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Bojan Spasić1,2 a, Olivier Markowitch1 b and Philippe Thiran2

1Université Libre de Bruxelles, Belgium
2Université de Namur, Belgium

Keywords: Dynamic Searchable Symmetric Encryption, DSSE, Forward Privacy, Client Storage.

Abstract: In this work, we focus on the problem of forward-private dynamic searchable symmetric encryption (DSSE)
in the multi-client setting. In order to achieve forward privacy, efficient DSSE schemes require clients to store
local information, such as per-keyword search counters. Such construction choices prevent these schemes
from being used in a multi-user scenario. We revisit the concept of forward privacy with a goal to examine the
need for client storage. As a result, we propose a new method of realising forward privacy without requiring
the clients to keep any state information. Based on this method, we construct a dynamic, forward-private
searchable symmetric encryption scheme supporting multiple concurrent clients with minimal overhead. The
proposed construction requires no state to be kept by clients, yet provides optimal asymptotic behaviour both
in time, storage and communication cost, while having similar leakage profile to other state-of-the-art DSSE
schemes.

1 INTRODUCTION

1.1 Motivation

Searchable encryption is a family of cryptographic
techniques that enable outsourcing of data to another
party (e.g. a cloud provider) for storage, with the
ability to perform searching - ideally without dis-
closing anything about search queries, search results
or the data itself. Practical searchable encryption
schemes, however, always leak certain amount of
information (Kamara et al., 2018). Among differ-
ent techniques, searchable symmetric encryption has
so far provided the best tradeoffs between perfor-
mance, query expressiveness and security (Kamara
and Moataz, 2017). Dynamic searchable symmetric
encryption (DSSE) schemes allow the clients to inter-
act with the server in order to add or remove records
from the database. To avoid devastating attacks, ca-
pable of defeating confidentiality (Zhang et al., 2016;
Cash et al., 2015), such schemes must ensure that
they limit the amount of data leaked during adding
or removing records. Schemes providing such mea-
sures are known as forward- and backward-private,
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respectively. Currently, all known forward-private
DSSE schemes having optimal performance require
that clients keep some kind of local state (e.g. a map
of all the search keywords and an associated number
of queries) for encryption scheme to achieve forward
privacy (Kim et al., 2019). The existence of client
storage presents a problem if the DSSE scheme is to
be used in a multi-client scenario, due to the need to
securely synchronise the state between clients.

This limitation has traditionally confined the
forward-private DSSE schemes to use cases with a
single reader / single writer client, precluding their
use in dynamic and distributed environments, such
as sensor networks, or any other architecture involv-
ing extensive collection of data from a set of writ-
ing nodes and using public cloud as data storage and
processing backbone - a common Internet-of-Things
pattern (Lin et al., 2017). Without this shortcoming,
DSSE would be a good candidate for implementing
on sensor nodes typically utilising simple, low-power
hardware designs, due to its reliance on efficient sym-
metric cryptographic primitives.

1.2 Previous Work

Searchable Symmetric Encryption. (SSE) uses
symmetric-key cryptography (mainly pseudorandom
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functions and pseudorandom permutations) to secure
a data set or a structure so that it can be privately
and efficiently queried. SSE was introduced in the
seminal work by Song, Wagner and Perrig (Song
et al., 2000), who proposed the first provably secure
and practical encryption scheme allowing sequential
search over cyphertexts.

The first SSE scheme with search time that is pro-
portional to the number of documents that match the
searched keyword (and shown to be optimal) was de-
veloped by Curtmola, Garay, Kamara and Ostrovsky.
They proposed an inverted index with entries corre-
sponding to each distinct word in the whole database,
as opposed to the previously used per-document in-
dices (Curtmola et al., 2006). Their construction was
the first one to use encrypted linked lists of docu-
ment identifiers that correspond to a search keyword,
pointed to by a trapdoor computed using only a pseu-
dorandom permutation and a pseudorandom function
applied to the keyword.

A generalisation of the previous work on SSE to
the setting of arbitrarily-structured data was made by
(Chase and Kamara, 2010). An important contribu-
tion of their work is the introduction of the formal
concept of the stateful leakage function. Updated se-
curity definitions included this important concept, al-
lowing the security guarantees of an SSE scheme to
be precisely defined up to a given leakage profile.

Kamara, Papamanthou and Roeder introduced
the first efficient (time sublinear in the number of
stored documents) dynamic searchable symmetric
encryption (DSSE) scheme (Kamara et al., 2012).
A DSSE scheme supports the modification of the en-
crypted storage structures by allowing updates. How-
ever, the introduction of this additional functionality
opened up the attack surface. File-injection attacks
described by Zhang, Katz and Papamanthou demon-
strated the vulnerability of early DSSE schemes to
maliciously crafted documents that client would in-
sert to the encrypted database. Such attacks were
shown to be devastating for query privacy, because
the database server could learn client’s keywords af-
ter injecting a relatively small number of documents
(Zhang et al., 2016).

The problem was addressed through the introduc-
tion of the concepts of forward privacy and backward
privacy, first informally proposed by Stefanov, Papa-
manthou and Shi (Stefanov et al., 2014). Forward pri-
vacy is a strong requirement on DSSE schemes which,
informally, states that the server must not be able
to infer whether or not a freshly added record con-
tains any of the keywords from the previous searches
(Bost, 2016). Conversely, the other important no-
tion, backward privacy, formalised by Bost, Minaud

and Ohrimenko (Bost et al., 2017), is a requirement
that the server does not learn about deleted records
from searches made after deletion. Therefore, for-
ward privacy is a mandatory property in a secure
DSSE supporting updates, while a secure DSSE sup-
porting deletes must be backward-private.

While efficient multiple-client SSE constructions
have been known since (Curtmola et al., 2006), their
more complex variants with multiple writers and mul-
tiple readers have traditionally required use of public-
key encryption with keyword search (PEKS) which
does not offer optimal search and update asymptotics
(Bösch et al., 2014).

However, in the ’pure’ DSSE setting, the pres-
ence of client storage, usually required for construct-
ing the mechanism that ensures forward privacy, re-
mains a burden for extension to multiple-client sce-
nario. A recent work by (Bakas and Michalas, 2019)
presents a scheme, albeit only in multi-reader mode,
using Intel’s SGX. In a concurrent work (Frimpong
et al., 2020), a multiple-client forward-private DSSE
scheme dedicated to sensor networks is presented that
attempts to circumvent the problem by introducing
intermediary processing "fog" nodes (that keep their
own state) and the execution of the search operation
is distributed between the cloud provider and the fog
nodes. However, the authors do not state asymptotic
performance of their solution.

2 OUR CONTRIBUTION

We revisit the problem of forward-private, dynamic
searchable symmetric encryption in multiple-writer
setting. As a result, we present SENSSE - a simple
and efficient DSSE scheme satisfying the following
properties:

(1) forward-privacy

(2) optimal asymptotic behaviour of database updates
and searches

(3) supporting multiple writer and reader clients

(4) requiring no client storage or state

To achieve forward privacy, many previous works on
DSSE schemes rely on client-side storage, such as
a local copy of the keyword dictionary holding the
number of updates containing the given keywords,
e.g. (Etemad et al., 2018). This not only creates
a storage burden on the client, but effectively pro-
hibits scenarios with multiple clients, due to the im-
plicit need for synchronisation of this state between
clients and the associated communication complex-
ity (Kim et al., 2019). Instead, we find inspiration
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in the recently revisited line of research focussing
on rebuildable DSSE schemes (Amjad et al., 2019),
(Demertzis et al., 2019). Informally, a rebuildable
DSSE scheme describes an additional algorithm, or
client/server protocol, during which operations on the
server (and possibly client) state are performed in or-
der to improve or restore performance, reclaim space,
or re-establish correctness after a series of query, up-
date or delete operations. Our construction achieves
zero client storage by allowing for a small tempo-
rary violation of correctness; namely, the visibility
of most recently added records to search. Correct-
ness is restored periodically or on demand by a (typ-
ically reader) client, who initiates the REBUILD pro-
tocol. The possibility to have concurrent client ac-
cess enables parallelisation of REBUILD by distribut-
ing its execution to multiple clients. The above prop-
erties make our scheme especially well-suited for im-
plementation in IoT scenarios, where multiple low-
power sensor nodes produce copious amounts of data
that is stored in a database managed by a cloud ser-
vice provider and used by one or more application
clients. In such scenarios, the efficiency of updates is
paramount, while the applications that read and pro-
cess data may tolerate the small penalty of running
the REBUILD protocol. The lack of the requirement
to keep state at the client also enables implementation
in thin-client scenarios, such as web-based applica-
tion clients for email, messaging and the like.

3 PRELIMINARIES

3.1 Notation

{0,1}n represents the set of all binary strings of length
n. {0,1}∗ denotes the set of all finite binary strings.
We denote deterministic assignment of y to x by x←
y, and pseudorandom sampling of x from a set X by

x $←−X . We use the abbreviation PPT to denote proba-
bilistic polynomial-time when referring to algorithms
or adversaries.
In our construction, we use containers such as maps,
multimaps and sets. A map is a collection of la-
bel/value pairs li,vi. We denote values with a low-
ercase letter. We instantiate an empty map by writ-
ing map ← ∅. To read a value associated to a la-
bel l from a map, we write val ← map[l]. To write
a value associated to a label l in a map, we write
map[l]← val. We refer to the number of label/value
pairs as the map size and write |map| to denote it. A
multimap is a collection of label/set pairs li,Si. We
denote sets by an uppercase letter. We instantiate an

empty multimap by writing multimap← ∅. To read
a set associated to a label l from a multimap, we write
S← map[l]. To write a set associated to a label l in
a multimap, we write multimap[l]← S. We refer to
the number of label/set pairs as the multimap size and
write |multimap| to denote it. A set is an unordered
collection of values. We instantiate an empty set by
writing set ← ∅. To add a value to a set, we write
set ← set ∪{val}. To remove a value from a set, we
write set← set \{val}.

3.2 Cryptographic Primitives

We make use of the following basic cryptographic
primitives:
A Symmetric Key Encryption SKE=(KEYGEN,
ENC, DEC) is a semantically-secure encryption
scheme consisting of the three PPT algorithms: GEN
takes a security parameter as input and generates a
secret key k. ENC takes the secret key k and a mes-
sage m and outputs a cyphertext c. DEC takes as in-
put the secret key k and a cyphertext c and returns the
corresponding cleartext message m (Katz and Lindell,
2014).
For the Hash Function family H : K ×D → R and
for a polynomial-time adversary A, the hash function
family H is said to be collision-resistant if

Advcol
H,A(λ) := Pr

[
K $←−K ,(M,M′)← A(K) :

M 6= M′∧HK(M) = HK(M′)] = negl (λ)
(Katz and Lindell, 2014).
A Pseudorandom Function PRF is a function indis-
tinguishable from a truly random function by a PPT
adversary. Let F : K ×D→R be a PPT computable
function family where K is a finite key space and
R is the range of F . For a key K ∈ K , we write
FK : D → R . Let Advprf

F,A(λ) be the pseudorandom
function distinguishing advantage of a PPT adversary
A against F , defined as∣∣∣Pr
[
K $←−K : AFK(·)(1λ) = 1

]
− Pr

[
(π

$←−Π : D→ R ) : Aπ(·)(1λ) = 1
]∣∣∣

The function F is referred to as a PRF if Advprf
F,A(λ) =

negl (λ) for any PPT adversary A (Katz and Lindell,
2014). When SKE is set to operate on a set, it is im-
plied that the operation is performed on each element
of the set.
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4 CONSTRUCTION

4.1 Data Structures

Server holds a map DB of encrypted records such that
each record is individually addressable by a unique id.
To enable keyword search, as is common with search-
able symmetric schemes, our construction deploys an
inverted index INVIDX, mapping keywords to record
ids. Each entry in the inverted index thus consists of
a pair (τ,EIDS) where τ is a search token obtained
from the keyword via a PRF, while EIDS is a set of
indices into DB, encrypted using a CPA-secure sym-
metric encryption scheme. In addition to the inverted
index, our scheme also keeps a forward index FW-
DIDX. Each entry in the forward index consists of
a pair (id,ET S) where id is a record id and ETS is
an encrypted search token set, corresponding to the
keywords found in the record with the given id. This
index is directly populated upon adding new records.
On the client side there is no requirement for any state
storage.

4.2 Informal Description

Our approach to updates differs from those found in
the majority of DSSE schemes in the literature. In-
stead of directly updating the inverted index when
adding a new record, the client asks the server to store
the encrypted search tokens (corresponding to the dis-
tinct keywords present in the record) in a map indexed
by the record id. This automatically satisfies the re-
quirement for the forward privacy, as no token is re-
vealed to the server during the addition of the new
record. A drawback of this approach is that searching,
which operates classically on the inverted index, will
not return any results matching newly added records
until a rebuild is performed. Rebuild, intuitively, is an
operation of transposing the map of encrypted tokens
that is populated during record addition into a format
such that it can be readily merged with the inverted
index on the server. We reason about the leakage and
its possible ramifications and potential for exploiting
it by a persistent adversary in the section on security.

4.3 Definition

In this section, we formally define SENSSE, our dy-
namic, forward-private searchable symmetric encryp-
tion scheme. Our definition is loosely based on the
rebuildable DSSE formalism of (Amjad et al., 2019).
Definition 1. A dynamic, rebuildable structured
encryption scheme Σ = (SETUP, ADD, REBUILD,

SEARCH), consists of the following polynomial-time
protocols between the client and the server:

• (S,KG,KSKE)← SETUP(λ) is a probabilistic al-
gorithm that takes as input a security parameter λ

and outputs the initialised server state S and two
pseudorandom secret keys KG and KSKE .

• (S′)← ADD((W,R),KG,KSKE ,S) is a probabilis-
tic protocol between the client and the server that
takes as input a data record and its corresponding
set of distinct keywords (W,R), the server state S,
the secret keys KG and KSKE and outputs the up-
dated server state S’.

• (S′)← REBUILD(κ,KG,KSKE ,S) is a probabilis-
tic protocol between the client and the server that
takes as input a security parameter κ, the secret
keys KG and KSKE , and the server state S and out-
puts the updated server state S’.

• (ids) ← SEARCH(w) is a probabilistic protocol
between the client and the server that takes as in-
put a keyword w, the secret keys KG and KSKE ,
and the server state S and outputs the set of record
ids of records matching the keyword w.

4.4 Detailed Description

Our construction uses the following cryptographic
primitives: a PRF G producing µ bits of range, and a
private-key encryption scheme SKE. The algorithms,
formally defined above, are described further as fol-
lows.

SETUP. On the client side, the Setup algorithm
takes as input a security parameter λ and outputs a
PRF key and a SKE key to be used by the client. On
the server side, Setup instantiates an empty map DB
which will contain the data records labelled by ids
(generated from a monotonically increasing counter
of records), and an empty multimap (inverted index)
INVIDX, to hold encrypted record ids, labelled by
search tokens (generated by the PRF). The global
counter of all inserted records in DB is initialised to
0. In addition, a set to hold encrypted tokens cor-
responding to the added records is instantiated. We
assume that all clients (readers and writers) partici-
pating to the scheme are in possession of the keys KG
and KSKE . The mechanism of distributing the keys
among clients is out of scope of this work. ADD.
Add is a two-party protocol between the client and
the server. Client initiates by taking a record R and
a set of distinct keywords W ∈ R as inputs. The pur-
pose of Add is to efficiently and securely store the
pair (W,R) in the DB. To do so, the client prepares a
unique keyword token τw for each w ∈W by comput-
ing the PRF G, instantiated with KG, and encrypts the
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Algorithm 1: SETUP.

CLIENT.SETUP(λ)
KG

$←− {0,1}λ

KSKE
$←− SKE.KeyGen(λ)

return (KG,KSKE)
end
SERVER.SETUP

State.invIDX ←∅
State.DB←∅
State. f wdIDX ←∅
State.numRecords← 0

end

record itself using the SKE with the key KSKE . The
client then sends the pair (Enc({τw}w∈W ),Enc(R)) to
the server. The server first computes the new record
id by taking the current value of the record counter,
then adds the encrypted record R to the map DB un-
der the label id. Note that, unlike with most DSSE
schemes, server does not update the inverted index
multimap INVIDX at this point. Instead, the server
stores the pairs (id,Enc({τw}w∈W ) in a separate set,
which will be accessed by the Rebuild algorithm later
on. As a consequence, records immediately added are
not visible to the Search algorithm before Rebuild is
executed. By deferring the update of the inverted in-
dex multimap the scheme gets forward privacy, as the
leakage of Add does not reveal any of the keyword
tokens, and thus server cannot realise whether or not
the freshly added record contains any of the tokens
previously searched for. Server concludes by increas-
ing the record counter by one, thus preparing for the
next execution of the Add algorithm. As Add protocol
requires no client storage, it can be run concurrently
by multiple instances of the client. REBUILD. Re-
build is a two-party protocol between the client and
the server. The purpose of Rebuild is to restore search
correctness after several executions of the Add proto-
col. The client initiates the protocol by requesting a
random sample of κ pairs (idi,Enc({τw}w∈W )) from
the server’s index populated by Add protocol. The
client proceeds by transposing the sample (finding all
ids corresponding to a given τw), encrypts the ids us-
ing SKE and inserts the obtained sets {Enc(idi)} un-
der their corresponding τw label in the multimap IN-
VIDX. As we will show in the section about security,
κ is a security parameter, directly related to the sig-
nificance of the leakage information that the server
may learn while executing the protocol Rebuild. As
Rebuild protocol requires no client storage, it can be
run concurrently by multiple instances of the client.
SEARCH. Search is a two-party protocol between the
client and the server. Client takes the search keyword

Algorithm 2: ADD.

CLIENT.ADD((W,R),KSKE ,KG)
ER← SKE.Encrypt(KSKE ,R)
T ←∅
for all w ∈W do

τw← G(KG,w)
T ← T ∪{τw}

end for
ET ← SKE.Encrypt(KSKE ,T )
Server.Add(ET,ER)

end
SERVER.ADD(ET,ER)

id← State.numRecords
State.DB[id]← ER
State. f wdIDX ← State. f wdIDX ∪ (id,ET )
State.numRecords← State.numRecords+1

end

Algorithm 3: REBUILD.

CLIENT.REBUILD(κ,KSKE ,KG)
T S← Server.GetShu f f ledIndex(κ)
if T S.count < κ then

end
end if
iidx←∅
for i← 0,κ−1 do

(id,ET )← T S[i]
eid← SKE.Encrypt(KSKE , id)
T ← SKE.Decrypt(KSKE ,ET )
for all τw ∈ T do

iidx[τw]← iidx[τw]∪ eid
end for

end for
Server.U pdate(iidx)

end
SERVER.GETSHUFFLEDINDEX(κ)

T S $κ←− State. f wdIDX
State. f wdIDX ← State. f wdIDX \T S
return T S

end
SERVER.UPDATE(iidx)

State.invIDX .Merge(iidx)
end

w and computes the corresponding search token τw by
instantiating a PRF G with key KG and evaluating it
over w. Client then sends the τw to the server, which
finds the matching set of encrypted record ids in the
multimap INVIDX. The client then proceeds to de-
crypt the ids with SKE, using the key KSKE . Upon
completion, the client has the set of record ids match-
ing the keyword w, and can proceed to request indi-
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vidual records from the server.

Algorithm 4: SEARCH.

CLIENT.SEARCH(w,KSKE ,KG)
τw← G(KG,w)
EIDS← Server.Search(τw)
IDS←∅
for all eid ∈ EIDS do

id← SKE.Decrypt(KSKE ,eid)
if id = 0 then exit for
end if
IDS← IDS∪ id

end for
return IDS

end
SERVER.SEARCH(τw)

EIDS← State.invIDX [τw]
return EIDS

end

4.5 Security

In our threat model, we consider the server to be the
single, persistent, honest-but-curious PPT adversary,
that has access to the server state (section 4.1) and
faithfully executes the server-side portions of the pro-
tocols; having access to above, the server tries to in-
fer as much information as possible about the secret
records it stores, and/or the searched keywords. As is
common in the literature, we define security in terms
of the information leakage present in each of the al-
gorithms of the scheme. Thus, we define the notion of
security as follows: we expect our scheme to reveal no
information beyond the leakage profile {LSetup, LAdd ,
LSearch, LRebuild}. We proceed by giving a precise de-
scription of this leakage profile.

Our scheme is designed to be fully dynamic, i.e.
all the record data comes exclusively from the client
executing the Add protocol. Thus, there are no op-
erations concerning record data, nor are there any to-
kens or identifiers being generated or exchanged in
the Setup protocol. Hence, we conclude that Setup
adds no meaningful leakage information outside of
the information that is already available to the server:

LSetup =∅
During the execution of the algorithm Add, server re-
ceives pairs (Enc({τw}w∈W ),Enc(R)). During exe-
cution on the server side, server generates the unique
identifier id associated with each given such pair.
Thus, for each pair (Enc({τw}w∈W ),Enc(R)), the
server learns the associated id, the size (or upper
bound on the size) of the encrypted record R and the
number (or the upper bound of the number) of the dis-

tinct keywords belonging to the record R. The server
expressly does not learn any of the keywords and thus
cannot infer a link between a newly added record and
the search history, satisfying the forward privacy re-
quirement introduced by (Stefanov et al., 2014). The
leakage of the protocol Add is:
LAdd(Enc({τw}w∈R),Enc(R)) = (idr, |R|, |{τw}w∈R|)

The query algorithm sends a search token τw cor-
responding to the keyword w to the server. Server
performs a lookup into the multimap INVIDX and re-
turns encrypted record ids. At this moment, the server
learns only the (upper bound of) the size of the re-
sulting record set RS containing w. However, as the
client subsequently decrypts the ids and requests the
encrypted records from the server, server will have
also learned the exact number of matching records,
the ids themselves, and the size of each record.

LSearch(τw) = {(id, |R|) ∈ RS}
This leakage is consistent with the standard leakage
profile of the DSSE schemes in the literature (Etemad
et al., 2018), (Bost, 2016), (Bösch et al., 2014).

As we have so far seen mostly standard forward-
private DSSE leakage behaviour from Setup, Add and
Search algorithms, the leakage behaviour of the Re-
build protocol is of most interest for our scheme. Re-
build takes a set of random samples R of κ pairs
(id,Enc({τw}w∈Rid )), and then iterates through the set
to assign matching set of ids to every distinct τw found
in the set. But the server sees only the final result of
this assignment; i.e. for a given set {id}, the server
sees the set {τw}. The mappings are not revealed,
as the ids in the resulting multimap are encrypted.
Therefore, the leakage of the Rebuild protocol is:

LRebuild() = {τ : τ ∈R}∪{id : id ∈R}
The question crucial to security of the Rebuild proto-
col is what can the server infer from this information.
A persistent adversary observing the protocol execu-
tion on the server can only resort to guessing the ac-
tual permutation of ids among the τw slots in order to
infer the link between keyword tokens and their cor-
responding records. There are (2κ−1) different ways
to choose one or more ids for each of the τw slots. The
number of τw slots in R may vary from 1 to |D|, where
D is the dictionary of all possible keywords. So, the
number of permutations in the best case is (2κ− 1)
and in the worst case (2κ− 1) · |D|. The probability
of guessing the correct permutation of κ ids over all
τw slots given the leakage LRebuild is thus O (2−κ ).
The server can observe the inverted index INVIDX
for changes of the set of associated encrypted indices,
but can only ascertain that one or more additions took
place, without inferring which IDs got associated to
which token, as the IDs are encrypted. Even, if the
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server maintains a temporal record of changes to cor-
relate own record injections with changes to its state
structures, it cannot infer the association of a new
record ID to an already searched token due to the
fact that the inverted index is only updated in Rebuild
and those updates are probabilistic due to the random
sampling of the forward index performed in Rebuild.

We proceed by defining the adaptive security
following the established game formalism (Kamara
et al., 2018):

Definition 2. Let Σ = (SETUP, ADD, REBUILD,
SEARCH), be a dynamic, rebuildable structured en-
cryption scheme. Consider further the probabilistic
experiments below, where A is a stateful PPT ad-
versary, S is a stateful simulator, and LSetup, LAdd ,
LSearch, LRebuild are leakage profiles:

RealΣ,A the adversary A receives the server
state from the challenger. The adversary then
adaptively chooses polynomially-many opera-
tions from Add, Rebuild, Search and receives
their transcripts. Finally, A outputs a bit b that
is output by the experiment.

IdealΣ,A ,S given the LSetup, the simulator S re-
turns the server state to the adversary A . The
adversary then adaptively chooses polynomially-
many operations from Add, Rebuild, Search,
for which the simulator receives LAdd , LRebuild ,
LSearch, and returns their transcripts. Finally, A
outputs a bit b that is output by the experiment.

We say that Σ is adaptively (LSetup, LAdd , LSearch,
LRebuild)− secure, if there exists a PPT simulator S
such that for all PPT adversaries A , the following ex-
pression is negligible in λ:

Pr
[
[RealΣ,A(λ) = 1]− IdealΣ,A ,S (λ) = 1]

]
.

Theorem 3.1. If SKE is a CPA-secure encryp-
tion scheme and G is a pseudorandom function, then
SENSSE is (LSetup, LAdd , LSearch, LRebuild)− secure.

Proof. Consider the following simulator S, simu-
lating Setup, Add, Rebuild and Search, whose input
is the respective leakage profile. Server is the ad-
versary A . H1, H2, H3, H4 and H5 are random or-
acles, and we denote programming a random oracle
by H (x)← y.
Given the simulator S, the goal of the proof is to show
that the games REAL and IDEAL are indistinguish-
able. We proceed by defining a series of hybrids, with
the aim to show that the adversary cannot distinguish
the output of REAL and IDEAL games unless an un-
derlying assumption has been violated.

Game 0: Game 0 is the same as Real.

Game 1: Game 1 is the same as Game 0, ex-
cept that instead of using the SKE to encrypt
the records in the ADD protocol, we generate a

S.SETUP(LSetup =∅).

CLIENT.SETUP(λ)
KG

$←− {0,1}λ

KSKE
$←− {0,1}λ

return (KG,KSKE)
end
SERVER.SETUP

State.invIDX ←∅
State.DB←∅
State. f wdIDX ←∅
State.numRecords← 0

end

S.ADD(LAdd = (idr, |R|, |{τw}w∈R|)).

CLIENT.ADD(idr, |R|, |{τw}w∈R|)
ER $←− {0,1}log|R|

ET ←∅
for i← 1, |{τw}w∈R| do

eτw←H1(idr)
ET ← ET ∪{eτw}

end for
Server.Add(ET,ER)

end
SERVER.ADD(ET,ER)

id← State.numRecords
State.DB[id]← ER
State. f wdIDX ← State. f wdIDX ∪ (id),ET )
State.numRecords← State.numRecords+1

end

random string of the same length. Since SKE
is a semantically-secure PRP, its output is indis-
tinguishable from the random string of the same
length and thus games 1 and 0 are indistinguish-
able.

Game 2: Game 2 is the same as Game 1, except
we get the search token τw from the random ora-
cle H1 instead of using the PRF G in Add. With
that, we remove the SKE.Encrypt as it is no longer
needed. We also replace the PRF G in Search
with H1(id). Game 2 is indistinguishable from
the Game 1 because G is a PRF, and as such, its
output is indistinguishable from the output of a
random oracle.

Game 3: Game 3 is the same as Game 2, but the
SKE has been removed from the Rebuild algo-
rithm. Instead, the random oracle H2(id) is used
to compute eid and H3(id) is programmed to hold
a mapping between id and eid, which is subse-
quently used in Search, replacing SKE.Decrypt.
H4(id) used to get τw instead of using decryp-
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S.REBUILD(LRebuild = T S = {τ : τ∈R}∪IDS = {id : id ∈
R}).

CLIENT.REBUILD(κ)
T S← Server.GetShu f f ledIndex(κ)
if T S.count < κ then

end
end if
iidx←∅
for i← 0,κ−1 do

(id,ET )← T S[i]
eid←H2(id)
H3(eid)← id
for all eτw ∈ ET do

τw←H4(eτw)
iidx[τw]← iidx[τw]∪ eid
H5(id)← τw

end for
end for
Server.U pdate(iidx)

end
SERVER.GETSHUFFLEDINDEX(κ)

T S $κ←− State. f wdIDX
State. f wdIDX ← State. f wdIDX \T S
return T S

end
SERVER.UPDATE(iidx)

State.invIDX .Merge(iidx)
end

S.SEARCH(LSearch = {(id, |R|) ∈ RS}).

CLIENT.SEARCH((id, |R|) ∈ RS)
τw←H5(id)
EIDS← Server.Search(τw)
IDS←∅
for all eid ∈ EIDS do

id←H3(eid)
if id = 0 then exit for
end if
IDS← IDS∪{id}

end for
return IDS

end
SERVER.SEARCH(τw)

EIDS← State.invIDX [τw]
return EIDS

end

tion. Indistinguishability of the Game 4 from the
Game 3 follows from the fact that SKE is a se-
mantically secure PRP whose output, following
the PRP/PRF switching lemma, is indistinguish-
able from a PRF. An output of a PRF is, in turn,

indistinguishable from a random oracle.

Game 4: Game 4 is the same as Game 3, but
now we replace the input parameters of all pro-
tocols in REAL with the leakage profile. H5(id)
is programmed in Rebuild to store τw. We change
H1(w) to H5(id) in Add to use it to get distinct
values in place of encrypted token, which is later
used in Search to retrieve valid records. Game 4
is now the same as the as the Ideal experiment,
and the adversary A is thus unable to distinguish
between the games Real and Ideal. �

4.6 Efficiency

The asymptotic cost of adding a record is O (|W |)
(where W is the set of keywords in the inserted record
R) time to prepare the (W,R) pair before sending it to
server. The server performs the actual update of its
data structures in O (1). Overall, the asymptotic cost
of Add is O (|W |) which is optimal (Curtmola et al.,
2006).

In Search, the asymptotic cost on the client side
is O (|R|), where R is the result set. The server cost
is O (1). Overall, the cost of the search operation is
O (|R|) which is optimal (Curtmola et al., 2006).

The cost of Rebuild is at least Ω (κ) (each item in
the forward index sample contains only one keyword
token) and at most O (κ · |D|) (each item in the for-
ward index sample contains all existing keyword to-
kens) where D is the dictionary of all keywords and κ

is a security parameter. The pseudorandom sampling
introduces only a constant cost of generating κ pseu-
dorandom numbers from the interval [0..| f wdIDX |).
In a multi-writer setting, Rebuild protocol would typ-
ically be run by the reader clients, either in the back-
ground with some frequency, or on demand, when
a search operation is required to return the most re-
cently added records.
Storage Efficiency. SENSSE requires client storage
of O (1) and server storage of O (N ), for the index,
where N is the total number of (keyword, record)
mappings (the size occupied by the multimap IN-
VIDX. There is an additional (intermittent) storage
cost for the random sample from the server’s index
of O (|D|), where D is the dictionary containing all
keywords.
Communication Efficiency. SENSSE has optimal
communication cost of O (1) calls from client to
server in all three interactive protocols ADD, RE-
BUILD and SEARCH. SETUP incurs no client/server
communication cost.
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5 CONCLUSION

We presented a simple, efficient, forward-private
DSSE, requiring no client storage, making it an inter-
esting candidate for sensor networks. In future work,
we aim to construct an experiment to evaluate the
scheme performance in a practical setting.
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