
A Retrospective Study of Taxonomy based Testing using Empirical
Data from a Medical Device Software Company

Hamsini Ketheswarasarma Rajaram a, John Loane b, Silvana Togneri MacMahon c
and Fergal Mc Caffery d

Regulated Software Research Centre, Dundalk Institute of Technology, Co Louth, Dundalk, Ireland

Keywords: Defect Taxonomy, Defect Classification, Validation, Taxonomy based Testing, Empirical Data, Root Cause
Analysis, Defect Minimisation, Medical Device Software.

Abstract: Software defects in medical devices have caused serious injuries and deaths to patients. Medical devices are
facing an increasing number of the U.S Food and Drug Administration (FDA) recalls due to poor quality
software. Research studies suggest that defect taxonomies are powerful tools to prevent and control defects.
Defect taxonomies have been used to improve software quality in the safety critical, business and
telecommunications domains. Defect taxonomies can be used in testing and are more efficient at finding
defects at the earliest possible stage of software development. This paper discusses taxonomy based testing
in medical device software (MDS) development. SW91 is a new defect taxonomy for health software
developed by the Association for the Advancement of Medical Instrumentation. This paper details a
retrospective study conducted to investigate taxonomy based testing by mapping empirical data from a MDS
company in Ireland to SW91 defects. It explains the process and shows the benefits of taxonomy based testing,
which include defect minimisation and root cause analysis. It provides recommendations which can be
followed when using taxonomy based testing. It also details interviews conducted with the CEO, developers
and the quality assurance engineer from Company A. Finally, it briefly details how taxonomy based testing
will be implemented at a MDS company by applying a framework which was developed from this research.

1 INTRODUCTION

Medical devices increasingly rely on software to
provide additional functionality (L. K. Simone,
2013). Since medical device functionality directly
impacts patient safety, it is important to ensure high
quality software in medical devices. Software quality
is measured by the number of defects found in
software (Ioan Mihnea Iaco & Radu, 2008). In order
to find software defects and to ensure software
quality, software quality assurance processes have
been integrated into software development. Software
quality assurance processes aim to minimise software
defects and show that software meets requirements.
However, organisations face challenges in improving
software quality such as the inability to specify the
software requirements properly, the lack of adequate
software quality assurance processes and the lack of

a https://orcid.org/0000-0002-3294-3906
b https://orcid.org/0000-0002-9285-5019
c https://orcid.org/0000-0003-0179-2436
d https://orcid.org/0000-0002-0839-8362

relevant metrics to track software quality (FDA,
2011; P.S.Cosgriff, 1990).

Research studies suggest that a defect taxonomy
is the best way to prevent and control defects
(Chillarege et al., 1992; Felderer & Beer, 2013a,
2013b). Defect taxonomies have been used
successfully in various ways during the testing phase
of software development, such as in system testing,
measuring testing efficiency and classifying defects
(Black, 2008; Felderer & Beer, 2013b; Li, Li, & Sun,
2010; Madachy & Boehm, 2008). This research has
proposed a testing approach called taxonomy based
testing to improve MDS quality (Rajaram(&), Loane,
MacMahon, & Fergal, 2019; Rajaram, Loane,
MacMahon, & Mc Caffery, 2018).

Taxonomy based testing is a defect based testing
technique. In taxonomy based testing, the
requirements will be mapped into potential defects

434
Rajaram, H., Loane, J., MacMahon, S. and Mc Caffery, F.
A Retrospective Study of Taxonomy based Testing using Empirical Data from a Medical Device Software Company.
DOI: 10.5220/0009825404340442
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 434-442
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

from a defect taxonomy and the test cases will be
written based on the requirements and the mapped
defects. The test cases will be executed to verify
whether the software complies with the relevant
requirements and does not contain the mapped defects
from the defect taxonomy. Taxonomy based testing
uses the Classification of Defects in Health Software
- SW91 as its defect taxonomy.

SW91, Classification of Defects in Health
Software is a defect classification scheme and a
standard for health software which has been
developed by the Association for the Advancement of
Medical Instrumentation (AAMI) in collaboration
with the U.S FDA (Association for the Advancement
of Medical Instrumentation, 2016). SW91
development work started in 2014 and aims to
provide a common language to classify defects and
improve software quality in health software including
MDS (L. Simone & Rubery, 2014). SW91 was
published on 22 of October 2018 as a standard
(AAMI, 2019).

SW91 includes defects from the planning to the
maintenance phases of a system. It contains multi-
level defects such as parent level and child level.
Every parent level defect includes several child
defects. Each defect has a defect code with a unique
number. This numbering system follows a
hierarchical structure. Every parent level defect is
represented by a number. Every child level defect is
represented by appending a period and a number to
the parent level category. Each defect has annotations
and some of the defects have examples. For example,
Failure to Save/Restore (5.3.2.5.1) is one of the child
level defects from Implementation Defects (5). It has
the following description: “Context was not saved or
restored when it should have been.”

The version of SW91 which was open for public
comment in September 2016, was used in this study.
It is not much different from the final version.

This paper details how a retrospective study was
conducted on data received from a completed project
from a MDS company in Ireland. This study
investigated the applicability and benefits of
taxonomy based testing in the MDS industry.

The next section explains the process followed in
this retrospective study. Section 3 explains the results
obtained from this study. Section 4 outlines the
benefits of this study and recommendations provided
to Company A. Section 5 outlines the interview
results obtained from Company A. Section 6 presents
future work and Section 7 presents the summary and
conclusions.

2 PROCESSES FOLLOWED IN
THE RETROSPECTIVE STUDY

Company A develops MDS applications. This study
uses defects, software design specification (SDS),
user requirements, risks and test protocols from a
completed project at Company A.

 For each type of document, potential SW91
defects were searched and mapped. Out of the
documents received from Company A, the SDS and
requirements were used to do the direct mapping into
SW91 defects. Test protocols were linked with
requirements and the SDS. Therefore, SW91 defects
used in the mapping of the SDS and the requirements
were used in the test protocol mapping. The
remainder of this section explains each of the
mappings.

2.1 Mapping A – Defects from
Company A and SW91 Defects

Defects from the Company A contain defect
symptoms such as algorithm not working correctly
and warning alerts not appearing. Repetition in the
defect symptoms was observed and removed. Eight
distinct defect symptoms were identified after
removing the duplicates. These symptoms were due
to some defects in company A’s application. The
defects for each symptom were manually searched
from SW91 and mapped. Eight distinct defect
symptoms were mapped into twenty distinct SW91
defects.

Table 1 details a sample mapping of a defect
symptom and its SW91 defects.

Table 1: Defect symptom and SW91 defects.

Defect symptom SW91 defects

Warning alerts
not appearing

Invalid Path (5.2.1.2.6)
Parameter Type (4.2.2.2)
Wrong Algorithm Selected (4.2.4)
Parameter Structure (4.2.2.3)
Use Before Check (5.3.2.6)
Bad Translation (5.1)
Invalid Path (5.2.1.2.6)

The next section explains how the SDSs were used in
this study.

2.2 Mapping B – SDS and SW91
Defects

The SDS document has very detailed control flow
diagrams for the application. It includes forty control

A Retrospective Study of Taxonomy based Testing using Empirical Data from a Medical Device Software Company

435

flow diagrams. Out of forty, three diagrams were
randomly selected to map into SW91 defects. Not all
of the diagrams were mapped into SW91 defects due
to the similarity in their structure.

The defects for each development stage of the
control flow diagrams were manually searched for in
SW91 and mapped.

Table 2 shows a sample of the mapping conducted
between the development stage from a control flow
diagram and SW91 defects.

Table 2: Corrected calcium SW91 Defects.

Development stages
of control flow diagram

SW91 defects

Input variables to text
field

Use before check (5.3.2.6)
Inappropriate cast or type
conversion (5.3.2.1.4)

Has the user filled the
inputs

Control state (5.2.1.4)
Inappropriate cast or type
conversion (5.3.2.1.4)

This section explained how the SDS was mapped
into SW91 defects. The next section explains how
requirements were mapped into SW91 defects.

2.3 Mapping C - Requirements and
SW91 Defects

The company shared forty-one requirements,
including both functional and non-functional
requirements. Every requirement has associated risks
which have been assigned a priority. Out of forty-one
requirements, thirty-nine were mapped into forty-
three distinct SW91 defects. For every requirement in
this mapping, the potential defects which could occur
in the development of the requirement were manually
searched for in SW91 and they were mapped. Table 3
shows a sample mapping of the requirement into
SW91 defects. Two non-functional requirements
were very general and it was not possible to map them
into any SW91 defects. For example, the application
must be endorsed by users, government bodies and
cancer research bodies is one of the non-functional
requirements and it was not mapped into any SW91
defects.

Table 3: Requirements and SW91 defects SW91.

Requirement SW91 defects
R1. The application
must allow the user
to calculate a
number of medical
formulas

Bad Translation (5.1)
Expression Evaluation (5.2.2.1)
Operator (5.2.2.1.1)
Grouping (5.2.2.1.2)
Scalar Type (5.3.1.1)
Incorrect Timeout (5.2.2.5)

This section explained how requirements were
mapped into SW91 defects. The next section explains
how Company A test protocols were mapped into
SW91 defects. The test protocols are the last type of
document used in this study.

2.4 Test Protocols and SW91 Defects

Each test protocol contains test cases and procedures
to be followed in the testing phase. Test protocols are
associated with their respective SDS and requirement.
For example, if the requirement ID is R1 and the SDS
ID is S1, then the respective test protocol T1 will
include the requirement R1 and SDS S1.Figure 1
details the links between test protocols, requirements
and the SDS.

Figure 1: Test protocols and links.

When starting the mapping of a test protocol, the
following defects for the test protocol are already
there:
 SW91 defects used in the mapping of the control

flow diagram from the SDS, Mapping B.
 SW91 defects used in the mapping of functional

requirements, from Mapping C.
For each of the test protocols, the above mappings

were merged and repeated defects were removed.
This merging and removal of duplicate defects
provided distinct potential defects for each test
protocol.

Figure 2: Company A data and SW91 defects.

ICSOFT 2020 - 15th International Conference on Software Technologies

436

At this stage of the paper, we have seen how the
defect symptoms, control flow diagrams,
requirements with risks and test protocols were used
to do the mappings. Figure 2 shows the mappings and
it summarises all four types of data and their
mappings into SW91 defects.

The next section details the results observed from
this study.

3 RESULTS

First, eight distinct defect symptoms were mapped
into twenty distinct SW91 defects. This mapping is
labelled Mapping A.

Secondly, all development stages of the selected
three control flow diagrams were mapped into
nineteen SW91 defects. This mapping is labelled
Mapping B.

Thirdly, the thirty-nine functional requirements
and their risks were mapped into forty-three distinct
SW91 defects and it is labelled Mapping C.

From the three mappings (A, B and C), the
following three sets of common SW91 defects were
observed:

1. Common SW91 defects from Mapping A and
Mapping B.

2. Common SW91 defects from Mapping A and
Mapping C.

3. Common SW91 defects from Mapping A,
Mapping B and Mapping C.

The remainder of this section explains the above
three results.

3.1 Common SW91 Defects from
Mapping A and Mapping B

Ten distinct SW91 defects were observed from
Mapping A (Defect symptoms and SW91 Defects)
and Mapping B (SDS and SW91 defects). This
mapping is represented in Figure 3.The coloured
triangle in Figure 3 represents common SW91 defects
which are listed in column 1 of Table 4.

Figure 3: Overlapping SW91 defects from mappings A and
B.

3.2 Common SW91 Defects from
Mapping A and Mapping C

Eleven distinct SW91 defects were observed from
both Mapping A (Defect symptoms and SW91
Defects) and Mapping C (Requirements and SW91
defects). This overlap is detailed in Figure 4. The
coloured triangle from Figure 4 represents common
SW91 defects which are listed in column 2 of Table
4.

Figure 4: Overlapping SW91 defects from mappings A and
C.

These defects can be highlighted during the
requirements gathering phase of the application
development. The requirements gathering phase
failed to consider the defects listed in Table 4, column
2 and they reoccurred at the testing phase.

If Company A has the mappings at the
requirement gathering phase, all the requirements will
have been mapped into their potential SW91 defects
from different phases. The software architect could
consider the defects related to the design phase and it
will help to avoid the mapped defects for each
requirement. Developers could consider the defects
related to the implementation phase and it will help to
avoid the mapped defects for each requirement.

This mapping will help to avoid defects at earlier
phases. The quality assurance engineer can also get
ideas on possible defects for each requirement by
considering the mapped defects and it will help to
generate goal oriented test cases.

3.3 Common SW91 Defects from
Mappings A, B and C

Six distinct SW91 defects were observed from all
three mappings (Mapping A, Mapping B, Mapping
C). These mappings are represented in Figure 5. The
coloured triangle in Figure 5 represents the common
SW91 defects which are listed in column 3 of Table
4.

A Retrospective Study of Taxonomy based Testing using Empirical Data from a Medical Device Software Company

437

Figure 5: Overlapping SW91 defects from mappings A, B
and C.

These defects can be highlighted either at the
requirements gathering phase or the software design
phase of the application development. Both the
requirements gathering and design phases failed to
find the defects listed in Table 4, column 3 and they
reoccurred at the testing phase. If this mapping
existed at Company A, it would provide a common
language for all stakeholders to discuss the potential
defects for each requirement.

Table 4: All Overlapping SW91 defects and Company A
Data.

Mappings A and
B

Mappings A and
C

Mappings A, B,
and C

Bad Translation
(5.1)

Bad Translation
(5.1)

Bad Translation
(5.1)

Inappropriate
Cast or Type
Conversion
(5.3.2.1.4)

Corrupted
Database
Upgrade (7.8)

Inconsistent
Requirement
(2.3.5)

Inconsistent
Requirement
(2.3.5)

Inconsistent
Requirement
(2.3.5)

Internal
Interfaces (4.2)

Internal
Interfaces (4.2)

Interface
Parameter,
Invocation (4.2.
2)

Operator
(5.2.2.1.1)

Invalid Path
(5.2.1.2.6)

Internal
Interfaces (4.2)

Use Before
Check (5.3.2.6)

Operator
(5.2.2.1.1)

Operator
(5.2.2.1.1)

Wrong
Algorithm
Selected (4.2.4)

Parameter
Structure
(4.2.2.3)

Wrong
Algorithm
Selected (4.2.4)

Parameter Type
(4.2.2.2)

Size (5.3.1.2)

Use Before
Check (5.3.2.6)

Transactions
(3.4.4)

Wrong
Algorithm
Selected (4.2.4)

Use Before
Check (5.3.2.6)

Scalability (3.3)

The next section discusses the benefits of this study
and recommendations provided to Company A from
this study.

4 BENEFITS AND DISCUSSION

This section details the following benefits from this
study:

1. Defect reporting at the testing phase
2. Defect minimization
3. Risk minimization
4. Root cause analysis

4.1 Defect Reporting at the Testing
Phase

Company A reports defect symptoms from their
testing. These defect symptoms must be reported by
a quality assurance engineer at Company A. The
developers need to work to fix the defect symptom.
According to the current format used for defect
reporting, the developers do not know about the
actual defects for reported defect symptoms. When
the developers attempt to fix the reported defect
symptom, it will be hard for them to fix due to the
poorly defined defect symptom. Therefore, warning
alerts not appearing could appear again in the second
round of testing due to some other defect of which the
developers or the quality assurance engineers were
not aware. This situation can be addressed at
Company A by mapping the defect warning alerts not
appearing into the following SW91 defects:
 Invalid Path (5.2.1.2.6)
 Parameter Type (4.2.2.2)
 Wrong Algorithm Selected (4.2.4)
 Parameter Structure (4.2.2.3)
 Use Before Check (5.3.2.6)
 Bad Translation (5.1)

The developer can be informed of the possible
SW91 defects which could cause the defect symptom
warning alerts not to appear. Developers can work to
fix the possible SW91 defects when fixing the
reported defect symptoms. Developers can fix the
reported defect symptom by addressing the mapped
SW91 defects for the failed test. This type of mapping
will minimise the reoccurrence of defect symptoms
by checking all possible mapped SW91 defects. This
type of mapping would reduce the development time
and help to anticipate possible defects. If this
mapping is used at company A, there will be a
common language for quality assurance engineers
and developers to communicate the test failures.

ICSOFT 2020 - 15th International Conference on Software Technologies

438

4.2 Defect Minimisation

Since Company A has very detailed control flow
diagrams, mapping each development stage of the
control flow diagram into SW91 defects could
minimise the occurrence of defects at the
implementation phase. When Company A has the
potential defects for every development stage of the
control flow diagrams and requirements, the software
architect and developers can work to avoid those
mapped defects during the design and
implementation. Quality assurance engineers can
execute test protocols to find those mapped defects.
Again, this will minimise the time to find defects in
the application and will help to prevent the defects at
the earliest possible phase of software development.

4.3 Risk Minimisation

Each requirement has associated risks. Using the
mappings explained in this study, each requirement
has been mapped into its potential SW91 defects. If
each requirement can be implemented with the
minimum number of defects, then it is possible to
minimise the associated risks as well. For example, as
shown in Section 2.3, when the requirement, the
application must allow the user to calculate a number
of medical formulas is being developed, the risk of
this requirement will be mitigated by avoiding the
mapped defects. When Company A minimises the
occurrence of the defects for each requirement, the
associated risk of the requirement also will be
mitigated. This type of mapping at Company A will
help to lower risks associated with requirements.

4.4 Root Cause Analysis

The defect symptoms from Company A appeared
when the quality assurance engineer executed the test
protocols. Those symptoms were due to the defects.
Table 5 displays all potential defects of all the
identified defect symptoms from Mapping A. This list
of defects will help in finding the root causes of the
identified defect symptoms. Table 5 includes root
causes from the requirements gathering phase to the
maintenance phase.

The hierarchical numbering system of SW91
enables the identification of the phase of the defect.
For example, Incompatible Requirement (2.3.4) is
one of the root causes listed in Table 5. It has a defect
code starting with 2, meaning that this defect belongs
to the Requirement Defects (2) from SW91.

When the quality assurance engineer reports the
defect to the developer, the developer can address the

Table 5: Distinct SW91 defects from Mapping A.

Distinct SW91 defects used in Mapping A
Requirement Completeness (2.2)
Incompatible Requirement (2.3.4)
Inconsistent Requirement (2.3.5)
Scalability (3.3)
Transactions (3.4.4)
Internal Interfaces (4.2)
Interface Parameter, Invocation (4.2. 2)
Component Invocation (4.2.1)
Wrong Algorithm Selected (4.2.4)
Parameter Structure (4.2.2.3)
Parameter Type (4.2.2.2)
Operator (5.2.2.1.1)
Incorrect Save/Restore (5.3.2.5)
Invalid Path (5.2.1.2.6)
Data Definition (5.3.1)
Bad Translation (5.1)
Size (5.3.1.2)
Inappropriate Cast or Type Conversion (5.3.2.1.4)
Use Before Check (5.3.2.6)
Corrupted Database Upgrade (7.8)

root causes related to the implementation phase. In
Table 5, the defects starting with number 5 are related
to the implementation phase. Other root causes not
related to the implementation phase such as
Inconsistent Requirement (2.3.5) or Requirement
Completeness (2.2) can be investigated by other
people involved in the development of the application
such as the business analyst or the software architect.
When Company A records the root causes for a
release, it will enable finding and eliminating
common root causes from future releases. If
Company A used this mapping at the testing phase of
their application, the following benefits could be
observed during and after the testing phase:

1. The quality assurance engineer can report
the identified defect symptoms along with the
potential root causes which are detailed in SW91.

2. The developer can see and fix the actual
root causes of defect symptoms by fixing the SW91
defects used in the mapping.

4. Company A can minimise the occurrence of
the same root causes in future releases.

A detailed report of this study was submitted to
Company A. This report includes recommendations
in order to maximise the benefits of taxonomy based
testing. The recommendations and their benefits are
listed in Table 6.This section discussed the results and
benefits of the taxonomy based testing approach
using data from Company A. This section also listed
the recommendations provided to Company A based
on this study. The next section details interviews
conducted with Company A.

A Retrospective Study of Taxonomy based Testing using Empirical Data from a Medical Device Software Company

439

5 INTERVIEW WITH COMPANY
A

After submission of the report, it was presented to
employees from Company A. The employees
included the CEO, two developers and a quality

Table 6: Recommendations and benefits.

Recommendation Benefits

Map the
existing
identified defect
symptoms into
SW91 defects.

Minimize the occurrence of the
same defects.
Save test execution time.
Increase test efficiency by
reducing the test cycle.
Find the possible root causes.

Map each
development
stage of the
control flow
diagram into
SW91 defects.

Identify defects at an earlier
phases.
The developer can work to
avoid mapped SW91 defects
when implementing each stage.
Write test cases to cover those
mapped SW91 defects for each
control flow diagram.

Map the
requirements
into SW91
defects.

All the requirements will have
been mapped into SW91
defects.
Write test cases to cover those
mapped defects for each
requirement.
Identify the defects at an earlier
phase of software development.
Brainstorm with the quality
assurance engineers with
possible defects for each
requirement.
The developer can work to
avoid the mapped SW91 defects
when implementing the
requirements.

Map the risks
into SW91
defects.

All the risks will have potential
defects.
Avoid the mapped SW91
defects and minimise the risks
which are associated with those
requirements.
Brainstorm with the quality
assurance engineers with
possible defects for each risk.

Map the test
protocols into
SW91 defects.

Brainstorm with the quality
assurance engineers with
possible defects.
Save test execution time.

assurance engineer. Three separate interviews were
conducted with the CEO, developers and the quality
assurance engineer. The interviews were mainly
focused on getting their opinion on the benefits and
recommendations. Also, the possibilities for
implementing taxonomy based testing at company A
were discussed.

The CEO agreed with the recommendations and
benefits except for the root cause analysis. He said
that root cause analysis was not straightforward
because of defects related to the organisation's
cultural and environmental change such as lack of
communication between employees and lack of
internet access. SW91 contains only software defects
and it is not focused on defects related to
environmental or cultural change.

The developers agreed with the recommendations
and the benefits. They preferred to have the defect
mapping when moving from user requirements to
system requirements. They stated that this mapping
would help to minimise the risks when implementing
a requirement from scratch.

The quality assurance engineer has accepted the
recommendations and the benefits of this study and
he wondered how this approach would work at a
small or medium-sized organisation. He suggested
that a tool to implement taxonomy based testing
would save time and effort. He also said that this
mapping should take place at the risk management
stage to get the maximum benefit from taxonomy
based testing. He would like to see how this mapping
would benefit a project that is in development.

All four interviewees were asked about the
implementation of taxonomy based testing at
Company A and its limitations. They said that it is
useful to implement, but the main limitations are time
and resources with their current project. They agreed
that this kind of mapping would help to save time and
it would also save the project manager’s time.

6 FUTURE RESEARCH

This paper explained a retrospective study conducted
using data from Company A. A framework for
taxonomy based testing was developed for future
implementation and this framework was validated by
experts from the software testing industry. This
framework will enable the implementation of
taxonomy based testing without the researcher’s
involvement in any MDS companies. The next step of
this research will involve implementing this
framework in a MDS company, Company B.

ICSOFT 2020 - 15th International Conference on Software Technologies

440

The necessary data will be requested from the
implementation and the data will be used to evaluate
the benefits of taxonomy based testing. The next
section details the summary and conclusion of this
paper.

7 SUMMARY AND CONCLUSION

Poor quality software in medical devices has caused
serious harm to patients’ health and increased FDA
recalls. Defect taxonomies have been used
successfully in software development to prevent and
control defects. This paper explained what a defect
taxonomy is and how a defect taxonomy can be used
in MDS testing to minimise defects and to improve
software quality. “Defect classification scheme for
health software – SW91” is a standard and defect
taxonomy for health software. This research proposed
a testing technique, taxonomy based testing using
SW91. By using the taxonomy based testing
approach, each requirement can be mapped into its
potential defects. These mappings at the requirements
gathering phase will help to avoid the defects related
to the design phase and implementation phase. It will
improve software quality by eliminating defects at an
earlier phase of software development. Also, this
mapping will help to write goal oriented test cases by
considering the mapped SW91 defects. If we can
write goal oriented test cases based on the mapped
defects against the requirements, then it will save test
execution time.

This paper explained a retrospective study of
taxonomy based testing with data from a MDS
company, Company A. The data includes defect
symptoms, SDS, requirements and test protocols. The
data from Company A was mapped into SW91
defects and benefits were observed. Based on this
study, a detailed report was submitted to Company A.
This report includes the process used in this study,
benefits and recommendations to Company A. This
study explained how taxonomy based testing could be
used to conduct root cause analysis, improve defect
reporting and minimise defects and risks at a MDS
company. This paper also discussed the interview on
this study conducted with employees from company
A and its results. Finally, this paper discussed how
this research will be continued with the taxonomy
based testing framework.

ACKNOWLEDGEMENTS

This work was supported with the financial support
of the Science Foundation Ireland grant 13/RC/2094
and co-funded under the European Regional
Development Fund through the Southern & Eastern
Regional Operational Programme to Lero - the Irish
Software Research Centre (www.lero.ie)

REFERENCES

AAMI. (2019). Consensus Standards. Retrieved February
19, 2019, from http://www.aami.org/newsviews/news
detail.aspx?ItemNumber=7367

Association for the Advancement of Medical
Instrumentation. (2016). Future AAMI SW91, 29-
September-16 Committee Draft for Vote, Classification
of Defects in Health Software. USA. Retrieved from
http://www.aami.org/standards/downloadables/aamire
vf.pdf

Black, R. (2008). Advanced Software Testing - Vol. 1 (2nd
ed., Vol. 1). Santa Barbara: Rocky Nook Inc.

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J.,
Ray, B. K., & Moebus, D. S. (1992). Orthogonal Defect
Classification-A Concept for In-Process
Measurements. IEEE Transactions on Software
Engineering, 18(11), 943–956. https://doi.org/10.1109/
32.177364

FDA. (2011). Understanding Barriers to Medical Device
Quality. FDA Review Document, 45.

Felderer, M., & Beer, A. (2013a). Using defect taxonomies
for requirements validation in industrial projects. In RE.
https://doi.org/10.1109/RE.2013.6636733

Felderer, M., & Beer, A. (2013b). Using defect taxonomies
to improve the maturity of the system test process:
Results from an industrial case study. In SWQD 2013
(Vol. 133, pp. 125–146). https://doi.org/10.1007/978-3-
642-35702-2_9

Ioan Mihnea Iaco, & Radu, C. (2008). Testing: First Step
Towards Software Quality. Journal of Applied
Quantitative Methods, 3(3), 241–253.

Li, N., Li, Z., & Sun, X. (2010). Classification of software
defect detected by black-box testing: An empirical
study. In WCSE 2010 (Vol. 2, pp. 234–240).
https://doi.org/10.1109/WCSE.2010.28

Madachy, R., & Boehm, B. (2008). ODC COQUALMO - A
Software Defect Introduction and Removal Model using
Orthogonal Defect Classification. University of
Southern California Center for Systems and Software
Engineering. Retrieved from http://csse.usc.edu/
TECHRPTS/2008/usc-csse-2008-817/usc-csse-2008-
817.pdf

P.S.Cosgriff. (1990). Quality Assurance of Medical Care.
Journal of Public Health. Retrieved from
http://elibrary.ru/item.asp?id=10628982

Rajaram(&), H. K., Loane, J., MacMahon, S. T., & Fergal,
M. (2019). A Framework for Taxonomy Based Testing

A Retrospective Study of Taxonomy based Testing using Empirical Data from a Medical Device Software Company

441

Using Classification of Defects in Health Software-
SW91. In Systems, Software and Services Process
Improvement (pp. 606–618). Springer Nature
Switzerland AG. Retrieved from https://link.
springer.com/chapter/10.1007/978-3-030-28005-5_47

Rajaram, H. K., Loane, J., MacMahon, S. T., & Mc Caffery,
F. (2018). Taxonomy-based testing and validation of a
new defect classification for health software. Journal of
Software: Evolution and Process, 31(1), 1–13.
https://doi.org/10.1002/smr.1985

Simone, L. K. (2013). Software-related recalls: An analysis
of records. Biomedical Instrumentation and
Technology, 47(6), 514–522. https://doi.org/10.2345/
0899-8205-47.6.514

Simone, L., & Rubery, D. (2014). Lisa Simone and Daniel
Rubery: A Tower of Babel with Medical Device
Software Failures. Retrieved January 24, 2017, from
https://aamiblog.org/2014/10/10/lisa-simone-and-
daniel-rubery-a-tower-of-babel-with-medical-device-
software-failures/

ICSOFT 2020 - 15th International Conference on Software Technologies

442

