan algorithm; Li et al. (2009) propose Multi-
ple Fact Files - Interference Progression Planner (MF-
IPP), a test case generation tool that divides the input
file into smaller files for gaining performance.

The codes of these three tools identified were not
made available by the paper’s authors.

4.2 Testing Phases and Techniques
(RQ2 and RQ3)

To answer RQ2 and RQ3 we analyzed the selected pa-
pers to identify phases and testing techniques. None
of the papers makes explicit the testing phase where
their proposals are made. Wotawa (2016) and Bozic
and Wotawa (2018) refer to security testing, so it is
implied that they run in the system testing phase. In
von Mayrhauser et al. (2000) is used as an error-based
testing technique and Razavi et al. (2014) use a struc-
tural testing technique. The other 13 papers use a
functional (black-box) testing technique. So, 81%
of the selected papers use the black-box testing tech-
nique in their proposals.

4.3 AI Planning Techniques (RQ4)

For answering RQ4 we analysed selected papers re-
garding AI planning techniques related to language
and implementation that were used. In (Mraz et al.,
1995), (Howe et al., 1995), (Howe et al., 1997),
(Scheetz et al., 1999), (von Mayrhauser et al., 1999),
and (von Mayrhauser et al., 2000), the ADL language
is used. Hierarchical Task Network (HTN) technique
is used in (Memon et al., 2001). Planning Graph
Analysis technique is used in (Gupta et al., 2007) and
(Li et al., 2009). PDDL language is used in (Razavi
et al., 2014) and (Bozic and Wotawa, 2018). STRIPS
language is used in (Wotawa, 2016). In (Memon et al.,
1999), (Feather and Smith, 2001), and (Yen et al.,
2002) the AI planning techniques used are not speci-
fied.

4.4 Artifacts (RQ5)

Different artifacts were used as a base to model the
planning problem in formal languages as planners in-
put. For RQ5 we identified the following artifacts in
the selected papers. StorageTek Robot Tape Library
classes in (Mraz et al., 1995), (Howe et al., 1995), and
(Howe et al., 1997); UML state and class diagrams
in (Scheetz et al., 1999) and (von Mayrhauser et al.,
1999); mutant operators in (von Mayrhauser et al.,
2000); interface diagrams in (Feather and Smith,
2001); interface functions in (Memon et al., 1999)
and (Memon et al., 2001); specification of system
components in (Yen et al., 2002); finite state ma-
chine representing the system’s states in (Gupta et al.,
2007); user interface features in (Li et al., 2009); his-
tory of variables shared by competing Java programs
and violation patterns in (Razavi et al., 2014); and
XSS and SQL injection vulnerabilities descriptions in
(Wotawa, 2016) and (Bozic and Wotawa, 2018).

A Systematic Literature Mapping of Artificial Intelligence Planning in Software Testing

155



Table 2: Selected papers overview.

Paper Overview
Mraz et al. (1995) Model for test data generation for the StorageTek Robot Tape Library command language.
Howe et al. (1995) Model for test data generation for the StorageTek Robot Tape Library.
Howe et al. (1997) Model for test case generation for the StorageTek Robot Tape Library.

Scheetz et al. (1999) Model for test case generation satisfying the UML-derived test objectives.
von Mayrhauser et al. (1999) Model for test cases generation for system testing based on high level test objectives.

Memon et al. (1999) Technique for automatic test cases generation for graphical user interfaces.
von Mayrhauser et al. (2000) Technique for error recovery tests generation with concepts of mutation testing.

Feather and Smith (2001) Framework for automatic generation of automated test oracle.
Memon et al. (2001) Tool for automatic test cases generation for graphical user interfaces.

Yen et al. (2002) Framework for assisting with the synthesis of code for assembling a system from
existing components as well as automated testing of the system.

Gupta et al. (2007) Tool for test data generation using the Graphplan algorithm.

Li et al. (2009) Tool for test case generation able to handle multiple input files to
avoid the combinatorial explosion.

Razavi et al. (2014) Framework for predicting concurrent program runs containing data races,
atomicity violations, or null-pointer references.

Wotawa (2016) Technique for detecting vulnerabilities in systems.
Bozic and Wotawa (2018) Framework for Web vulnerabilities modeling and security testing of Web applications.
Bozic and Wotawa (2019) Survey describing 19 papers in the field of AI planning for software testing.

4.5 Planners (RQ6)

For RQ6 we identified the following planners. Three
different versions of UCPOP in (Mraz et al., 1995),
(Howe et al., 1995), (Howe et al., 1997), (Scheetz
et al., 1999), (von Mayrhauser et al., 1999), and
(von Mayrhauser et al., 2000); Interference Progres-
sion Planner (IPP) in (Memon et al., 1999); DS-
1 in (Feather and Smith, 2001); Fast Forward (FF)
in (Razavi et al., 2014); and JavaGP in (Bozic and
Wotawa, 2018). Memon et al. (2001), Gupta et al.
(2007), and Li et al. (2009) present their own tools
proposals. Yen et al. (2002) and Wotawa (2016) did
not specify the use of any planning tool.

4.6 Support Tools (RQ7)

For RQ7 we analyzed the selected papers to identify
used support tools. Sleuth is a tool for automated ap-
plication domain testing used by Mraz et al. (1995),
Howe et al. (1995), and Howe et al. (1997) in the same
planner experiments to compare the results obtained.
WordPad graphical interface is used in (Memon et al.,
1999) and (Memon et al., 2001) case studies. JPlan
and IPP planners are used in (Gupta et al., 2007) and
(Li et al., 2009) as the basis for the tools proposed
by these authors. In order to gain performance in test
case generation, Razavi et al. (2014) perform the in-
clusion of a planner in the Penelope testing tool’s in-
ternal structure. Bozic and Wotawa (2018) use the
HttpClient, jsoup and Crawler4j tools in their pentest-
ing framework.

4.7 Plans (RQ8)

To answer RQ8 we analyzed the generated artifacts in
the selected papers. These artifacts are plans result-
ing from planners execution like in (von Mayrhauser
et al., 1999) and (Wotawa, 2016). In other works, each
plan has different meanings according to the proposal
of the paper. For example, in (Mraz et al., 1995),
(Howe et al., 1995), (Howe et al., 1997), (Scheetz
et al., 1999), (Memon et al., 1999), (Memon et al.,
2001), and (Li et al., 2009) the plans represent test
cases. In (von Mayrhauser et al., 2000) the plan rep-
resents an error recovery test case. The remaining pa-
pers did not specify the resulting artifacts.

4.8 Manual Searching Results

In this section we discuss the paper (Bozic and
Wotawa, 2019) that was identified with a manual
search. These authors summarize without a SLM
methodology 19 papers in the field of AI planning for
software testing. The authors classified these papers
into two groups: one related to functional testing con-
taining 12 papers and other to non-functional testing
(related to non-functional requirements such as per-
formance, usability and security) containing 7 papers.

Among the 15 papers that we found in our SLM
and the 19 papers reported by Bozic and Wotawa there
is an intersection of 4 papers: (Mraz et al., 1995),
(Howe et al., 1997), (Scheetz et al., 1999), and (von
Mayrhauser et al., 2000). The 15 papers listed by
Bozic and Wotawa and not identified in our mapping
are applied in areas such as network control, network

ICSOFT 2020 - 15th International Conference on Software Technologies

156



systems, network protocols, Web services, Web appli-
cations, and industrial and automotive applications.

The papers listed by Bozic and Wotawa use some
planning techniques that were not found in the pa-
pers of our SLM. For example, Anderson and Fickas
(1989) use the adaptive planning technique, and
Shmaryahu et al. (2018) use the contingent planning
technique.

We identify 4 planners in the papers listed by
Bozic and Wotawa that are not contained in our SLM:
Bifrost, used in (Leitner and Bloem, 2005); Metric-
FF, used in (Boddy et al., 2005), (Wotawa and Bozic,
2014), and (Bozic and Wotawa, 2018); SGplan used
in (Obes et al., 2013); and Lama, used in (Schnelte
and Güldali, 2010).

5 RELATED WORKS

In this section we present papers using AI planning
techniques in other software development phases such
as requirements engineering and design. The papers
presented in this section were identified by conduct-
ing another SLM, with a variation of the methodology
described in Section 3.
• AI Planning in Requirements Engineering:

Amalio (2009) proposes a method for formal anal-
ysis of security requirements based on planning
and uses the concept of suspicion to guide the
search for threats and security vulnerabilities in
requirements, using decreasoner planner. Liaskos
et al. (2009) propose a framework to include the
specification of optional user requirements and
user preferences, using PPlan planner. Silva and
Silva (2019) propose a method for requirements
analysis based on a chain of algorithms and tools
to allow features anticipated by knowledge engi-
neering.

• AI Planning in Design: Honiden et al. (1994)
propose a method to model the prototyping phases
of systems in real-time as a planning problem, us-
ing Abstrips planner. Pérez and Crespo (2009)
propose a method for computing refactoring se-
quences that can be directed to the system’s struc-
ture problems correction that can negatively affect
software quality factors. Soltani et al. (2011) and
Soltani et al. (2012) propose frameworks to auto-
matically select suitable features that satisfy the
stakeholders’ business concerns, resource limita-
tions, functional and non-functional preferences,
and constraints, using SHOP2 planner. Tunio
et al. (2018) propose a method using PDDL lan-
guage for task assignment in crowdsourcing soft-
ware development.

6 CONCLUSIONS

Testing is a fundamental activity for software qual-
ity assurance. However, it is an activity involving a
lot of time and resource effort during software devel-
opment. Thus, there are constant proposals for new
methods and techniques for its automation.

The objective of this paper was to investigate the
use of AI planning as a technique for software test-
ing automation. For this, we performed a systematic
literature mapping (SLM), proving to be an effective
way to identify, evaluate and interpret available rele-
vant researches to a particular research question.

The main challenge of a SLM is to create a search
string that does not limit the results. To ensure that the
research covers as many works as possible with the
string that we created, we did not include restrictions
for research related to the type, location or period of
publications.

Answering the main research question of the map-
ping, “how is AI planning used in software test-
ing?”, we found 15 papers published in the last three
decades, proposing techniques, models, frameworks
and tools. The remaining research questions of the
SLM were answered by extracting data from the pa-
pers selected in the SLM. Testing techniques, testing
phases, AI planning techniques, used artifacts in the
planning problem definition, planners, support tools
and the generated plans were identified.

Through additional manual research we found a
survey listing papers in the field of AI planning for
software testing. However, this paper presents the
research survey without a SLM methodology appli-
cation. This survey presents 19 papers, of which 15
differ from those found in the SLM presented in this
work.

The SLM was conducted with a quantitative view,
to identify weaknesses in the state-of-the-art of AI
planning in software testing. With the extracted data
analysis, we noticed many uses of the black-box test-
ing technique. In this way, we identify a deficiency in
the use of AI planning technique combined with the
white-box testing and error-based testing. Another
deficiency noted is about testing phases. Most of the
selected papers did not specify or imply the testing
phase in which their proposals are made.

The most recent papers found in the SLM showed
a possible tendency of AI planning use in software
security area. We observed this same fact in the sur-
vey found in the manual search. Most of these works
use AI planning in penetration testing for vulnerabil-
ities detection, also called pentesting. Another use is
defining network protocols as AI planning problems
to ensure the security of network systems and Web

A Systematic Literature Mapping of Artificial Intelligence Planning in Software Testing

157



applications.
In order to obtain a view of AI planning in soft-

ware engineering we conducted another SLM. Re-
lated works presented in this work were identified
with this second SLM. In this other mapping, we
found 8 papers using AI planning in requirements en-
gineering and design phases. However, we identified
a greater use of AI planning in the design phase (75
% of papers). With this second SLM results analysis,
we noted a lack of tools proposals using AI planning
to assist these software development phases.

Our objective with this work was to conduct a
study on papers dealing with AI planning and soft-
ware testing. With results analysis we noted a possi-
ble trend of AI planning use in security testing. In par-
ticular, we identified approaches to pentesting. We in-
tend to take an approach to generate pentesting plans
for Web applications, which will be our future work.

As another future works, we suggest approaches
using white-box and error-based testing techniques
associated with AI planning, and approaches at dif-
ferent testing phases to cover all tests performed
throughout software development.

ACKNOWLEDGEMENTS

We thank the financial support of C3SL (Depart-
ment of Informatics/UFPR), PPGINF-CAPES/MEC
and PET/MEC.

REFERENCES

Amalio, N. (2009). Suspicion-Driven Formal Analysis of
Security Requirements. SECURWARE 2009.

Anderson, J. S. and Fickas, S. (1989). A Proposed Perspec-
tive Shift: Viewing Specification Design as a Planning
Problem. In ACM SIGSOFT Software Engineering
Notes, number 3, pages 177–184. ACM.

Boddy, M. S., Gohde, J., Haigh, T., and Harp, S. A. (2005).
Course of Action Generation for Cyber Security Us-
ing Classical Planning. In ICAPS, pages 12–21.

Bozic, J. and Wotawa, F. (2018). Planning-based Security
Testing of Web Applications. In Proceedings of the
13th International Workshop on Automation of Soft-
ware Test, pages 20–26. ACM.

Bozic, J. and Wotawa, F. (2019). Software Testing: Accord-
ing to Plan! In 2019 IEEE International Conference
on Software Testing, Verification and Validation Work-
shops (ICSTW), pages 23–31. IEEE.

Feather, M. S. and Smith, B. (2001). Automatic Genera-
tion of Test Oracle from Pilot Studies to Application.
Automated Software Engineering, 8(1):31–61.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A New
Approach to the Application of Theorem Proving to

Problem Solving. Artificial intelligence, 2(3-4):189–
208.

Gupta, M., Fu, J., Bastani, F. B., Khan, L. R., and Yen, I.-
L. (2007). Rapid Goal-oriented Automated Software
Testing Using MEA-graph Planning. Software Qual-
ity Journal, 15(3):241–263.

Hoffmann, J. (2003). The Metric-FF Planning System:
Translating “Ignoring Delete Lists” to Numeric State
Variables. Journal of artificial intelligence research,
20:291–341.

Honiden, S., Nishimura, K., Uchihira, N., and Itoh, K.
(1994). An Application of Artificial Intelligence to
Object-oriented Performance Design for Real-time
Systems. IEEE transactions on software engineering,
(11):849–867.

Howe, A. E., von Mayrhauser, A., and Mraz, R. T. (1995).
Test Sequences as Plans: An Experiment in Using an
AI Planner to Generate System Tests. In Knowledge-
Based Software Engineering Conference, 1995. Pro-
ceedings., 10th, pages 184–191. IEEE.

Howe, A. E., Von Mayrhauser, A., and Mraz, R. T. (1997).
Test Case Generation as an AI Planning Problem. In
Knowledge-Based Software Engineering, pages 77–
106. Springer.

Jiang, D., Liang, Z., and Huang, D. (2018). A Software
Test Metric Method Based on Fuzzy Logic. DEStech
Transactions on Computer Science and Engineering,
(iciti).

Leitner, A. and Bloem, R. (2005). Automatic Testing
Through Planning. Technische Universität Graz, In-
stitute for Software Technology, Tech. Rep.

Li, L., Wang, D., Shen, X., and Yang, M. (2009). A Method
for Combinatorial Explosion Avoidance of AI Plan-
ner and the Application on Test Case Generation. In
Computational Intelligence and Software Engineer-
ing, 2009. CiSE 2009. International Conference on,
pages 1–4. IEEE.

Liaskos, S., McIlraith, S. A., and Mylopoulos, J. (2009).
Towards Augmenting Requirements Models with
Preferences. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software En-
gineering, pages 565–569. IEEE Computer Society.

Maldonado, J. C., Barbosa, E. F., Vincenzi, A. M. R., De-
lamaro, M. E., Souza, S., and Jino, M. (2007). Intro-
duction to Software Testing. São Carlos, page 23.

Malz, C., Jazdi, N., and Gohner, P. (2012). Prioritization of
Test Cases Using Software Agents and Fuzzy Logic.
In 2012 IEEE Fifth International Conference on Soft-
ware Testing, Verification and Validation, pages 483–
486. IEEE.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C.,
Ram, A., Veloso, M., Weld, D., and Wilkins, D.
(1998). PDDL- The Planning Domain Definition Lan-
guage.

Memon, A. M., Pollack, M. E., and Soffa, M. L. (1999). Us-
ing a Goal-driven Approach to Generate Test Cases
for GUIs. In Software Engineering, 1999. Proceed-
ings of the 1999 International Conference on, pages
257–266. IEEE.

ICSOFT 2020 - 15th International Conference on Software Technologies

158



Memon, A. M., Pollack, M. E., and Soffa, M. L. (2001).
Hierarchical GUI Test Case Generation Using Auto-
mated Planning. IEEE transactions on software engi-
neering, 27(2):144–155.

Mraz, R. T., Howe, A. E., von Mayrhauser, A., and Li,
L. (1995). System Testing With an AI Planner.
In Software Reliability Engineering, 1995. Proceed-
ings., Sixth International Symposium on, pages 96–
105. IEEE.

Myers, G. J. (1979). The Art of Software Testing. ISBN:
0-471-04328-1.

Obes, J. L., Sarraute, C., and Richarte, G. (2013). At-
tack Planning in the Real World. arXiv preprint
arXiv:1306.4044.

Pednault, E. P. (1989). ADL: Exploring the Middle Ground
Between STRIPS and the Situation Calculus. Kr,
89:324–332.

Penberthy, J. S., Weld, D. S., et al. (1992). UCPOP: A
Sound, Complete, Partial Order Planner for ADL. Kr,
92:103–114.

Pérez, J. and Crespo, Y. (2009). Perspectives on Automated
Correction of Bad Smells. In Proceedings of the joint
international and annual ERCIM workshops on Prin-
ciples of software evolution (IWPSE) and software
evolution (Evol) workshops, pages 99–108. ACM.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software en-
gineering. In Ease, volume 8, pages 68–77.

Petersen, K., Vakkalanka, S., and Kuzniarz, L. (2015).
Guidelines for Conducting Systematic Mapping Stud-
ies in Software Engineering: An Update. Information
and Software Technology, 64:1–18.

Pressman, R. (2016). Software Engineering: A Practi-
tioner’s Approach, 8th ed. McGraw Hill Brasil.

Razavi, N., Farzan, A., and McIlraith, S. A. (2014). Gen-
erating Effective Tests for Concurrent Programs via
AI Automated Planning Techniques. International
Journal on Software Tools for Technology Transfer,
16(1):49–65.

Russell, S. J. and Norvig, P. (2016). Artificial Intelligence:
A Modern Approach. Malaysia; Pearson Education
Limited.

Sacerdoti, E. D. (1974). Planning in a Hierarchy of Abstrac-
tion Spaces. Artificial intelligence, 5(2):115–135.

Scheetz, M., von Mayrhauser, A., and France, R. (1999).
Generating Test Cases from an OO Model with an AI
Planning System. In Software Reliability Engineering,
1999. Proceedings. 10th International Symposium on,
pages 250–259. IEEE.

Schnelte, M. and Güldali, B. (2010). Test Case Genera-
tion for Visual Contracts Using AI Planning. INFOR-
MATIK 2010. Service Science–Neue Perspektiven für
die Informatik. Band 2.

Shmaryahu, D., Shani, G., Hoffmann, J., and Steinmetz, M.
(2018). Simulated Penetration Testing as Contingent
Planning. In Twenty-Eighth International Conference
on Automated Planning and Scheduling.

Silva, J. M. and Silva, J. R. (2019). A New Hierarchical Ap-
proach to Requirement Analysis of Problems in Auto-

mated Planning. Engineering Applications of Artifi-
cial Intelligence, 81:373–386.

Soltani, S., Asadi, M., Gašević, D., Hatala, M., and
Bagheri, E. (2012). Automated Planning for Fea-
ture Model Configuration Based on Functional and
Non-functional Requirements. In Proceedings of the
16th International Software Product Line Conference-
Volume 1, pages 56–65. ACM.

Soltani, S., Asadi, M., Hatala, M., Gasevic, D., and Bagheri,
E. (2011). Automated Planning for Feature Model
Configuration Based on Stakeholders Business Con-
cerns. In Proceedings of the 2011 26th IEEE/ACM
International Conference on Automated Software En-
gineering, pages 536–539. IEEE Computer Society.

Srivastava, P. R. and Kim, T.-h. (2009). Application of
genetic algorithm in software testing. International
Journal of software Engineering and its Applications,
3(4):87–96.

Tunio, M. Z., Luo, H., Wang, C., Zhao, F., Shao, W., and
Pathan, Z. H. (2018). Crowdsourcing Software Devel-
opment: Task Assignment Using PDDL Artificial In-
telligence Planning. Journal of Information Process-
ing Systems, 14(1).

von Mayrhauser, A., Scheetz, M., and Dahlman, E. (1999).
Generating Goal-Oriented Test Cases. In compsac,
page 110. IEEE.

von Mayrhauser, A., Scheetz, M., Dahlman, E., and Howe,
A. E. (2000). Planner Based Error Recovery Test-
ing. In Software Reliability Engineering, 2000. ISSRE
2000. Proceedings. 11th International Symposium on,
pages 186–195. IEEE.

Wazlawick, R. (2013). Software Engineering: Concepts
and Practices, volume 1. Elsevier Brasil.

Wotawa, F. (2016). On the Automation of Security Testing.
In Software Security and Assurance (ICSSA), 2016 In-
ternational Conference on, pages 11–16. IEEE.

Wotawa, F. and Bozic, J. (2014). Plan It! Automated Secu-
rity Testing Based on Planning. In IFIP International
Conference on Testing Software and Systems, pages
48–62. Springer.

Yen, I.-L., Bastani, F. B., Mohamed, F., Ma, H., and Linn, J.
(2002). Application of AI Planning Techniques to Au-
tomated Code Synthesis and Testing. In Tools with Ar-
tificial Intelligence, 2002.(ICTAI 2002). Proceedings.
14th IEEE International Conference on, pages 131–
137. IEEE.

Zhu, Z. and Jiao, L. (2019). Improving Search-Based Soft-
ware Testing by Constraint-based Genetic Operators.
In Proceedings of the Genetic and Evolutionary Com-
putation Conference, pages 1435–1442. ACM.

A Systematic Literature Mapping of Artificial Intelligence Planning in Software Testing

159


