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Abstract: Currently, feature selection is an important but challenging task in both data mining and machine learning, 
especially when handling highly dimensioned datasets with noisy, redundant and irrelevant attributes. These 
datasets are characterized by many attributes with limited sample-sizes, making classification models over-
fit. Thus, there is a dire need to develop efficient feature selection techniques to aid in deriving an optimal 
informative subset of features from these datasets prior to classification. Although grey wolf optimizer 
(GWO) has been widely utilized in feature selection with promising results, it is normally trapped in the local 
optimum resulting into semi-optimal solutions. This is because its position-updated equation is good at 
exploitation but poor at exploration. In this paper, we propose an improved algorithm called excited binary 
grey wolf optimizer (EBGWO). In order to improve on exploration, a new position-updating criterion is 
adopted by utilizing the fitness values of vectors 𝑋⃗ଵ, 𝑋⃗ଶ  and 𝑋⃗ଷ to determine new candidate individuals. 
Moreover, in order to make full use of and balance the exploration and exploitation of the existing BGWO, a 
novel nonlinear control parameter strategy is introduced, i.e. the control parameter of 𝑎⃗  is innovatively 
decreased via the concept of the complete current response of a direct current (DC) excited resistor-capacitor 
(RC) circuit. The experimental results on seven standard gene expression datasets demonstrate the 
appropriateness and efficiency of the fitness value based position-updating criterion and the novel nonlinear 
control strategy in feature selection. Moreover, EBGWO achieved a more compact set of features along with 
the highest accuracy among all the contenders considered in this paper. 

1 INTRODUCTION 

The major challenge in analysing big data is the vast 
number of features. Out of the many available 
features, only a few of them will be useful in 
distinguishing samples that belong to different classes 
while majority of the of the features will be irrelevant, 
noise, or redundant. Foremost, these irrelevant 
features lead to noise generation in big data analysis. 
In addition, they result in increased dataset 
dimensions and a further computational complexity 
in both clustering and classification operations. All 
these consequently decreases the rate of classification 
accuracy. Thus, superior approaches are needed to 
identify diverse features, compute the relationship 
between the features and optimally select informative 
attributes from these highly dimensioned datasets 
(Almugren & Alshamlan, 2019). 

For a dataset containing 𝑁  number of features, 
there exists  2ே  number of candidate subsets. The 
main objective of designing different feature 
selection techniques has always been to determine a 

compressed and optimal subset with the highest 
precision among the possible candidate subsets. 

 Since the scope of possible solutions is wide and 
the size of this set of responses is on the rise due to 
the ever-increasing number of features, determining 
the best subset of 𝑁  features is extremely difficult 
and costly(Pirgazi et al., 2019), (Liang et al., 2018). 

Feature selection techniques can be broadly 
categorized into two i.e.  filters and wrappers. Filter 
approaches utilizes the dependency, mutual 
information, distance, and information theory in 
carrying out feature selection(Shunmugapriya & 
Kanmani, 2017). Unlike filters, wrappers utilize 
classifiers as the learning algorithm in optimizing the 
classification performance by selecting the 
informative features. Commonly, filter techniques are 
often faster compared to wrappers, which is largely 
attributed to their reduced computational complexity 
(Sun et al., 2018). Nevertheless, wrapper techniques 
can usually offer better performances compared to 
filters(Zorarpacı & Özel, 2016). Wrappers apply 
metaheuristic optimization approaches, such as 
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binary genetic algorithm (BGA)(De Stefano et al., 
2014), binary grey wolf optimization 
(BGWO)(Emary et al., 2016), binary ant colony 
optimization (BACO) (Aghdam et al., 2009), binary 
particle swarm optimization (BPSO) (He et al., 2009), 
to select the optimal informative  feature subsets. 

 BGWO is a recent feature selection approach, 
which usually offers better performance compared to 
other conventional methods(Emary et al., 2016) . 
However, the wolves’ new positions are based on the 
experience of leaders i.e. alpha, beta and delta, which 
normally leads to premature convergence. In 
addition, a proper balance between the diversification 
(global search) and intensification (local search) is 
still the challenging issue in BGWO (Too et al., 
2018). 

 In this paper, we propose a new excited binary 
grey wolf optimizer (EBGWO) that aims to improve 
the performance of BGWO(Emary et al., 2016) in 
selecting informative features in highly dimensioned 
microarray datasets. Foremost, to overcome the 
insufficiency of the existing BGWO regarding its 
position-updated equation, which is good at 
exploitation but poor at exploration, a new position-
updated equation utilizing the fitness values of 
vectors 𝑋⃗ଵ, 𝑋⃗ଶ  and 𝑋⃗ଷ is proposed to determine new 
candidate individuals. Moreover, inspired by the 
concept of the complete current response of a direct 
current (DC) excited resistor-capacitor (RC) circuit, a 
new nonlinear control parameter strategy for 
parameter 𝑎⃗  is introduced in order to make full use 
of and balance the diversification and intensification 
of the existing BGWO algorithm. 

 The performance of EBGWO is tested using 
seven standard gene expression datasets. To evaluate 
the effectiveness of proposed method, EBGWO is 
compared with five existing binary metaheuristic 
algorithms i.e. BGWO1, BGWO2, BPSO, BDE and 
BGA. The experimental results indicate EBGWO has 
a very efficient computational complexity, while 
keeping a comparative performance in feature 
selection. 

The rest of paper is organized as follows. 
Preliminaries for the work, GWO is presented in 
section 2. The proposed excited grey wolf optimizer 
(EGWO) is presented in section 3. The binary version 
of EGWO i.e.  Excited binary grey wolf optimizer 
(EBGWO) is presented in section 4. Section 5 reports 
the experimental setting and a discussion of the 
obtained results. Finally, a conclusion and future 
works are given in section 6.  

 

2 GREY WOLF OPTIMIZER 

Grey wolf optimizer (GWO) is a recently proposed 
metaheuristic optimization technique(Mirjalili et al., 
2014). In nature, grey wolves live in groups ranging 
between 5 to 12. GWO mimics the behaviour 
portrayed by these grey wolves while hunting and 
searching of a prey. In GWO, to simulate the 
leadership hierarchy in a pack, the population is 
divided into four types of wolves i.e.  Alpha (𝛼), beta 
(𝛽), delta (𝛿), and omega (𝜔). The alpha wolf is the 
overall leader responsible for decision-making. The 
beta wolf is the second in command is aids the alpha 
in making the decision or other activities. Delta wolf 
is referred as the third leader in the group, which 
dominates the omega wolves. The three leaders i.e. 
𝛼, 𝛽 and 𝛿 guide the hunting (optimization) while the 
remaining omega wolves ( 𝜔 ) follow them(El-
Gaafary et al., 2015).  

Equation 1 depicts the encircling behaviour of the 
pack while hunting a prey. 
 

𝑋ሺ𝑡 ൅ 1ሻ = 𝑋௣ሺ𝑡ሻ െ 𝐴. 𝐷 (1)
 
Where 𝑋௣ is the position of prey, 𝐴 is the coefficient 
vector, and 𝐷 is defined by equation 2. 
 

𝐷 =ห𝐶. 𝑋௣ሺ𝑡ሻ െ 𝑋ሺ𝑡ሻห  (2)
 
Where 𝐶 is the coefficient vector, 𝑋 is the position of 
grey wolf, and 𝑡 is the number of iterations. 

The coefficient vectors, 𝐴 and 𝐶, are determined 
by equations 3 and 4 respectively. 

𝐴 ൌ 2. 𝑎. 𝑟ଵ െ 𝑎  (3)

𝐶 ൌ 2. 𝑟ଶ (4)

Where 𝑟ଵ  and 𝑟ଶ  are two independent random 
numbers uniformly distributed between ሾ0,1ሿ, and 𝑎 
is the encircling coefficient that is used to balance the 
trade-off between exploration and exploitation. 
In GWO, 𝑎  is linearly decreased, from 2 to 0, 
according to Equation (5). 
 

𝑎 ൌ 2 െ 2. ሺ
௧

்
ሻ  (5)

 
Where 𝑡  and 𝑇 represent the number of iterations and 
maximum number of iterations respectively. 

In GWO, the three leaders 𝛼, 𝛽 and 𝛿  leaders are 
deemed knowledgeable of the potential position of 
the prey. Thus, they guide the remaining omega 
wolves to move toward the optimal position. 
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Mathematically, the new position of wolf is updated 
as per Equation (6). 
 

𝑋ሺ𝑡 ൅ 1ሻ ൌ
ሺ௑భା௑మା௑యሻ

ଷ
  (6)

 
Where 𝑋ଵ, 𝑋ଶ  and 𝑋ଷ  are determined according to 
Equations (7)-(9) 
 

𝑋ଵ ൌ |𝑋ఈ െ 𝐴ଵ. 𝐷ఈ|  (7)
 

𝑋ଶ ൌ ห𝑋ఉ െ 𝐴ଶ. 𝐷ఉห  (8)
 

𝑋ଷ ൌ |𝑋ఋ െ 𝐴ଷ. 𝐷ఋ|  (9)
 
Where 𝑋ఈ, 𝑋ఉ  and 𝑋ఋ  are the position of 𝛼, 𝛽  and 𝛿 
respectively during iteration 𝑡. 

𝐴ଵ, 𝐴ଶ  and 𝐴ଷ  are determined using Equation 3; 
and 𝐷ఈ, 𝐷ఉ and 𝐷ఋ are defined in Equations (10)-(12) 
respectively. 
 

𝐷ఈ ൌ |𝐶ଵ. 𝑋ఈ െ 𝑋|  (10)
 

𝐷ఉ ൌ ห𝐶ଶ. 𝑋ఉ െ 𝑋ห  (11)
 

𝐷ఋ ൌ |𝐶ଷ. 𝑋ఋ െ 𝑋|  (12)
 
Where 𝐶ଵ, 𝐶ଶ and 𝐶ଷ are determined using Equation 
(4). 

3 EXCITED GREY WOLF 
OPTIMIZER (EGWO) 

3.1 Nonlinearly Controlling Parameter 
𝒂 via the Complete Current 
Response of the DC Excited RC 
Circuit  

It is a well-established fact that for population-based 
metaheuristics, both exploration (diversification) and 
exploitation (intensification) are conducted 
concurrently. 

Exploration is termed as the ability of a 
population-based metaheuristic to examine new areas 
within the defined search space with the aim of 
determining the global optima. On the hand, 
exploitation is the ability to utilize the information of 
already identified individuals in deriving better 
individuals(Long et al., 2018; Luo et al., 2013). 

In every population-based metaheuristic, both 
exploration (diversification) and exploitation 

(intensification) abilities are attained by applying 
specific operators. 

In the conventional GWO algorithm, the control 
parameter 𝑎 plays a critical role in balancing between 
diversification and intensification of an individual 
candidate search (Long et al., 2018). A larger value 
of 𝑎  enhances global exploration, while its smaller 
value promotes local exploitation. Thus, selection of 
a suitable control strategy for parameter 𝑎 is critical 
in attaining an effective balance between local 
exploitation and global exploration. From literature, 
one proved way to achieve the required balance is 
critically studying the control of parameter 𝑎 . To 
date, various approaches have been proposed to 
control the conventional GWO’s parameter 𝑎 (Long, 
2016; Long et al., 2018; Mittal et al., 2016). 

However, in the conventional GWO, 𝑎  linearly 
decreases from 2  to  0  using Equation (5). Since 
GWO incorporates a highly complicated nonlinear 
search process, the utilized linear control of 
parameter 𝑎  doesn’t reflect the actual search process 
(Long et al., 2018). Moreover, (Mittal et al., 2016) 
suggested that the performance of GWO would 
improve if parameter 𝑎 is nonlinearly controlled. 

Motivated by both the above consideration and 
the complete current response of a direct current (DC) 
excited resistor-capacitor (RC) circuit(Alexander & 
Sadiku, 2016), a novel nonlinear adaptation of 
parameter 𝑎 is proposed in this paper. 

The complete current response of the RC circuit 
to a sudden application of a dc voltage source, with 
the assumption that the capacitor is initially not 
charged is given in Equation 13. 

𝑖ሺ𝑡ሻ ൌ
௏ೞ

ோ
ሺሺ

ଵ

௘೟ሻఛሻ  (13)

Where 𝜏 ൌ 𝑅 ൈ 𝐶 is the time constant that expresses 
the rapidity with which the value if 𝑖 decreases from 

the initial value 
௏ೞ

ோ
 to zero over time  . 𝑉௦ is value of a 

constant DC voltage while 𝑅  and 𝐶  are the resistor 
and capacitor values of the circuit. 

We adopt this concept i.e. the exponential decay 
of  𝑖  over time to develop a new nonlinear control 
strategy of parameter 𝑎 as presented in Equation 14. 

𝑎௜,௧ ൌ 𝑎௜௡௜௧௜௔௟ ൈ ሺ
𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ି௧

𝑀𝑎𝑥𝐼𝑡𝑒𝑟
ሻఛ೔,೟  (14)

Where 𝑎௜,௧  is the value of the control parameter 𝑎 
assigned to grey wolf 𝑖 during iteration   𝑡. 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 
indicates the total number of iterations (generations) 
and  𝑎௜௡௜௧௜௔௟  is the initial value of the control 
parameter 𝑎 . 𝜏௜,௧  is a nonlinear modulation index 
assigned to the grey wolf 𝑖 during iteration 𝑡.  
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To ensure that the value of the control parameter 𝑎௜,௧ 
is proportional to the fitness value of grey wolf 𝑖 
during iteration  𝑡, a new formulation of  the value of 
the nonlinear modulation index 𝜏௜,௧  is given in 
Equation (15). 
 

𝜏௜,௧ ൌ ቤ
ሺ

ಷഀ೟శ ಷഁ೟శಷഃ೟
య

ሻିி௑೟

ሺ
ಷഀ೟శ ಷഁ೟శಷഃ೟

య
ሻିி௪೟

ቤ  
(15)

 
Where 𝐹𝛼௧,  𝐹𝛽௧  and 𝐹𝛿௧  are the fitness values of  
𝛼, 𝛽  and 𝛿  wolves (the 3 best wolves) respectively 
during the current iteration 𝑡. 𝐹𝑋௧  is the fitness value 
of grey wolf 𝑖 during iteration 𝑡 and finally  𝐹𝑤௧ is 
the worst fitness value among the omega (𝜔) wolves 
during iteration 𝑡 . 
 
Consequently, 𝐴ଵ, 𝐴ଶ  and 𝐴ଷ  are determined using 
Equation (16) which is a variant of Equation 3. 
 

𝐴 ൌ 2. 𝑎௜,௧. 𝑟ଵ െ 𝑎௜,௧  (16)
 

From the literature of conventional GWO 
(Mirjalili et al., 2014), when 𝐴 ൏ 1 the grey wolves 
are compelled to attack the prey (exploitation) and 
when 𝐴 ൐ 1 the grey wolves are compelled to move 
away from the current prey with the hope of finding 
another fitter prey. This implies that smaller values of 
the control parameter 𝑎 promotes local exploitation 
while larger values facilitates global exploration. 

According to Equation (5) of the conventional 
GWO algorithm, it is evident that half of the iterations 
are committed to exploration and the remaining half 
to exploitation. This strategy fails to consider the 
impact of effective balancing between these two 
conflicting milestones to guarantee accurate 
approximation of the global optimum. 

The nonlinear control strategy of parameter 𝑎 
proposed in Equation (14), tries to overcome this 
challenge by adopting a variant of decay function to 
strike a proper balance between exploration and 
exploitation. Since this strategy promotes allocates a 
large proportion of the iterations to global exploration 
compared to local exploitation, the convergence 
speed of the proposed EGWO algorithm is enhanced 
while minimizing the local minima trapping effect. 

Moreover, since the proposed scheme is 
proportional to the fitness values of the individual 
grey wolves in the search space and the current 
iteration (generation), diversity and the quality of the 
solutions is enhanced.  

3.2 Socially Strengthened Hierarchy 
via a Fitness-value based  
Position-updating Criterion  

In the conventional GWO, social hierarchy is the 
cornerstone in both the internal management and the 
hunting patterns of the pack(Tu et al., 2019) . All the 
wolves in the pack conduct hunting under the 
guidance of the 𝛼, 𝛽  and 𝛿  wolves. An assumption 
that these three dominant wolves have a better 
knowledge of the prey’s location. Consequently, the 
omega (𝜔) wolves update their positions with the aid 
of these three leaders during the hunting process. This 
implies that the conditions of the 𝛼, 𝛽 and 𝛿 wolves 
are key in updating the whole pack. Meanwhile, the 
higher the rank a wolf attains during the search, the 
closer it gets to the global optimum. 

In addition, all the wolves including the three 
leaders utilize Equation (6) to update their positions. 
That is to say the 𝛼 wolf will utilize the lowly ranked  
𝛽  and 𝛿  wolves to update its position. Likewise, 𝛽 
wolf will utilize the lowly ranked  𝛿 wolf to update 
itself. Since the conditions of the 𝛽 and 𝛿 wolves are 
worse compared to that of the 𝛼 wolf, there are higher 
chances that the two wolves will compel the 𝛼 wolf 
to move away from the global optimum. Likewise, 𝛽 
wolf may also be misled by the 𝛿 wolf. Ultimately, 
the accumulative error will have an adverse effect on 
updating the positions of the all the wolves in the pack 
and the convergence efficiency of the GWO will 
drastically reduce(Tu et al., 2019). 

On the other hand, since all the omega (𝜔) wolves 
are attracted towards the 𝛼, 𝛽 and 𝛿 wolves, they may 
prematurely converge due to limited exploration 
within the search space. Thus, the conventional GWO 
is good at exploitation but poor at exploration. 

Thus, to overcome the GWO’s premature converge 
and still maintain the social hierarchy of the pack, a 
different scheme for updating both the dominant (𝛼, 𝛽 
and 𝛿) and the omega (𝜔) wolves is needed. To attain 
this, a new position-updated equation utilizing the 
fitness values of vectors 𝑋⃗ଵ, 𝑋⃗ଶ  and 𝑋⃗ଷ is utilized in 
determining new candidate individuals. 

Foremost, for each wolf in the pack, 
vectors 𝑋௩௘௖ଵ , 𝑋௩௘௖ଶ  and 𝑋௩௘௖ଷ   are computed using 
Equations (17)-(19). 

𝑋௩௘௖ଵ ൌ ራ 𝑋ଵሺ𝑗ሻ

ௗ

௝ୀଵ

 
(17)

𝑋௩௘௖ଶ ൌ ራ 𝑋ଶሺ𝑗ሻ

ௗ

௝ୀଵ

 
(18)
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𝑋௩௘௖ଷ ൌ ራ 𝑋ଷሺ𝑗ሻ

ௗ

௝ୀଵ

 
(19)

Where 𝑑  is the dimension of the search space and 
𝑋ଵሺ𝑗ሻ, 𝑋ଶሺ𝑗ሻ  and 𝑋ଷሺ𝑗ሻ  are determined using 
Equations (7)-(9) respectively. 

Next, the fitness values 𝐹𝑋௩௘௖ଵ, 𝐹𝑋௩௘௖ଶ  and 
𝐹𝑋௩௘௖ଷ for vectors 𝑋௩௘௖ଵ , 𝑋௩௘௖ଶ  and 𝑋௩௘௖ଷ 
respectively are determined and the one with the best 
fitness forms the new position as depicted by 
Equations (20)-(21). 

ሾ𝑓𝑖𝑡𝑡𝑒𝑠𝑡, 𝑃𝑜𝑠ሿ ൌ 𝑚𝑖𝑛 ൭ራ 𝐹𝑋௩௘௖ሺ௔ሻ

ଷ

௔ୀଵ

൱   
(20)

𝑋ሺ𝑡 ൅ 1ሻ ൌ ൭ራ 𝑋௩௘௖ሺ௔ሻ

ଷ

௔ୀଵ

൱
 ௉௢௦

  
(21)

4 EXCITED BINARY GREY 
WOLF OPTIMIZER (EBGWO) 

Feature selection (FS) is a significant problem in 
pattern recognition and machine learning areas. The 
aim of FS is to select the most informative feature 
subset guided by a given evaluation criterion(Salesi 
& Cosma, 2017; Tu et al., 2019). 
In essence, FS is a broad-based optimization problem 
that is characterized by huge computations. 
Since the FS problem utilizes a binary search space, 
it is important to convert the proposed continuous 
EGWO to binary i.e. EBGWO. One of the commonly 
adopted approach for this transformation is the 
utilization of transfer functions(Salesi & Cosma, 
2017; Tu et al., 2019). 
In our experiments, the transfer function we utilized 
in converting the real values of each solution to binary 
is depicted by Equation (22). 

𝑋௝ሺ𝑡 ൅ 1ሻ ൌ ቊ1, 𝑖𝑓 𝑆 ቀ𝑋௝ሺ𝑡 ൅ 1ሻቁ ൐ 𝜌,  

0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                  
 

(22)

Where 𝜌 ∈ ሾ0,1ሿ depict a random threshold and 𝑆 is 
the considered sigmoid function as expressed by 
Equation (23). 

𝑆ሺ𝑥ሻ ൌ
1

1 ൅ exp ሺെ10ሺ𝑥 െ 0.5ሻሻ
  

(23)

𝑋௝ሺ𝑡 ൅ 1ሻ=1 imply that the 𝑗௧௛ element of 𝑋ሺ𝑡 ൅ 1ሻ 
is selected as an informative attribute while  𝑋௝ሺ𝑡 ൅

1ሻ =0 imply that the corresponding 𝑗௧௛  element is 
ignored. 
For instance, if  𝑋ሺ𝑡 ൅ 1ሻ ൌ ሾ0.55, 0.21, 0.35,0.8ሿ 
and 𝜌 ൌ 0.5, the output of Equation (21) becomes 
𝑋ሺ𝑡 ൅ 1ሻ ൌ ሾ1, 0, 0,1ሿ which imply that the 1௦௧ and 
4௧௛  features be selected while the 2௡ௗ and 3௥ௗ 
features will be ignored. 
By doing so, the number of features is reduced 
without affecting the classification performance. 
Since the FS task aims at attaining better 
classification accuracy with the utilization of fewer 
attributes, the objective function 𝐹𝑖𝑡 utilized in this 
paper is given by Equation (24)(Salesi & Cosma, 
2017). 

𝐹𝑖𝑡 ൌ 𝜀 ∗
|𝑆|
|𝑁|

െ ሺሺ1 െ 𝜀ሻ ∗ 𝐴𝑐𝑐ሻ (24)

Where 𝐴𝑐𝑐   is indicates the accuracy of a given 
classifier, |𝑆| is the size of the selected feature subset 
and |𝑁|  is the number of the total features of a 
dataset. Thus, FS is turned into a problem of 
determining the minimum value of Equation (24). 
Herein, 𝜀  and ሺ1 െ 𝜀ሻ are weights corresponding to 
the feature subset size and average accuracy 
respectively. The parameter of 𝜀 in Equation (24) is 
set 0.2 (Salesi & Cosma, 2017). 

The pseudocode of the proposed excited binary 
grey wolf optimizer (EBGWO) algorithm is 
presented in Algorithm 1. 

Algorithm 1: Pseudo-code for the EBGWO.  
Input: labelled gene dataset D, Total number of 
iterations 𝑀𝑎𝑥𝐼𝑡𝑒𝑟, Population size N, Initial value of 
the control parameter 𝑎௜௡௜௧௜௔௟  
Output:  Optimal Individual’s position 𝑋ఈ  , Best 
fitness value Fit (𝑋ఈ) 
1. Randomly initialize N individuals’ positions to 
establish a population 
2. Using Equation (23), evaluate the fitness of all 
wolves, Fit (𝑋) 
3. [~, Index] =Sort (𝐹𝑖𝑡 ሺ𝑋ሻ, ′𝐴𝑠𝑐𝑒𝑛𝑑′) 
4. 𝐹𝛼 =𝐹𝑖𝑡 ሺ𝑋ሻூ௡ௗ௘௫ሺଵሻ 
5. 𝐹β =𝐹𝑖𝑡 ሺ𝑋ሻூ௡ௗ௘௫ሺଶሻ 
6. 𝐹δ =𝐹𝑖𝑡 ሺ𝑋ሻூ௡ௗ௘௫ሺଷሻ 
7. 𝐹w =𝐹𝑖𝑡 ሺ𝑋ሻூ௡ௗ௘௫ሺேሻ 
8. 𝑋ఈ=𝑋ሺ𝐼𝑛𝑑𝑒𝑥ሺ1ሻሻ 
9. 𝑋ఉ=𝑋ሺ𝐼𝑛𝑑𝑒𝑥ሺ2ሻሻ 
10. 𝑋ఋ=𝑋ሺ𝐼𝑛𝑑𝑒𝑥ሺ3ሻሻ
11. For t=1 To 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 
12.    For i=1 To N 
13.         Determine 𝑎௜,௧ using Equation (14) 
14.        Compute 𝑋௩௘௖ଵ, 𝑋௩௘௖ଶ and 𝑋௩௘௖ଷ using 

      Equations (17)-(19) 
15.       Generate 𝑋𝑣𝑒𝑐1

௡௘௪, 𝑋𝑣𝑒𝑐2
௡௘௪ and 
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      𝑋𝑣𝑒𝑐3
௡௘௪using Equation (21) 

16.      Evaluate the fitness values 
𝐹𝑋௩௘௖ଵ,  𝐹𝑋௩௘௖ଶ   and 𝐹𝑋௩௘௖ଷ of the binary 
vectors 𝑋𝑣𝑒𝑐1

௡௘௪ 𝑋𝑣𝑒𝑐2
௡௘௪ and   

𝑋𝑣𝑒𝑐3
௡௘௪ respectively using  Equation (24) 

17.    Determine the minimum value(fittest)  of the 
   three evaluated fitness values  and its Index 
   using Equations (20) 

 18.         If (fittest<𝐹𝑖𝑡 ሺ𝑋ሻூ௡ௗ௘௫ሺ௜ሻ) Then 
 19.        𝐹𝑖𝑡 ሺ𝑋ሻூ௡ௗ௘௫ሺ௜ሻ= fittest 
20.       Update 𝑋ூ௡ௗ௘௫ሺ௜ሻ using Equation (21) 
   End If 
21. Next i 
22.       Repeat steps 3 to 10 
23. Next t 
  

5 EXPERIMENTAL RESULTS 
AND DISCUSSION 

All the experiments were conducted in Windows 
Windows 10 Home Single Language 64-bit operating 
system; processor Intel(R) Core (TM) i7-3770CPU , 
processor speed of 3.4GHZ; 12GB of RAM. All the 
considered algorithms were implemented using 
MATLAB 2017 environment. 

5.1 Dataset Description 

In order to evaluate the performance of the proposed 
algorithm, seven gene expression datasets were 
utilized. The datasets were selected to have a variety 
of instances (sample-size), genes and classes as a 
representative of various issues. Table 1 outlines the 
detailed distribution of instances, genes and classes 
for each considered dataset. 

Table 1: Microarray datasets used in the experiments. 

Dataset No. of 
Instances 

No. of 
Genes 

No. of 
Classes 

Brain_Tumour1 90 5920 5 

Brain_Tumour2 50 10367 4 

CNS 60 7129 2 

DLBCL 77 5469 2 

Leukemia 72 7129 2 

Colon 62 2000 2 

Lung Cancer 203 12600 4 

 

5.2 Parameter Setting 

The proposed EBGWO is benchmarked with two 
novel binary grey wolf optimizations (i.e. BGWO1 
and BGWO2) (Emary et al 2016), binary particle 
swarm optimization (BPSO), binary differential 
evolution (BDE) and binary genetic algorithm(Too et 
al., 2019). The optimizer- specific settings of the 
considered algorithms are presented in Table 2. 

Table 2: Parameter settings for each considered algorithm. 

Algorithm Year Parameter settings 

EBGWO  N=10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ
100, 𝑎௜௡௜௧௜௔௟ ൌ 2 

BGWO1 2016 N=10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ
100, 𝑎௜௡௜௧௜௔௟ ൌ 2 

BGWO2 2016 N=10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ
100, 𝑎௜௡௜௧௜௔௟ ൌ 2 

BPSO 2019 N=10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ
100, 𝐶ଵ ൌ 𝐶ଶ ൌ 2, 𝑉௠௔௫ ൌ
6, 𝑊௠௔௫ ൌ 0.9, , 𝑊௠௜௡ ൌ

0.4 
BDE 2019 N=10 , 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ

100, 𝐶𝑅 ൌ 0.9 
BGA 2019 N=10, 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 ൌ

100, 𝐶𝑅 ൌ 0.8, MR=0.01 

Additionally, all the considered algorithms are 
repeated over 10 independent runs to ensure both 
stability and statistical significance of the obtained 
results. Furthermore, the commonly utilized 10-fold 
cross validation scheme is used to divide the 
considered microarray datasets into training and 
testing (Arlot & Celisse, 2010). 

A wrapper approach based on the K-Nearest  
Neighbour (K-NN) classifier(Emary et al., 2016; 
Pirgazi et al., 2019) is used for feature selection in this 
paper. The K-NN classifier (where k=5) is utilized to 
obtain the classification accuracy of the solutions. 

Table 3 presents the performance of all the 
algorithms considered for the feature selection task 
using the gene expression datasets whose details are 
presented in Table 1. 

The following information is presented in each 
column of Table 3: 

i) Algorithm: Provides the abbreviations of the 
considered algorithms i.e. Excited Binary 
Grey Wolf Optimizer (EBGWO), Binary Grey 
Wolf Optimizer 1(BGWO1), and Binary Grey 
Wolf Optimizer 2 (BGWO2) 

ii) 𝑀𝑎𝑥_𝐴𝑐𝑐 Maximum Accuracy value obtained 
when a given algorithm is repeated for 10 
independent runs. 
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Table 3: Experimental Results. 

Algorithm Accuracy Number of Genes Dataset 
𝑀𝑎𝑥_𝐴𝑐𝑐 𝑀𝑖𝑛_𝐴𝑐𝑐 𝐴𝑣𝑔_𝐴𝑐𝑐 𝑀𝑎𝑥_𝑁𝑓𝑒𝑎𝑡 𝑀𝑖𝑛_𝑁𝑓𝑒𝑎𝑡 𝐴𝑣𝑔_𝑁𝑓𝑒𝑎𝑡  

EBGWO (Ours) 0.933 0.911 0.919 673 440 501.9 Brain_Tumour1 
BGWO1 0.889 0.856 0.871 3831 2952 3356.9 

BGWO2 0.911 0.878 0.894 1656 1094 1343.3 
BPSO 0.854 0.823 0.843 2972 2763 2863.9 
BDE 0.864 0.834 0.854 3017 2737 2937.6 
BGA 0.869 0.844 0.859 2950 2840 2889.4 

        
EBGWO (Ours) 0.920 0.84 0.884 2811 712 1151.5 Brain_Tumour2 

BGWO1 0.840 0.820 0.838 7415 6103 6813.4 
BGWO2 0.880 0.820 0.846 4019 2528 3083.8 

BPSO 0.800 0.780 0.798 5126 5090 5122.4 
BDE 0.728 0.713 0.714 5198 5076 5172.3 
BGA 0.767 0.753 0.752 5139 5039 5089.5 

        
EBGWO (Ours) 0.85 0.8 0.827 1020 564 710.3 CNS 

BGWO1 0.783 0.750 0.760 4942 4217 4606.4 

BGWO2 0.800 0.750 0.780 2502 1842 2175.8 
BPSO 0.767 0.733 0.737 3502 3486 3487.6 
BDE 0.693 0.663 0.683 3530 3478 3521.9 
BGA 0.727 0.707 0.717 3528 3428 3501.7 

        
EBGWO (Ours) 1.000 0.987 0.997 534 333 426.7 DLBCL 

BGWO1 0.987 0.961 0.971 3706 2826 3343.4 

BGWO2 1.000 0.948 0.986 1700 1002 1408.3 
BPSO 0.919 0.891 0.901 2703 2672 2675.1 
BDE 0.885 0.869 0.882 2732 2687 2721.4 
BGA 0.906 0.883 0.896 2709 2699 2685.1 

        
EBGWO (Ours) 0.931 0.889 0.903 913 524 649.8 Leukemia 

BGWO1 0.861 0.833 0.849 5065 3897 4428.5 

BGWO2 0.889 0.847 0.874 2141 1618 1805.5 
BPSO 0.828 0.809 0.814 3516 3505 3514.9 
BDE 0.782 0.751 0.784 3537 3527 3531.2 
BGA 0.801 0.782 0.792 3501 3461 3481.8 

        
EBGWO (Ours) 0.935 0.903 0.919 220 103 143.4 Colon 

BGWO1 0.887 0.855 0.865 1316 1096 1189.4 

BGWO2 0.919 0.871 0.900 622 351 455.2 
BPSO 0.849 0.829 0.839 986 931 936.5 
BDE 0.810 0.780 0.794 995 955 965.3 
BGA 0.881 0.875 0.878 990 984 987.3 

        
EBGWO (Ours) 0.985 0.970 0.977 1148 781 1005.5 Lung Cancer 

BGWO1 0.966 0.941 0.951 7598 6621 7211 

BGWO2 0.975 0.956 0.966 2672 2167 2413.2 
BPSO 0.936 0.931 0.935 6196 6179 6180.7 
BDE 0.931 0.921 0.924 6256 6218 6226.8 
BGA 0.952 0.939 0.945 6235 6214 6218.2 

Values in bold represent the best result and values in italic denote the worst in each column, respectively. 
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iii) 𝑀𝑖𝑛_𝐴𝑐𝑐  Minimum Accuracy value 
obtained when a given algorithm is repeated 
for 10 independent runs. 

iv) 𝐴𝑣𝑔_𝐴𝑐𝑐: Is the average of all the accuracy 
values obtained when a given algorithm is 
repeated for 10 independent runs. 

v) 𝑀𝑎𝑥_𝑁𝑓𝑒𝑎𝑡: Is the Maximum number of 
features reported by a given algorithm 
during the 10 independent runs. 

vi) 𝑀𝑖𝑛_𝑁𝑓𝑒𝑎𝑡 : Is the Minimum number of 
features reported by a given algorithm 
during the 10 independent runs. 

vii) 𝐴𝑣𝑔_𝑁𝑓𝑒𝑎𝑡  Is the average of all the 
number of features reported by a given 
algorithm during the 10 independent runs. 

viii)  Dataset: Captures the datasets utilized for 
experimentation as articulated in Table 1. 

 
It is important to point out that the best result 

achieved in each column for all the considered gene 
expression datasets is highlighted in bold while the 
worst is italicized. 

Concerning the classification accuracy, as 
presented in Table 3, the proposed EBGWO 
algorithm outperformed all the competing when the 
fitness function (refer to Equation 24) was adopted. 

Concerning the selection of the informative subset 
of genes, again the proposed EBGWO identified 
subsets with the least number of features to achieve 
the highest classification accuracy for all the seven 
highly dimensional microarray datasets considered in 
this paper. 

6 CONCLUSION AND FUTURE 
WORKS 

An excited grey wolf optimizer (EGWO) is proposed 
in this paper. In the proposed algorithm, the concept 
of the complete current response of a direct current 
(DC) excited resistor capacitor (RC) circuit are 
innovatively utilized to make the non-linear control 
strategy of parameter 𝑎 of the GWO adaptive. Since 
this scheme allocates a large proportion of the number 
of iterations to global exploration compared to local 
exploitation, the convergence speed of the proposed 
EGWO algorithm is enhanced while minimizing the 
local minima trapping effect. Moreover, since the 
proposed scheme assigns each wolf a value of 
parameter 𝑎 that is proportional its fitness values in 
both the search space and the current iteration 
(generation), diversity and the quality of the solutions 
is improved as well.  

To overcome premature converge (a limitation  of 
existing versions of GWO algorithms) and still 
maintain the social hierarchy of the pack, a new 
position-updated equation utilizing the fitness values 
of vectors 𝑋⃗ଵ, 𝑋⃗ଶ  and 𝑋⃗ଷ is proposed in determining 
new candidate individuals. 

As a feature selector, EBGWO is compared with 
five metaheuristic algorithms i.e.  BGWO1, BGWO2, 
BPSO, BDE and BGA that are in existence. The 
obtained experimental results revealed that EBGWO 
yielded the best performance and overtook the other 
algorithms. EBGWO not only attained the highest 
classification accuracy, but also selected subsets with 
the least number of informative features (genes). In 
conclusion, the proposed EBGWO is successful, and 
more appropriate to be used as a feature selector in 
highly dimensional datasets. For further works, a 
chaotic map can be adopted to fine-tune the 
parameters of the EBGWO. Utilizing EBGWO as a 
hybrid filter-wrapper for feature selection seeking to 
evaluate the generality of the selected attributes will 
be another valuable contribution. Moreover, EGWO 
will be applied to other optimization areas, such as 
training neural network, knapsack, and numerical 
problems. 
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