
This Selfie Does Not Exist: On the Security of Electroneum Cloud Mining

Alexander Marsalek1, Edona Fasllija2 and Dominik Ziegler3

1Secure Information Technology Center Austria, Vienna, Austria
2Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Graz, Austria

3Know-Center GmbH, Graz, Austria

Keywords: Electroneum Cloud Mining, Cryptocurrency, Impersonation Attack, Image Manipulation.

Abstract: The Electroneum cryptocurrency provides a novel mining experience called “cloud mining”, which enables
iOS and Android users to regularly earn cryptocurrency tokens by simply interacting with the Electroneum
app. Besides other security countermeasures against automated attacks, Electroneum requires the user to up-
load selfies with a predefined gesture or a drawing of a symbol as a prerequisite for the activation of the mining
process. In this paper, we show how a malicious user can circumvent all of these security features and thus
create and maintain an arbitrary number of fake accounts. Our impersonation attack particularly focuses on
creating non-existing selfies by relying on Generative Adversarial Network (GAN) techniques during account
initialization. Furthermore, we employ reverse engineering to develop a bot that simulates the genuine Elec-
troneum app and is capable of operating an arbitrary number of illegitimate accounts on one Android device,
enabling the malicious user to obtain an unfairly large payout.

1 INTRODUCTION

During 2017, the first and most popular cryptocurrency,
Bitcoin, experienced an astonishing 13-fold increase in
value (Corcoran, 2017). Since then, cryptocurrencies,
as well as the underlying blockchain technology, have
received increasing attention from both academia and
industry. Nonetheless, several challenges related to the
scalability and volatility of cryptocurrencies, energy
consumption during mining, and the technological literacy
required to fully comprehend the enabling technology
have put a strain on their mass adoption as a mainstream
form of payment.

The traditional process of cryptocurrency mining
—i.e. verifying transactions in a blockchain— involves
solving difficult cryptographic problems that call for
significant computational power and often specialized
hardware. Subsequently, miners seeking to increase their
chances of solving these puzzles and getting rewards,
choose to invest in powerful application-specific inte-
grated circuit (ASIC) mining devices and oftentimes
combine their computational resources over a network to
form what is called a mining pool (Frankenfield, 2019).
However, this mining approach is not considered viable
in resource-constrained devices such as smartphones,
as it can interfere with their overall performance and
lead to battery damage or overheating (Comben and

Rivet, 2019). Due to these effects, both Google and
Apple prohibit cryptocurrency mining apps from their
application stores (Apple, 2019; Google, 2018), limiting
the accessibility of the average smartphone users to
crypto mining. Despite this fact, several projects like
Electroneum1, Phoneum2, Pi3 and MIB4 are committed
to making mining possible on mobile devices. The mobile
mining process of such projects mostly refers to the
so-called “airdrop” of pre-mined token awards to the
users of their dedicated mining app, sometimes based
on the specifications of the phone. While this approach
significantly relieves the strain put on the device, it
introduces susceptibility to new device or app imperson-
ation attacks, through which adversaries can emulate
an arbitrary amount of accounts to illegitimately obtain
tokens.

Electroneum was launched back in 2017 as an alterna-
tive cryptocurrency with a mobile-specific business model
and use-case. The Electroneum team aimed at gaining
widespread adoption by focusing on creating an easily-
accessible, cryptocurrency-based mobile payment system
that allows its users to store, send and receive digital
coins via their smartphone alone. During its short history,

1https://electroneum.com/
2https://phoneum.io/
3https://minepi.com/
4https://www.mibcoin.io/

388
Marsalek, A., Fasllija, E. and Ziegler, D.
This Selfie Does Not Exist: On the Security of Electroneum Cloud Mining.
DOI: 10.5220/0009829303880396
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 388-396
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



the user basis of this cryptocurrency grew quickly up to
over 3.4 million registered users (Electroneum, 2020).
They initially released their mobile mining experience,
which in essence operated as a stream of token rewards
loosely based on the hashing power of the device. They
later replaced mobile mining with cloud mining in order
to make mining fairer for all mobile users, independent
of their ability to always have Internet connectivity, and
introduce new anti-bot technologies in their fight against
fake Electroneum (ETN) miners.

This paper focuses on analyzing the security measures
for device verification and authorization employed by
the new Electroneum app (Section 2). We investigate on
the possibility of bypassing these security measures to
successfully exploit the cloud mining process. In order
to do so, we exploit Electroneum’s account creation
and device authorization protocol to mount a device
emulation and app impersonation attack that does only
require minimal interaction during its initialization phase.
(Section 3). Our findings demonstrate that the newly
employed security mechanisms are still vulnerable to this
kind of spoofing attacks and that it is possible to generate
an unlimited number of illegitimate accounts that take
advantage of ETN’s cloud mining token rewards (Section
4). We further discuss potential countermeasures to ensure
execution of the mining application on genuine mobile
devices in order to mitigate protocol exploitation and app
impersonation attacks in Section 5. We subsequently
discuss how the contribution of our paper compares
with related work in Section 6. Lastly, we conclude by
investigating the possibility to extend the scale of our
attack by fully automating the account creation protocol.

2 ELECTRONEUM

Electroneum’s origin traces back to September 2017,
when it first came to life as a Monero5 fork via an Initial
Coin Offering (ICO). Labeling itself as “the mobile-
cryptocurrency”, Electroneum was launched with the
unique mission of allowing anyone with a smartphone
and Internet connection to participate in the global
economy. From the start, the Electroneum team focused
on making digital payments accessible to the 1.7 billion
unbanked people around the world, by making ETN
mining as simple as downloading an app and creating an
Electroneum account. Furthermore, with a total supply of
21 billion coins, the creators of ETN aimed for easier
mining and spending of whole Electroneum coins in
day-to-day purchases.

The strength of Electroneum stems from its user-
friendly mobile application launched in March 2018,

5https://www.getmonero.org/

with which users can mine, send, receive and store ETNs.
The virtual mobile mining —now called cloud-mining—
process has the form of an airdrop of token awards to the
users of the application.

The upcoming section goes into the details of the
Cloud Miner app and the security features employed by
Electroneum when verifying accounts and authorizing
devices for cloud mining.

2.1 Cloud Mining Process

The Electroneum Cloud Miner application was created
using the Apache Cordova framework6. As such, it is
mainly implemented in Javascript. Users of this applica-
tion are only required to create an Electroneum account
to be able to start mining right away. When creating the
account, the user must provide a valid email address and
choose a password. To activate cloud mining, the user is
prompted to enter information about their country and
confirm their age. Once the user provides this information,
they are requested to submit their first selfie, posing in
a specific gesture or holding a predefined drawing, as
shown in Figure 1. After the selfie is submitted, the cloud
mining process is started and stays active for 7 days. This
comprises one of the main features that differentiates
between cloud mining and the former mobile mining.
Cloud mining does no longer rely on the device being
always connected to the Internet, but instead only poses
the requirement of connecting to the Electroneum services
once in 7 days to extend mining.

Creating an Electroneum account automatically trig-
gers the creation of an Electroneum mobile wallet accessi-
ble via the app. To be able to store, send and receive ETN
tokens, the user has to activate the wallet by completing a
number of steps as follows: First, the user has to select
a PIN as an additional factor of authentication for the
app. Second, the user has to confirm their email address
by entering a confirmation code sent by Electroneum.
Third, following the email confirmation, the user is
required to enter basic information such as their name
and phone number. Fourth, the user has to acknowledge
several security hints and warnings. Fifth, the user has
to prove that they are a human and not a bot. For this,
Electroneum uses a symbol-based CAPTCHA7 test, as
shown in Figure 2. The wallet is activated once the user
solves the three consecutive CAPTCHAs. The user is
rewarded with free ETN tokens for each verification step
they complete.

Before the payout amount is reached, which is cur-
rently set to 100 ETN, the user is requested to submit a

6https://cordova.apache.org
7Completely Automated Public Turing test to tell Com-

puters and Humans Apart.

This Selfie Does Not Exist: On the Security of Electroneum Cloud Mining

389



(a) (b) (c)
Figure 1: Symbols to draw and gestures to replicate during
the two selfie creation steps.

(a) (b) (c)
Figure 2: The three CAPTCHAs to solve in order to activate
the wallet.

second selfie. If both selfies are accepted the user will get
the payout shortly after reaching the payout limit.

2.2 Security Features

Electroneum employs several client-side and server-side
security mechanisms to prevent unauthorized usage of
their API and the cloud mining application. The security
features described in this section are particularly relevant
for us, as they influence the design and methodology
of our attack. These features were observed by first
decompiling and decrypting the Android app, analyzing
the network traffic and iteratively improving the attack.
Account Verification. During account creation, the
user-provided email address is verified. In contrast to
the mobile mining app, the phone number is no longer
verified by sending an SMS-verification challenge.
CAPTCHAs. Another necessary step for the activation
of an Electroneum account involves solving multiple
CAPTCHAs to prove the user is human. Electroneum
chooses to employ self-created CAPTCHAs, where
the user is asked to tap a specific symbol, rather than
relying on state-of-the-art CAPTCHAs like Google’s
reCAPTCHA8.

8https://www.google.com/recaptcha

Maximum Number of Devices. Electroneum does not
restrict logging into the same account with multiple de-
vices. However, the number of devices does not influence
the amount of tokens the user receives. In our experience,
the performance and other metrics specific to a device, do
not have an impact the amount of earned ETN tokens.
Device Authorization. In the process of analyzing the
Electroneum API, we observed that a randomly generated
device hash is assigned to each authorized device. In case
the user wants to log in to a new device, an additional de-
vice authorization link is sent to the user’s email address.
Selfie. To start cloud mining, it is necessary to submit
a selfie with a predefined gesture or drawing, chosen
by the server. Figure 1 shows three examples of selfie
requirements. Figures 1a and 1b illustrate examples where
the user is requested to take a selfie in a predetermined
gesture, namely by touching their forehead or taking a
thumbs up pose. In Figure 1c the user is requested to
draw the symbol sent by the Electroneum server and
take a selfie with the drawing. If a proposed gesture or
drawing cannot be replicated, the user can request up to
three new gestures or drawings. Every account needs to
provide at least two selfies, one when the mining process
is started for the first time and one before the first payout
is received. If one or both of the submitted selfies do not
get approved, the user is requested to create a new selfie
and try again.
App Encryption. As a countermeasure against reverse
engineering, Electroneum protects their application’s
source code via the “Cordova Crypt File Plugin”9, which
encrypts files during the build process and decrypts them
at runtime.
Tor. Having different IPs and devices for each imperson-
ated account is a desirable feature from the attackers
perspective as it allows the attack to remain unnoticed
for longer. The former Electroneum Mobile Mining
service allowed access via Tor10 IPs. Ziegler et al. (2018)
exploited this vulnerability by setting fixed exit nodes per
account. Electroneum now blocks exit node IPs for cloud
mining.
Emulator Protection. The Electroneum app detects if
it is executed on an Android Emulator and sends this
information to the Electroneum server.

3 ATTACK

In this section, we will describe how an attacker can
circumvent all security features and create an arbitrary
number of fake miner accounts on a single device and
thus earn an unfair amount of Electroneum tokens. The

9https://github.com/tkyaji/cordova-plugin-crypt-filext
10https://www.torproject.org

SECRYPT 2020 - 17th International Conference on Security and Cryptography

390



idea of the attack is to have an initial setup phase to create
and activate the accounts that requires minimal interaction.
Afterward, we rely on a completely automated cloud
mining extension phase for which we develop a bot that
emulates the Electroneum app and regularly maintains
the accounts to earn Electroneum tokens.

3.1 Initial Setup

The initial setup phase mainly consists of creating the
Electroneum accounts and activating cloud mining. The
steps required for setting up an account are detailed under
Section 2.1. While these steps could also be automated,
they only have to be done once and we decided to put our
efforts on automating the regular task of extending the
mining process instead.

To obtain the email addresses for our generated
accounts, we decided to use Gmail addresses, which we
could easily create for free using the private mode of
our browser with different IP addresses. This decision
was also motivated by the several problems that we
encountered with email activation or device authorization
links when using disposable email providers. Furthermore,
the initial setup of the fake accounts was facilitated by
the fact that Electroneum does not verify mobile phone
numbers via SMS-challenges or check for correctness of
the data entered by the user at this point.

The next big challenge from the attackers perspective
concerns the generation of fake selfies to be submitted for
the activation of cloud mining. We delve into the details
of how to create selfies of non-existing persons in the
next section.

3.2 Selfie Creation

To allow one person or attacker, to create multiple ac-
counts and minimize the detection risk, it is necessary to
create selfies of different looking personas. We follow a
three-step approach to generate selfies of non-existing
persons: First, we start by generating a face of a non-
existing person. For this, we use the generative adversarial
network (GAN) called StyleGAN (Karras et al., 2019a)
and the improved version StyleGAN2 (Karras et al.,
2019b) created by Karrays et al.11. StyleGAN and Style-
GAN2 generate photo-realistic pictures of non existing
persons12. Figure 3 shows on the left side, the faces that
have been generated using these GANs. Second, we take
a selfie of us in the required gesture or with the requested
drawing. Third, we swap the generated face with the
one of our selfies. While many apps and tools provide a

11In the beginning we used StyleGAN, but after the re-
lease of StyleGAN2 we switched to the improved version.

12Samples of images generated with StyleGAN2 can be
viewed on the website https://thispersondoesnotexist.com.

face swapping functionality we found the Microsoft App
“Face Swap” (Microsoft, 2019) to yield the best results.
The center and the right columns in Figure 3 display our
results.

3.3 Automated Attack

After creating the account and activating cloud mining, the
user is supposed to regularly extend the mining by starting
the Electroneum app and pressing the corresponding
button. This can be done the earliest after 24 hours
and the latest 7 days after the last extensions step. If
not extended in this time period, the mining process is
stopped. In this section we describe how this extension
process can be fully automated for an arbitary number of
accounts using a single device. For this, we implemented
an Android app, which sends all required HTTP-requests
to the Electroneum server. The bot app was implemented
by reverse engineering the Electroneum app. Even though
Electroneum employs app encryption, their encryption
approach proved out to be insufficient as we discovered
that the encryption key that is randomly generated at build
time is then hard-coded into the Android application. An
attacker can therefore easily extract it and decrypt the
source code files. Algorithm 1 shows the necessary steps
to extend the cloud-mining process in pseudo-code. First,
it loads the stored account data, like username, password
and PIN. Afterward, it generates device information,
like serial number, model, etc. using a pseudo-random
algorithm. This ensures that each account will always
get the same values. The remainder of the algorithm
follows the workflow of the official app. Line 5 verifies
that no update is necessary and aborts otherwise. Next,
in line 7 the algorithm checks, if a not expired JSON
Web Token is stored for this account. If not, a new
token is requested using a special refresh token, which
is received after a successful login. If no refresh token
is available the algorithm falls back to a login with
the stored username and password and refreshes the
JSON Web token afterward. After that, in line 17, a
handshake token is requested. This call also verifies
whether the cloud mining service is active. In line 18 the
new sessionData is stored and finally the mining process
is extended in line 20. A second, non printed, algorithm
chooses the next account to be extended, ensuring, no
account is being extended with an IP address used by one
of our other accounts. If necessary a new IP address is
retrieved by toggling the airplane mode.

4 RESULTS

In order to evaluate our approach, we created 5 accounts
for non existing persons and let our bot maintain them.

This Selfie Does Not Exist: On the Security of Electroneum Cloud Mining

391



(a) Generated face for
Peter.

(b) Requested gesture
for first selfie of Peter.

(c) First selfie for Peter. (d) Requested symbol
for second selfie of Pe-
ter.

(e) Second selfie for Pe-
ter.

(f) Generated face for
Lea.

(g) Requested symbol
for first selfie of Lea.

(h) First selfie for Lea. (i) Requested symbol
for second selfie of Lea.

(j) Second selfie for
Lea.

(k) Generated face for
Karl.

(l) Requested gesture
for first selfie of Karl.

(m) First selfie for Karl. (n) Requested symbol
for second selfie of
Karl.

(o) Second selfie for
Karl.

Figure 3: Generated faces and selfies.

Algorithm 1: extendMining.

Input: UserData := 〈username,password,pin〉
Output: {success,error, tryLater}

1: #Derive device information (uuid, model, serial) from user-
name using a pseudorandom alghorithm.

2: deviceData← generateDeviceData(username)
3: sessionData← loadSessionData(username)
4: #Check if update is necessary
5: if checkAppU pdateNecessary() = true then
6: return f ailed
7: if tokenIsNullOrExpired() = true then
8: if re f reshTokenIsNotNull() = true then
9: getTokenFromRe f reshToken()

10: else
11: login()
12: getTokenFromRe f reshToken()
13: #Do a handshake to get the new handshake token
14: result← doHandshake()
15: if result.getStatus() = error then
16: return error
17: sessionData.handshake← result.getHandshake()
18: store(sessionData)
19: #extend the mining process and return the result
20: return extendMiningHT T P(deviceData,sessionData)

Figure 3 shows the generated faces, requested gestures
and drawings, as well as the submitted selfies. All of our
accounts/selfies were accepted and received their payouts.

Figure 4 shows the pending balance over time for our test
accounts and one control account that we maintained as a
regular, honest user, using the official Electroneum app.
Figure 4 shows that both, our legitimate account as wells
as our fake accounts earn Electroneum tokens at the same
rate. Figure 5 shows the payout of the reference account
for a longer period of time. It is eye-catching that the
Electroneum team reduced the amount of tokens earned
per day in this time-span. In June 2019, it took 12 days to
reach the payout limit of 100 ETN, while in December
and January, it took already 42 days to reach the same
amount. Figure 6 shows the received ETN tokens per
week. All accounts received roughly the same amount
per week. Furthermore, Figure 6 shows that the payout
rate has been further reduced in week four and afterward
slightly increased.

5 DISCUSSION

In this paper, we have shown that the cloud mining process
employed by Electroneum is susceptible to spoofing
attacks. We showcased how to circumvent all employed
security mechanisms successfully. Our accounts have
been active for several months without being detected.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

392



2019-12-23

2020-01-12

2020-02-01

2020-02-21

2020-03-12

0

20

40

60

80

100

120

Pe
nd

in
g

B
al

an
ce

[E
T

N
]

Anna Karl
Lea Maria

Peter Reference Account

Figure 4: Pending balance over time. The payout threshold
was 100 ETN.

2019-06-05

2019-07-25

2019-09-13

2019-11-02

2019-12-22

2020-02-10

2020-03-31

0

20

40

60

80

100

Pe
nd

in
g

B
al

an
ce

[E
T

N
]

Reference Account

Figure 5: ETN pending balance over time.

1 2 3 4 5 6 7 8

10

12

14

16

Week

R
ec

ei
ve

d
E

le
ct

ro
ne

um
[E

T
N

]

Anna
Karl
Lea

Maria
Peter

Figure 6: Received Electroneum per week.

Using our developed bot, an arbitrary number of accounts
can be automatically maintained to earn a disproportional
amount of ETN tokens. In this section we will discuss
why this attack is possible and how it could be mitigated.
The next section focuses on the identified issues and
section 5.2 presents possible mitigations.

5.1 Issues

Based on these findings and the performed security
analysis, we have identified four main issues: First,
we found out that Electroneum does not verify phone
numbers to protect against bots. Indeed, Electroneum
requires a phone number during registration. The goal is
to bind each account to a unique phone number. However,
our tests revealed that the number entered is never checked.
As a result, an arbitrary phone number can be used to
create a new account. Second, Electroneum does not
perform an identity check based on, e.g., government-
issued documents. Admittedly, the application mandates
to upload two selfies copying predefined gestures. To
the best of our knowledge, these pictures are manually
verified. Still, in our attack, we could circumvent this
security mechanism with a dataset of (non-existent)
human faces generated by a GAN. Third, no certificate
pinning is used, which allows attackers to easily intercept
or modify the network traffic using a standard man-in-
the-middle attack. Fourth, the Electroneum app is not
protected against manipulation, it does not check its
integrity. Hence, the application can be modified at will or
even be emulated entirely. In our attack, we could achieve
both: we modified and recompiled the application, and
emulated the client.

Summarizing, Electroneum suffers from several flaws
that allow attackers to exploit their cloud mining process.
However, while the first three problems could easily be
fixed, by, e.g., enforcing phone number verification and
more strict identity checks the fourth problem cannot
easily be solved. We believe that the core problem does
not lie in the cryptocurrency itself. Instead, the presented
attack results from missing control over users’ devices.
Electroneum, or more generally speaking developers, have
hardly any control over their application, once published.
Ensuring unique devices and accounts can thus become a
difficult endeavor. In fact, just recently Keybase13, an
end-to-end encrypted messenger suffered from a similar
problem. Keybase offered a free airdrop program where
they were giving out free crypto tokens for the Stellar14

open-source protocol. Despite their efforts to limit the
airdrop to benign users, it was quickly shut down due to
issues with fake accounts. As the initiators put it, they
were hit with fake accounts “far beyond the capacity of

13https://keybase.io
14https://www.stellar.org

This Selfie Does Not Exist: On the Security of Electroneum Cloud Mining

393



Keybase or SDF to filter” (Keybase, 2019). In contrast to
Electroneum, Keybase did not require the user to submit
a selfie.

5.2 Mitigation

As stated, protecting the app against modifications can-
not easily be prevented and heavily depends on the
capabilities of the device and operating system. One
solution, though, is to verify the integrity of mobile
client applications at runtime remotely. Currently, only
Android15 provides such a mechanism via attestation,
as shown by Prünster et al. (2019). Using Android’s
key attestation capabilities, it is possible to remotely
establish trust in unmanaged environments and ensure
that the app is executed on an unmodified, unrooted
Android device. Furthermore it is possible to ensure
that an unmodified copy of the application is executed
and that only one Electroneum account per device can
be used for mining. This approach needs no additional
hardware or modifications to the operating system. A
disadvantage of this approach is that not yet all Android
devices provide hardware-backed attestation capabilities.

It would also be possible to mitigate this attack
by automatically analyzing the submitted selfies for
modifications and flag suspicious ones as proposed by
Rossler et al. (2019).

Furthermore, verifying the possession of the submit-
ted phone number would increase an attackers effort.
Additionally using certificate pinning and source code
obfuscation would hamper potential malicious users.

In the next section, we present related work and
discuss how they relate to this paper.

6 RELATED WORK

We can distinguish between two areas in literature, closely
related to our work: Analysis of mobile mining and mobile
application security. In this section, we will first discuss
previous work on mobile mining. Subsequently, we will
present work that focuses on detecting or preventing
attacks on mobile applications.

Using smartphones for cloud mining is a relatively
new concept. As a result, there exist hardly any studies
on the security of such approaches. The first analysis of
mobile mining was presented by Ziegler et al. (2018).
In their 2018 paper, they analyze the security of Elec-
troneum Mobile Mining. They demonstrate how the
security mechanisms can be circumvented, and the re-
ward system be exploited. The authors conclude that

15The feature is supported on devices running Android
8.0 and above with hardware-backed keystores such as a
TEE or HSM.

without a consensus algorithm, such as Proof-Of-Work,
current-generation Android smartphones cannot provide
sufficient security for a mobile mining process. Since the
release of the paper, Electroneum has adapted several of
the suggestions presented in the original paper. They have
also redesigned the mining process and introduced a new
reward system. In contrast to the original paper, our paper
analyzes this new process. We present how to circumvent
all new security mechanisms. We, however, also present a
solution on how mobile mining could work without a
consensus algorithm on current generation smartphones,
by relying on Android’s attestation features.

We now turn to previous approaches that allow to
detect and prevent attacks on mobile applications. In
literature, several approaches dealing with device and
application integrity have been presented. For example,
the works of Nauman et al. (2010), Bente et al. (2011)
or Googles own SafetfyNet (Google, 2019) all demon-
strate attestation mechanism which allows detecting if
an application has been tampered with. However, most
of these solutions are purely academic and are not inte-
grated into the Android operating system. Furthermore,
Prünster et al. (2019) proof that specific root mechanisms
like Magisk16, can circumvent the security features of
SafetfyNet. The only solution available today seems to
be the approach by Prünster et al. (2019). It relies on
Android’s key attestation capabilities and can thus be
adopted quickly. The solution allows service providers to
verify whether applications have been tampered with at
runtime remotely.

On the other hand, detecting malware or malicious
applications on Android has been researched intensively
over the past years. As a result, we will only discuss the
most prominent works. For example, already in 2009,
Enck et al. (2009) proposed a certification process for
applications. Their approach checks applications on
installation based on predefined security rules. Vidas
and Christin (2014) present an approach to dynamically
detect malware based on four metrics: differences in
behavior, performance, hardware and software compo-
nents. Other approaches, such as the works presented
by Desnos and Gueguen (2011); Jung et al. (2013);
Zhou et al. (2013); Ren et al. (2014) focus on malicious
app repackaging attacks. The goal is to find malicious
repackaged applications of well-known applications.

Summarising, there exist a variety of tools to detect
malware or repackaged applications. However, they target
a scenario where an adversary tries to attack mobile
applications. As such, they cannot prevent attacks such as
application repackaging or application emulation, where
the user, in this case also the attacker, has full control
over the device.

16https://github.com/topjohnwu/Magisk

SECRYPT 2020 - 17th International Conference on Security and Cryptography

394



7 CONCLUSIONS AND FUTURE
WORK

This work analyzed the newly employed security mecha-
nisms of the Electroneum cloud mining app. The analysis
identified several vulnerabilities related to the in-place
security measures that allow for protocol exploitation
and device/app impersonation attacks. We successfully
mounted an account creation and device emulation at-
tack to generate illegitimate accounts that exploit the
cloud mining process and earn ETN reward tokens. On a
technical level, the attack consists of an initial account
setup phase that circumvents Electroneum’s selfie-based
account verification mechanism via generated selfies,
and a fully-automated cloud mining extension process
that reconstructs the network protocol and emulates a
cloud-miner. We evaluated our approach by creating
multiple fake accounts with generated selfies with prede-
termined gestures or symbols and developing a bot that
emulates the Electroneum app and regularly maintains
these accounts by extending their cloud-mining process.
The generated selfies for each of these accounts were
approved by the Electroneum team, and our automated
mining-extension protocol successfully maintained the
accounts and enabled receiving payouts at the same rate
as legitimate reference accounts. We further propose
potential mitigation techniques for preventing application
repackaging or emulation attacks.

In future work we plan to further extend and improve
our attack by fully automating the initial account setup
phase. The complete automation of the selfie generation
process would consequently increase the efficiency and
scale of the attack and therefore enable the attackers to
obtain significantly large amounts of ETN payouts.
Responsible Disclosure. We adhered to responsible
disclosure guidelines and informed the Electroneum team
about our findings.

REFERENCES

Apple (2019). App store review guidelines. https://
developer.apple.com/app-store/review/guidelines/.

Bente, I., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J.,
von Helden, J., and Westhuis, J. (2011). Towards
Permission-Based Attestation for the Android Plat-
form. In Lecture Notes in Computer Science (includ-
ing subseries LNAI and LNBI), volume 6740 LNCS,
pages 108–115.

Comben, C. and Rivet, C. (2019). How to do cryptocurrency
mobile mining. https://finance.yahoo.com/news/
cryptocurrency-mobile-mining-100019158.html.

Corcoran, K. (2017). Bitcoin is climbing on the last day
of 2017. https://www.businessinsider.com/bitcoin-
price-value-increasing-on-final-day-of-2017-2017-
12/commerce-on-business-insider?r=DE&IR=T.

Desnos, A. and Gueguen, G. (2011). Android: From Re-
versing to Decompilation. Proc. of Black Hat Abu
Dhabi, pages 1–24.

Electroneum (2020). Electroneum roadmad - our vision
mapped out. https://electroneum.com/journey/.

Enck, W., Ongtang, M., and McDaniel, P. (2009). On
Lightweight Mobile Phone Application Certification.
Proceedings of the 16th ACM conference on Com-
puter and communications security - CCS ’09, page
235.

Frankenfield, J. (2019). Mining pool. https://www.
investopedia.com/terms/m/mining-pool.asp.

Google (2018). Let’s build the world’s most trusted source
for apps and games. https://play.google.com/about/
developer-content-policy-print/.

Google (2019). Safetynet attestation api. https://developer.
android.com/training/safetynet/attestation.

Jung, J. H., Kim, J. Y., Lee, H. C., and Yi, J. H. (2013).
Repackaging attack on android banking applications
and its countermeasures. Wireless Personal Commu-
nications, 73(4):1421–1437.

Karras, T., Laine, S., and Aila, T. (2019a). A style-based
generator architecture for generative adversarial net-
works. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen,
J., and Aila, T. (2019b). Analyzing and improv-
ing the image quality of stylegan. arXiv preprint
arXiv:1912.04958.

Keybase (2019). The big stellar space drop. https://keybase.
io/a/i/r/d/r/o/p/spacedrop2019.

Microsoft (2019). Face swap. https://www.microsoft.com/
en-us/garage/profiles/face-swap/.

Nauman, M., Khan, S., Zhang, X., and Seifert, J.-P. (2010).
Beyond Kernel-Level Integrity Measurement: En-
abling Remote Attestation for the Android Platform.
In Acquisti, A., Smith, S. W., and Sadeghi, A.-R., ed-
itors, Trust and Trustworthy Computing, pages 1–15.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Prünster, B., Palfinger, G., and Kollmann, C. (2019). Fides
– unleashing the full potential of remote attestation.
In Proceedings of the 16th International Joint Confer-
ence on e-Business and Telecommunications, volume
2: SECRYPT, pages 314—-321. SciTePress - Science
and Technology Publications.

Ren, C., Chen, K., and Liu, P. (2014). Droidmarking: Re-
silient SoftwareWatermarking for Impeding Android
Application Repackaging. 29th ACM/IEEE interna-
tional conference on Automated software engineering,
pages 635–646.

Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies,
J., and Niessner, M. (2019). Faceforensics++: Learn-
ing to detect manipulated facial images. In The IEEE
ICCV.

Vidas, T. and Christin, N. (2014). Evading Android Run-
time Analysis via Sandbox Detection. Proceedings
of the 9th ACM symposium on Information, computer
and communications security - ASIA CCS ’14.

Zhou, W., Zhang, X., and Jiang, X. (2013). AppInk: Water-
marking Android Apps for Repackaging Deterrence.
In Proceedings of the 8th ACM SIGSAC symposium on

This Selfie Does Not Exist: On the Security of Electroneum Cloud Mining

395



Information, computer and communications security
- ASIA CCS ’13, New York, New York, USA. ACM
Press.

Ziegler, D., Prünster, B., Marsalek, A., and Kollmann, C.
(2018). Spoof-of-work evaluating device authorisa-
tion in mobile mining processes. In ICETE 2018
- Proceedings of the 15th International Joint Con-
ference on e-Business and Telecommunications, vol-
ume 2, pages 380–387, Portugal. SciTePress.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

396


