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Abstract: In this paper, a global estimation approach is proposed to estimate the states of motion (longitudinal, lateral
and yaw angle) of a convoy of autonomous vehicles, which is composed of four cars and also the inter-distance
between each two neighboring vehicles. The approach used is based on the first-order sliding mode (FOSM)
and second-order sliding mode (SOSM) observer without and with linear gain (FOSML and SOSML), to
estimate and compare at the same time the estimation approach used for each vehicle in convoy. To validate
this approach, we use data from SCANeRT M-Studio of a convoy moving in a defined trajectory. The robustness
of the observers towards estimation errors on the model parameters will be studied.

1 INTRODUCTION

The convoy traffic is intended by the world of research
and industry to ensure the safety of the infrastructure
and to solve the problem of air pollution and noise due
to the number of vehicles circulating in the world to-
day. The transport of merchandise in the long way be-
tween countries as in the Chauffeur project; can move
in a convoy with a driver who drives the first truck,
which reduces driver fatigue. Another project, also
called Sarte, has been successfully realised by the Eu-
ropean Union, with the aim of running a convoy of au-
tonomous vehicles at high speeds, without changing
the infrastructure. Another project as Path in which
a convoy of eight cars was moved at high speed on a
highway. To achieve these missions; sensors are on
each vehicle to get local or global information to en-
sure safety and complete the mission (De La Fortelle
et al., 2014), (Chang et al., 1991).

In several research subjects, the problem of the
convoy is particularly fixed on the longitudinal and
lateral control in which all states are supposed to be
measurable in real time, as in (Ali et al., 2015), (Xiang
and Bräunl, 2010) and (Qian et al., 2016) in which
the dynamic model is simplified to simplify the cal-
culation of the control in real time (Avanzini et al.,
2010). In (Mohamed-Ahmed et al., 2019) we pro-
posed a coupled longitudinal and lateral control ap-
proach in order to follow a well-defined trajectory,
but we also considered that the states of each vehicle

are available in real time, which represents a disad-
vantage in the term of observability in practice, due
to the number of sensors used to calculate the law of
control and to compensate for the inverse dynamics
of each vehicle, which is necessary to propose an es-
timation of states, in order to calculate the control or
to minimize the number of sensors used for a convoy
of autonomous vehicles.

Slip mode estimation approaches have been pro-
posed in the literature for one vehicle. As an exam-
ple (Jaballah et al., 2011) an estimate of tyre forces
has been proposed for the longitudinal movement of
a tractor, based on the SOSM approach, and another
estimate of the contact force is proposed (Rabhi et al.,
2010) with a well-defined convergence study. ABS
angle sensors were used in (M’Sirdi et al., 2008) to
identify the equivalent longitudinal stiffness of the tire
and the effective wheel radius of a vehicle based on
the slip mode approach.

In this work, we propose a global estimation of
states (position and speed) of a convoy of autonomous
vehicles based on different methods of approach es-
timation by sliding mode. First, we will define the
dynamic model used for this approach in order to
represent the non-linear behavior of i-th vehicle. This
model represents the longitudinal, lateral and yaw
angle behaviours. In a second step, we will define the
estimation method used for each vehicle. Leader is
based on a first-order sliding mode observer (FOSM),
the (i− 1)-th vehicle uses a first-order sliding mode
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observer with linear gain (FOSML). For the i-th and
(i+1)-th vehicle we use a second order sliding mode
(SOSM) and SOSM with linear gain (SOSML).
These different methods will allow us to evaluate the
most robust and efficient observer to be used in the
following to control the convoy. The robustness will
be studied for the presence of errors on the model
parameters. To validate these approaches we use two
software; SCANeRT M-Studio and Matlab Simulink.

This paper is organized as follows. Section II rep-
resents the dynamic model of the longitudinal and
lateral movement and yaw angle for each vehicle in
the convoy. The global estimation (FOSM, FOSML,
SOSM and SOSML) of the convoy is represented in
section III, with the convergence study for each ob-
server. The validation and results are presented in
Section IV with the analysis of the robustness to the
model parameters. The general conclusion is repre-
sented in Section V.

2 MODELING

2.1 Dynamic Model

The dynamic model is considered in this paper to
estimate the movement of the fleet in the case of
high speed and high curvature of the road (Rabhi,
2005). The longitudinal and lateral models are cou-
pled and the vehicle is represented as rigid and rear-
wheel driven, that is, both rear wheels are powered
and the steering angles for the two wheels in front are
assumed to be equal (Chebly, 2017). Let G be the
center of gravity of the i-th vehicle and (G, x, y ) is
the vehicle’s reference frame.

L f is distance from the front wheel to G .
Lr: is the distance from the rear wheel center to G.
m, Iz: the mass and Inertia Moment of the vehicles.
mw, Iw :the mass and the rotational inertia of the
wheel.
ẋ,vx : longitudinal vehicle velocity along x axis.
ẏ,vy : lateral velocity (axis y).
θ: yaw angle and θ̇ : yaw rate.
ax = ẍ− ẏθ̇ : longitudinal acceleration.
ay = ÿ+ ẋθ̇ : lateral acceleration.
Cα f ,Cαr : are respectively the cornering stiffness of
the front and the rear wheels.
τ: driving/braking wheels torque.
δ : steering wheel angle.
Faero =

1
2 ρcsẋ2: aerodynamic force, where ρ,s and c

: are the air density, the vehicle frontal surface and
the aerodynamic constant.
Rt :radius of the tire and E: Vehicle’s track.

L3, I3 : the interconnection between the different
bodies composing the vehicle.

The dynamic model of the i-th vehicle is repre-
sented as follows (Chebly, 2017):



meẍi−mẏiθ̇i +L3θ̇2
i +δi(2Cα f δi−2Cα f

ẋi(ẏi+L f θ̇i)

ẋ2
i−(θ̇iE/2)2 )+

Faeroi =
τi
Rt

mÿi−L3θ̈i +mẋiθ̇i +2Cα f
ẋi(ẏi+L f θ̇i)

ẋ2
i−(θ̇iE/2)2 +2Cαr

ẋi(ẏi−Lr θ̇i)

ẋ2
i−(θ̇iE/2)2

= (2Cα f −2 Iw
R2

t
ẍi)δi

I3θ̈i−L3ÿi +2L f Cα f
ẋi(ẏi+L f θ̇i)

ẋ2
i−(θ̇iE/2)2 )−2LrCαr

ẋi(ẏi−Lr θ̇i)

ẋ2
i−(θ̇iE/2)2

−L3ẋiθ̇i = L f (2Cα f −2 Iw
R2

t
ẍi)δi− (E

2 Cα f
Eθ̇i(ẏi+L f θ̇i)

ẋ2
i−(θ̇iE/2)2 )δi

(1)

where : me = m+ 4 Iw
R2

t
, L3 = 2mw(Lr−L f ) and I3 =

Iz +mwE2.
We have two inputs for each vehicle in the convoy,
which represent the inputs for the longitudinal move-
ment (driving/braking wheels torque: uxi =

τi
Rti

) and

lateral (steering wheel: uyi = (2Cα f i−2 Iwi
R2

ti
q̈1i)δi).

2.2 State Model

To write the i-th vehicle model as a state we will write
the model in robotic form. Let q be the position vector
for the three movements:

qi = [qxi,qyi,qθi]
T = [xi,yi,θi]

T

The model presented in the equation (1) can be writ-
ten as follows:

Mi(qi).q̈i +Hi(q̇i,qi) =Ui (2)

where the inertia Matrix Mi(qi) is:

Mi(qi) =

 mei 0 0
0 mi −L3i
0 −L3i I3i


and the vector Hi(q̇i,qi) is equal to:
−miq̇yiq̇θi +L3iq̇2

θi +δi(2Cα f iδi−2Cα f i
q̇xi(q̇yi+L f i q̇θi)

q̇2
xi−(q̇θiEi/2)2

)+Faeroi

miq̇xiq̇θi +2Cα f i
q̇xi(q̇yi+L f i q̇θi)

q̇2
xi−(q̇θiEi/2)2

+2Cαri
q̇xi(q̇yi−Lri q̇θi)

q̇2
xi−(q̇θiEi/2)2

2L f iCα f i
q̇xi(q̇yi+L f i q̇θi)

q̇2
xi−(q̇θiEi/2)2

)−2LriCαri
q̇xi(q̇yi−Lri q̇θi)

q̇2
xi−(q̇θiEi/2)2

−L3iq̇xiq̇θi


and the input vector Ui = (uxi,uyi,uθi)

T :

Ui =


τi
Rti

(2Cα f i−2 Iwi
R2

ti
q̈xi)δi

L f iuyi− (Ei
2 Cα f i

Eiq̇θi(q̇yi+L f iq̇θi)

q̇2
xi−(q̇θiEi/2)2 )δi


According to the equation (2 )we can express the

acceleration equation for the three motions as follows

Global Estimation for the Convoy of Autonomous Vehicles using the Sliding-mode Approach

285



q̈i = M−1
i (qi)[−Hi(q̇i,qi)+Ui] (3)

In order to be able to estimate the states of three
movements of each vehicle (longitudinal, lateral and
yaw angle) it is interesting to write the model pre-
sented in (1) in the form of states taking as a vector of
states: the position q and the speed q̇.

Let z be the state of the system, we choose z :

zi = (z1i,z2i)
T = (qi, q̇i)

T

with positions: z1i = qi = [xi,yi,θi]
T

and velocities: z2i = q̇i = [ẋi, ẏi, θ̇i]
T According to

the equation (3) we have:

ż2i = M−1(z1i)[−Hi(z1i,z2i)+Ui]

The i-th vehicle stat model is given as follows:{
ż1i = z2i
ż2i = f (z1i,z2i)+g(z1i)Ui

(4)

where : f (z1i,z2i) =−M−1(z1i)Hi(z1i,z2i)
and g(z1i) = M−1(z1i)
This model will be used in the following to define the
observer’s model and study the convergence for each
vehicle in the convoy.

3 ESTIMATION

The aim of the observers, is to reconstruct the state of
the position z1 = [x,y,θ]T using a position sensor to
estimate the states of the position (z1) and the speed
(z2) for a convoy of four vehicles. Fig. 1 shows the
diagram which includes all the observers of leader, i-
th, (i−1)-th and (i+1)-th vehicle.

In order to be able to estimate the states of the con-
voy we have the following assumptions:
Assumption . The positions z10 ,z1i−1 ,z1i and z1i+1 are
available in real-time.
Assumption . Model parameters f (z1,z2) and g(z1)
are measurable.
Assumption . The convoy inputs U0,Ui−1,Ui and
Ui+1 are available.

3.1 Leader’s Estimation: FOSM

To estimate the states of the leader a first-order sliding
mode observer (FOSM) is used as shown in Fig. 1.
We suppose that the position (z10 = [x0,y0,θ0]

T and
inputs such as torque and steering angle are accessible
in real time.

Let ẑ10 , ẑ20 be the estimated position and speed of
the leader vehicle.

Figure 1: Principal Diagram of an observer.

The observer’s model is defined as follows:{ ˙̂z10 = ẑ20 −Λ10sign(ẑ10 − z10)
˙̂z20 = f (z10 , ẑ20)+g(z10)U0−Λ20sign(ẑ10 − z10)

(5)

where: f (z10 , ẑ20) =−M−1(z10)H(z10 , ẑ20).
Λ10 = diag(λ10 ,λ10 ,λ10) and Λ20 =
diag(λ20 ,λ20 ,λ20),

where λ10 and λ20 are are positive gains.
The stability study is based on Lyapunov’s approach.
We define the dynamics of the error take as z̃10 =
ẑ10 − z10 : the position error and z̃20 = ẑ20 − z20 : the
velocity error. The error equation is defined as fol-
lows: {

˙̃z10 = z̃20 −Λ10sign(z̃10)
˙̃z20 = ∆ f0−Λ20sign(z̃10)

(6)

with: ∆ f0 = f (z10 , ẑ20)− f (z10 ,z20)
Let VO be a function of Lyapunov candidate (Jaballah
et al., 2009) :

V0 =V10 +V20 (7)

This function is divided in two parts; V10 to converge
the state of ˙̃z10 to zero and V20 to converge the state of
˙̃z20 to zero. The first term of this function is given as
follows:

V10 =
1
2

z̃T
10

z̃10

By calculating the derivative of V10 we have :

V̇10 = z̃T
10
(z̃20 −Λ10sign(z̃10))

We choose the gain λ10 :

λ10 > |z̃20 |

The choice of this condition ensures the convergence
of ẑ10 to z10 in time (t1 > t0). So we’ll have ˙̃z10 = 0 for
∀t > t1. From the equation 6 we can deduce the signe
which represents the average function of the function
sign : signe(z̃10) = λ

−1
10

z̃20
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In the equation (6) we replace the function signe by
its expression :{ ˙̃z10 = z̃20 −Λ10signe(z̃10) = 0

˙̃z20 = ∆ f0−Λ20Λ
−1
10

z̃20
(8)

The second part of the function (V0) is defined as:

V20 =
1
2

z̃T
20

z̃20

By deriving the function V20 for for t > t1 :

V̇20 = z̃T
20
[∆ f0−Λ20Λ

−1
1i z̃20 ]

By choosing the gain λ20 as follows:

λ20 > |∆ f0λ1|

Assuming that |∆ f0| < ε0. With these conditions we
can ensure the convergence of z̃20 to zero in time t2 <
t1 < t0.

3.2 Estimation of (i−1)-Th Vehicle:
FOSML

The preceding of i-th vehicle is estimated by FOSML
(first-order sliding mode observer with a linear
correction term). To define the observer model
(FOSML), it is assumed that the inputs and posi-
tions for the (i− 1)-th vehicle are accessible in real
time. The observer model is defined (Mohamed-
Ahmed et al., 2020):


˙̂z1i−1 = ẑ2i−1 −Λ1i−1 sign(ẑ1i−1 − z1i−1)
−K1i−1(ẑ1i−1 − z1i−1)

˙̂z2i−1 = f (z1i−1 , ẑ2i−1)+g(z1i−1)Ui−1
−Λ2i−1 sign(ẑ1i−1 − z1i−1 −K2i−1(ẑ1i−1 − z1i−1)

where: f (z1i−1 , ẑ2i−1) =−M−1(z1i−1)H(z1i−1 , ẑ2i−1).
Λ1i−1 = diag(λ1i−1 ,λ1i−1 ,λ1i−1) and Λ2i−1 =
diag(λ2i−1 ,λ2i−1 ,λ2i−1)
K1i−1 = diag(k1i−1 ,k1i−1 ,k1i−1) and K2i−1 =
diag(k2i−1 ,k2i−1 ,k2i−1)

Let z̃1i−1 = ẑ1i−1 − z1i−1 position error and z̃2i−1 =
ẑ2i−1− z2i−1 speed error for (i−1)-th vehicle. The dy-
namics of the error is given as follows:

{
˙̃z1i−1 = z̃2i−1 −Λ1i−1sign(z̃1i−1)−K1i−1 z̃1i−1
˙̃z2i−1 = ∆ fi−1−Λ2i−1sign(z̃1i−1)−K2i−1 z̃1i−1

(9)
with: ∆ fi−1 = f (z1i−1 , ẑ2i−1)− f (z1i−1 ,z2i−1)

To study convergence we have two possible cases:
Case 1: k1i−1 = k2i−1 = 0: In this case we have an

FOSM and we can choose the Lyapunov function de-
fined in (7) with the same convergence condition on
the gains of the matrix Λ1i−1 et Λ2i−1 .
Case 2: k1i−1 and k2i−1 6= 0 : in this case let the fol-
lowing Lyapunov function:

Vi−1 =V1i−1 +V2i−1 (10)

We start to study the first part of this function
(V1i−1 ):

V1i−1 =
1
2

z̃T
1i−1

z̃1i−1

This function is designed to converge the state
ẑ1i−1 to the state z1i−1 :

V̇1i−1 = z̃T
1i−1

(z̃2i−1 −Λ1i−1sign(z̃1i−1)−K1i−1 z̃1i−1)

First we choose the gain (λ1i−1 ) as follows:

λ1i−1 > |z̃2i−1 − k1i−1 z̃1i−1 |

This condition ensures convergence of z̃1i−1 = 0 at
the time (t1 > t0) and ˙̃z1i−1 = 0 for ∀t > t1. According
to the equation (9) , we can deduce the function signe:

signe(z̃1i−1) = λ
−1
1i−1

(z̃2i−1 − k1i−1 z̃1i−1)

By replacing the function signe by its expression in
the equation (9) :


˙̃z1i−1 = z̃2i−1 −Λ1i−1signe(z̃1i−1)−K1i−1 z̃1i−1 = 0
˙̃z2i−1 = ∆ fi−1−Λ2i−1λ

−1
1i−1

(z̃2i−1 −K1i−1 z̃1i−1)

−K2i−1 z̃1i−1
(11)

After ensuring the convergence of the state ẑ1i−1
we study the convergence of the state ẑ2i−1 based on
the second term of the function (10) :

V2i−1 =
1
2

z̃T
2i−1

z̃2i−1

By calculating the derivative of this function :

V̇2i−1 = z̃T
2i−1

[∆ fi−1−λ2i−1λ
−1
1i−1

z̃2i−1

+(λ2i−1λ
−1
1i−1

K1i−1 −K2i−1)z̃1i−1 ]

This function is negative when we choose
k2i−1 = λ2i−1 λ

−1
1i−1

k1i−1 and λ2i−1 > |∆ fi−1λ1| with
|∆ fi−1|< εi−1 and k1i−1 positive gain.
These conditions on the matrix gains Λ2i−1 and K2i−1
ensure the convergence of the state ẑ2i−1 to state z2i−1
in a time t2 < t1 < t0.

In conclusion, the (10) is strictly negative (V̇i−1 <
0 ) if the conditions for convergence on matrix gains
are respected.
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3.3 Estimation of i-Th Vehicle: SOSM

Before defining the observer model we assume that
the positions (z1i = [xi,yi,θi]

T ) and the inputs of the
system (Ui) are available in real time. The nominal
parameters of the model are also assumed to be mea-
surable.

Let ẑ1i and ẑ2i be the estimated states. The ob-
server model defined for the system (4) is given as
follows:{

˙̂z1i = ẑ2i−Λ1i|ẑ1i− z1i|
1
2 sign(ẑ1i− z1i)

˙̂z2i = f (z1i, ẑ2i)+g(z1i)Ui−Λ2isign(ẑ1i− z1i)
(12)

Λ1i et Λ2i are positive gains matrices defined as
follows:

Λ1i =

 λ1i 0 0
0 λ1i 0
0 0 λ1i


Λ2i =

 λ2i 0 0
0 λ2i 0
0 0 λ2i


To study the convergence of the observer we start

to write the dynamics of the error. Let z̃1i = ẑ1i− z1i
the estimation error on the positions and z̃2i = ẑ2i−z2i
the estimation error on the velocities. The error model
is defined as follows:{

˙̃z1i = z̃2i−|z̃1i|
1
2 Λ1isign(z̃1i)

˙̃z2i = ∆ fi−Λ2isign(z̃1i)
(13)

with: ∆ fi = [ f̂ (z1i, ẑ2i) − f (z1i,z2i) + (ĝ(z1i) −
g(z1i))Ui]
Let f+i be an estimation constant such as f+i :

||[ f̂ (z1i, ẑ2i)− f (z1i,z2i)+(ĝ(z1i)−g(z1i))Ui]|| ≤ f+i
Let λ2i and λ1i satisfy the following conditions
(Davila et al., 2005):{

λ2i > f+i
λ1i >

√
2

λ2i− f+i

(λ2i+ f+i )(1+p)
1−p

(14)

where p is a positive constant bounded between 0 <
p < 1.

The study of the convergence of this observer is
based on Lyapunov’s method of choosing it as a can-
didate function:

Vi = ϒ
T
i Riϒi (15)

This function is defined positive, continuous and
non-differentiable for all z1i = 0. (Moreno and Oso-
rio, 2008). with:

ϒi = (ϒ1i,ϒ2i)
T = (|z̃1i|

1
2 sign(z̃1i)), z̃2i)

T (16)

and

Ri =
1
2

[
4Λ2i +Λ2

1i −Λ1i
−Λ1i 2

]
Let amin: the eigenvalues of the matrix R and ||ϒ||

the Euclidean norm, the function V is bounded be-
tween:

amin(R)[|ϒ||2 ≤V ≤ amax(R)[|ϒ||2

Calculating the function derived from the equation
(15) we find :

V̇i = ϒ̇
T
i Riϒi +ϒ

T
i Riϒ̇i (17)

The function derived from ϒ and according to the
equation (16) is defined as follows:{

ϒ̇1i =
1

2|z̃1i)|
1
2

˙̃z1i

ϒ̇2i = ˙̃z2i
(18)

Replacing the expression ˙̃z1i, ˙̃z2i (13) in (18):

{
ϒ̇1i =

1

2|z̃1i)|
1
2
(z̃2i−Λ1i|z̃1i|

1
2 sign(z̃1i))

ϒ̇2i = ∆ fi−Λ2isign(z̃1i)
(19)

According with (16) we can write the equation
(19) in the following form:

ϒ̇i =
1

|z̃1i)|1/2

[
−Λ1i

2
1
2

−Λ2i 0

]
ϒi +

[
0
1

]
∆ fi (20)

As presented in the equation (14), the estimation
error on the model parameters is considered to be
bounded by a constant f+i and the gains of λ1i and
λ2i satisfy the conditions presented in (14).

In the following we replace (20) in the expression
of the derived Lyapunov function defined in (17):

V̇i =−
1

|z̃1i)|
1
2

ϒ
T
i Qiϒi (21)

where:

Qi =
Λ1i

2

[
4Λ2i +Λ2

1i −Λ1i
−Λ1i 1

]
Equation (21) shows that the derived Lyapunov

function is strictly negative if the matrix Q is defined
positive. That is, positive gains of the matrix Λ1i and
Λ2i are chosen. This convergence condition is also
granted with the conditions that are defined in equa-
tion (14) on the choice of the gains λ1i and λ2i accord-
ing to the estimation errors on the parameters of the
model.
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3.4 Estimation of (i+1)-Th Vehicle:
SOSML

The SOSML approach is used to reconstruct the states
of (i+1)-th vehicle or the vehicle following of the (i)-
th vehicle. The positions and inputs of (i+ 1)-th are
considered to be accessible in real time. The estima-
tion model is defined as follows:


˙̂z1i+1 = ẑ2i+1 −Λ1i+1 |ẑ1i+1 − z1i+1 |

1
2 sign(ẑ1i+1 − z1i+1)

−K1i+1(ẑ1i+1 − z1i+1)
˙̂z2i+1 = f (z1i+1 , ẑ2i+1)+g(z1i+1)Ui+1
−Λ2i+1 sign(ẑ1i+1 − z1i+1)−K2i+1(ẑ1i+1 − z1i+1)

(22)

where : Λ1i+1 = diag(λ1i+1 ,λ1i+1 ,λ1i+1)
and Λ2i+1 = diag(λ2i+1 ,λ2i+1 ,λ2i+1) and
K1i+1 = diag(k1i+1 ,k1i+1 ,k1i+1) and K2i+1 =
diag(k2i+1 ,k2i+1 ,k2i+1).

Case 1: K1i+1 + K2i+1 =0: in this case we have
an second order sliding observer and the gains must
satisfy the following conditions:


λ2i+1 > f+i+1

λ1i+1 >
√

2
λ2i+1− f+i+1

(λ2i+1+ f+i+1)(1+p)
1−p

(23)

With p is a positive constant bounded between
0¡p¡1. f+i+1 an estimation constant such that:

||[ f̂ (z1i+1 , ẑ2i+1)− f (z1i+1 ,z2i+1)+

..(ĝ(z1i+1)−g(z1i+1))Ui+1]|| ≤ f+i+1 (24)

To study convergence one can choose the function
defined in the equation (15) which ensures the con-
vergence in finite time with positive conditions on the
gains λ1i+1 and λ1i+1
.

Case 2: K1i+1 +K2i+1 6= 0 in this case we have lin-
ear gains that improve the convergence in the finite
time. The finite-time convergence of this estimation
approach is proven in (Moreno and Osorio, 2008) by
modifying the Lyapunov function defined in (15).

3.5 Global Estimation of the Convoy

For a convoy of four vehicles, we define the global ob-
server, which combines several estimation approaches
for different vehicles. As presented, leader uses a
FOSM observer, the (i−1)-th vehicle uses a FOSML,
for i-th vehicle and (i + 1)-th we use an approach
based on SOSM and SOSML. The global observer
model is defined as follows:



˙̂z10 = ẑ20 −Λ10 sign(ẑ10 − z10)
˙̂z20 = f (z10 , ẑ20)+g(z10)U0−Λ20 sign(ẑ10 − z10)
˙̂z1i−1 = ẑ2i−1 −Λ1i−1 sign(ẑ1i−1 − z1i−1)
−K1i−1(ẑ1i−1 − z1i−1)

˙̂z2i−1 = f (z1i−1 , ẑ2i−1)+g(z1i−1)Ui−1
−Λ2i−1 sign(ẑ1i−1 − z1i−1)−K2i−1(ẑ1i−1 − z1i−1)

˙̂z1i = ẑ2i−Λ1i|ẑ1i− z1i|
1
2 sign(ẑ1i− z1i)

˙̂z2i = f (z1i, ẑ2i)+g(z1i)Ui−Λ2isign(ẑ1i− z1i)
˙̂z1i+1 = ẑ2i+1 −Λ1i+1 |ẑ1i+1 − z1i+1 |

1
2 sign(ẑ1i+1 − z1i+1)

−K1i+1(ẑ1i+1 − z1i+1)
˙̂z2i+1 = f (z1i+1 , ẑ2i+1)+g(z1i+1)Ui+1
−Λ2i+1 sign(ẑ1i+1 − z1i+1)−K2i+1(ẑ1i+1 − z1i+1)

(25)
This observer makes it possible to reconstruct the po-
sition state (longitudinal, lateral and yaw angle ) to
estimate the position and speed for the convoy, as-
suming that the model inputs and parameters are ac-
cessible in real time. The inter-distance estimates are
calculated in accordance with the longitudinal posi-
tion between each two neighbouring vehicles. Let
d̂(0,i−1) = x̂0 − x̂i−1 represents the distance between
leader and (i− 1)-th vehicle, d̂(i−1,i) = x̂i−1− x̂i: be-
tween the (i− 1)-th and i-th vehicle and d̂(i,i+1) =
x̂i − x̂i+1 : the inter-distance between the i-th and
(i+1)-th vehicle.

4 SIMULATIONS

To validate the estimation approaches we use two
software ; Scanner studio and Matlab sumilink. A
convoy of four vehicles was controlled to follow a
trajectory defined in Scanner Studio Fig. 2 with safe
inter vehicle distances. The information is retrieved
with a frequency of 20 Hz. The four observers are
simulated in Matlab Simulink to validate the estima-
tion approach and compare the results obtained by the
observers with the real states of the convoy in Scaneer
Studio. The chosen trajectory allows to validate the
observers in the case of two movements; longitudinal
and lateral (important lateral deviation as presented
in Fig.3). As defined in the previous section it is as-
sumed that longitudinal and lateral displacement and
yaw angle are available in real time, as well as sys-
tem inputs such as torque and steering angle for each
vehicle in the convoy.

First we define the initial conditions for the
states of the observer: it is supposed that x̂0 = 0.1m,
ŷ0 = 0.5m and θ̂0 = 1rad. The initial speeds are given
as follows: ˆ̇x0 = 1.8m/s, ˆ̇y0 = 0.1m/s, ˆ̇

θ0 = 0.1rad/s.

The results show us in Fig. 4, the longitudinal
displacement of the real and estimated convoy, the
convergence time for each vehicle depends on the
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Figure 2: Trajectory Small Round.

Figure 3: Movement of the convoy.

estimation approach used and the initial conditions.
Fig. 5 shows us the convergence time of the error
of the longitudinal displacement of each vehicle,
the (i+ 1)-th vehicle converges faster than the other
vehicles which shows the advantage of using SOSML
which allows to quickly converge the estimated state
to the real state by the linear gain. The (i− 1)-th
vehicle uses FOSML and it converges faster than the
i-th vehicle (SOSM) and leader (FOSM).
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Figure 4: Longitudinal
Displacement Estimation.
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Figure 5: Longitudinal
Displacement Error.

Lateral displacement is shown in Fig.6. The lat-
eral movement is almost negligible for t ∈ [0, 12 s]
and when the convoy arrives at the crossroads Fig.
3, the convoy decreases its longitudinal speed and
achieves a significant lateral deviation for t ∈ [12,
42 s]. The lateral displacement error is presented in
Fig. 7, the estimated states potentially converge to the

actual states. The convergence time of the (i+ 1)-th
vehicle SOSML is smaller than other vehicles such
that ti+1 < ti−1 < t0, which shows us that FOSML for
(i−1)-th vehicle converges faster than SOSM without
linear sheathing for the (i)-th vehicle.
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Figure 6: Lateral Displace-
ment Estimation.
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Figure 7: Lateral Displace-
ment Error.

Fig.8 shows the yaw angles for the convoy vehi-
cles. The initial yaw angle of the convoy observer’s
model is around 1rad for each vehicle, which is in-
fluenced by the convergence time from the estimated
states to the real state. In Fig.9 we see that the leader
error (FOSM) converges after a duration of t ∈ [0, 2 s]
and (i+ 1)-th vehicle (SOSML) which is always the
first one that converges to zero for a duration of 0.2s.
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Figure 8: Yaw Angle Esti-
mation.
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Figure 9: Yaw Angle Esti-
mation Error.

The longitudinal speeds of the vehicles are pre-
sented in Fig.10. The speed is increased to attain
50km/h for a longitudinal displacement such as t∈ [0,
12 s] and t ∈ [42, 54 s]. When the vehicles of the con-
voy arrive at the crossroads; the longitudinal speed is
decreased to reach a speed of 10km/h between t∈ [12,
42 s]. The results show a rapid convergence of the
estimated longitudinal speeds with the actual speeds
of the convoy. It is always found that the (i+ 1)-th
vehicle converges faster than other vehicles such that
ti+1 < ti−1 < t0.

The lateral speeds of the convoy are shown in
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Speed.
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Figure 11: Longitudinal
Speed Error.

Fig.12. The convergence time for the leading vehicle
is 3s, 2.8 s for i-th vehicle, 1.5 s for (i−1)-th vehicle
and 1 s for (i+ 1)-th vehicle. The SOSML estima-
tion approach for (i+1)-th vehicle is always the first
one to converge to zero for the lateral speeds of the
convoy according to Fig.13 . From t ∈ [10 35 s] we
find a small error for the leading and (i− 1)-th ve-
hicle, and which remains negligible for the i-th and
(i+1)-th vehicle (SOSM and SOSML), which shows
a robustness of the observer by second order sliding
mode compared to FOSM and FOSML.
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Figure 12: Lateral Speed
Estimation.
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Figure 13: Lateral Speed
Error.

Fig.14 represents the yaw speeds of the convoy.
There is a large error for t ∈ [0 3] for the leading
vehicles (FOSM) and the i-1 vehicle (FOSML) due
to the estimation approaches used, which shows that
the SOSM approach reduces the estimation error and
avoids the brutal increase of error with the conver-
gence phase. Fig.15 shows the estimation error for
the yaw rates of the convoy. The convergence time of
the leader is 3 s, i-th vehicle is t=2 s, (i−1)-th vehicle
is t=1.8 s and (i+ 1)-th vehicle t= 1 s. It can be seen
that the observer with a linear gain converges before
the observers without gain.

The inter-distances chosen to validate the estima-
tion approaches are variable and the distance between
the i-th vehicle and (i−1)-th vehicle is different than
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Figure 14: Yaw rate Esti-
mation.
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Figure 15: Yaw rate ob-
server Error.
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Figure 16: Inter-Vehicle distances.

the distance between the i-th vehicle and (i+1)-th ve-
hicle ..
Fig. 16 shows us the real and estimated inters dis-
tances. The estimated distances converge quickly to
the actual distances. With a speed of 50km/m the ini-
tial distance chosen between the vehicles is 3m, then
a small variation of [-0.3,0.3 m] is due to the variation
of the speed of the convoy.

Robustness

To test the robustness of our observers, we assume
that the parameters are not well estimated, that is,
we add an estimation error on the model parame-
ters of each vehicle in the convoy. Let it be 20%
of error on f ⇒ ∆ f = f − f̂ = 20% f and 20% on g
⇒ ∆g = g− ĝ = 20%g. Fig. 17 represents the error of
the longitudinal displacement of the convoy, we can
see that the position error is almost the same in the
case of well estimated parameters (Fig. 19,Fig. 21) .
On the contrary, the error of the longitudinal velocity
(Fig. 18) is increased in the interval t ∈ [12 35s]. This
error is also presented in the lateral velocity (Fig. 20)
and yaw rate (Fig. 22)). Estimation errors for vehi-
cles using the second order sliding mode approach are
smaller than for vehicles using the first order sliding
mode approach. Fig. 23 represents the inter distances

Global Estimation for the Convoy of Autonomous Vehicles using the Sliding-mode Approach

291



of the convoy, we can see that the inter distance is
almost the same in the case where the parameters are
well estimated as for the three positions of the convoy.
In order to improve the estimation we can modify the
observer gains or decrease the initial conditions on the
estimated states.
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Figure 17: Longitudinal
Displacement Error.
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Figure 18: Longitudinal
Speed Error.
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Figure 19: Lateral Dis-
placement Error.
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Figure 20: Lateral Speed
Error.
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Figure 21: Yaw Angle Er-
ror.
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Figure 22: Yaw Rate Esti-
mation Error.

5 CONCLUSION

In this paper, we have proposed an overall estimate
for a convoy of autonomous vehicles. The four vehi-
cles in the convoy use different estimation approaches
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Figure 23: Inter-Vehicle distances.

to compare and select the most robust and perfo-
rating observer to be used in the following to cal-
culate the laws of longitudinal and lateral control.
The developed observers estimate the positions and
speeds for each movement of the convoy and the dis-
tance between the vehicles. The positions (longitu-
dinal, lateral and yaw angle) and inputs of the con-
voy are assumed to be available in real-time to calcu-
late the observers’ models. Practical validation using
SCANeRT M-Studio data shows the rapid convergence
of estimated states to real states and the robustness of
this approach against estimation errors on the convoy
model parameters. The vehicles using linear gain slid-
ing mode observers (FOSML and SOSML) converge
rapidly compared to vehicles without linear gain ob-
servers (FOSM and SOSM), but when the model pa-
rameters are not well estimated; the estimation errors
of the vehicles using the second-order sliding mode
approach (SOSM and SOSML) are smaller than the
other vehicles (FOSM and FOSML). The trajectory
chosen for the movement of the convoy makes it pos-
sible to test the approach developed in the case of
a large radius of curvature and average longitudinal
speed.
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