
Towards Understanding Man-on-the-Side Attacks (MotS) in SCADA
Networks

Peter Maynard and Kieran McLaughlin
Centre for Secure Information Technology, Queen’s University Belfast, U.K.

Keywords: HTTP, ICS, IEC 60870-5-104, Man-in-the-Middle, Man-on-the-Side, SCADA, Off-path.

Abstract: We describe a new class of packet injection attacks called Man-on-the-Side (MotS), previously only seen
where state actors have “compromised” a number of telecommunication companies. MotS injection attacks
have not been widely investigated in scientific literature, despite having been discussed by news outlets and
security blogs. MotS came to attention after the Edward Snowden revelations, which described large scale
pervasive monitoring of the Internet’s infrastructure. For an advanced adversary attempting to interfere with
IT connected systems, the next logical step is to adapt this class of attack to a smaller scale, such as enterprise
or critical infrastructure networks. MotS is a weaker form of attack compared to a Man-in-the-Middle (MitM).
A MotS attack allows an adversary to read and inject packets, but not modify packets sent by other hosts. This
paper presents practical experiments where we have implemented and performed MotS attacks against two
testbeds: 1) on HTTP connections, by redirecting a victim to a host controlled by an adversary; and 2) on
an Industrial Control network, where we inject falsified command responses to the victim. In both cases,
the victims accept the injected packets without generating a suspiciously large number of unusual packets on
the network. We then perform an analysis of three leading Network Intrusion Detection Systems (IDSs) to
determine whether the attacks are detected, and discuss mitigation methods.

1 INTRODUCTION1

The Snowden revelations have been a driving factor
towards a more secure digital world. One clear exam-
ple of this is that TLS has become widely deployed
on systems which previously did not use encryption.
This paper builds upon leaked information regarding
MotS attacks. MotS has traditionally been consid-
ered only achievable by a global pervasive adversary
(Trammell et al., 2015), such as a state actor, who
is capable of using their global timing advantage to
inject forged packets before a victim receives legiti-
mate packets, which are then correctly discarded by
the target. In contrast, the experiments presented here
investigate a localised implementation of MotS at-
tacks against two protocols, HTTP and IEC 60870-5-
104 (IEC104). IEC104 is widely used within Europe
and Asia for controlling and monitoring critical in-
frastructure e.g. gas, electricity, etc. With state actors
known to be targeting infrastructure such as electric-
ity grids, our motivation is to better understand how

1Reproducible experiments can be found at:
https://github.com/PMaynard/mots

such adversaries may adopt MotS attack techniques,
which they are known to have used in the past in dif-
ferent circumstances.

In 2013, a NIST report (Forrester, 2013) advo-
cated the improvement of industrial networks through
the use of zero-trust networks. DeCusatis et.el (De-
Cusatis et al., 2016) discussed how to implement a
zero-trust network, which would mitigate this class of
attacks. DeCusatis implemented a policy engine and
gateway which prevents unauthorised packets from
being accepted by a victim, as well as ensuring that
the attacker does not receive identifiable information
when their probe is dropped. However, within in the
Industrial Control System (ICS) domain, it is not pos-
sible to quickly deploy radical changes as seen with
TLS. Information from the National Grid (National
Grid, 2013) shows that this major upgrade of criti-
cal networks is not possible in the time frame laid
out. Due to the long life cycle of ICS equipment
and the criticality of the physical systems they con-
trol, many security recommendations for IT networks
are not suitable for Operational Technology (OT) net-
works. As a consequence OT networks frequently
rely on unencrypted protocols. Threats are typically

Maynard, P. and McLaughlin, K.
Towards Understanding Man-on-the-Side Attacks (MotS) in SCADA Networks.
DOI: 10.5220/0009782302870294
In Proceedings of the 17th International Joint Conference on e-Business and Telecommunications (ICETE 2020) - SECRYPT, pages 287-294
ISBN: 978-989-758-446-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

287

mitigated with the use of Virtual Private Networks
(VPNs), air gapped networks, network segmentation,
firewalls, and Demilitarised Zones (DMZs).

However, industrial control networks are often tar-
geted by state actors, as was the case with the TRI-
SIS malware (Johnson et al., 2017). This was a
Remote Access Trojan (RAT) that targeted Triconex
Safety Instrumented System (SIS) devices, and trig-
gered a shut down of an industrial site in the Middle
East. Another example is CRASHOVERRIDE (Dra-
gos, 2017), which performed network enumeration
and exploitation of Supervisory Control And Data
Acquisition (SCADA) protocols including IEC104.
This malware has been linked to the Ukrainian power
outages in 2016. Therefore, it is logical to assume
that MotS has, or is likely to be, deployed by similar
adversaries into an industrial network at some point
in time.

Many papers that propose novel network IDSs,
tend verify their effectiveness using the outdated
KDD’99 dataset or common attacks (i.e. MitM,
replay and injection (Maynard et al., 2014; Green
et al., 2017)). We provide a modern technique which
should be considered when validating intrusion detec-
tion methods. We investigate the detection respon-
siveness of the current state of the art network IDSs
(Snort, Zeek, Suricata) when confronted with MotS,
for both HTTP and IEC104. We provide reproducible
experiments and a packet captures of our attacks, so
they may be used to validate other IDSs.

The paper continues with an overview of related
work (§2) and background (§3), which details what
required for a MotS attack, and introduces ICS/S-
CADA networking architecture. Following on to the
experimentation methodology (§4), and experimental
results (§5). Finally, a review of current detection sys-
tems (§6) and conclusion (§7).

2 RELATED WORK

In 2012, Gilad et al. (Gilad and Herzberg, 2012)
proved that it is possible to inject packets into a TCP
stream, by using browser based malware to identify
the IP-ID, then spoof a request. Despite reports from
IETF RFC 6528, which state that TCP segment in-
jection is mitigated by having the majority of data
needed to perform this “not well known” to the at-
tacker. While the IETF suggests VPN or TCP Au-
thentication Option (2010) to prevent injection. At
the same, time the IETF acknowledges the TCP reset
vulnerability is a known issue. As of 2019, Alexander
et al. (Alexander et al., 2019) can identify the IP-port
four-tuple representing an active TCP connection, by

taking advantage of side-channels within the Linux
kernel 4.0 and above. Packet injection and TCP resets
are a widely known issue, with current mitigations
easily bypassed. As indicated in the introduction, the
existing state of the art IDSs for ICS networks are not
validated against these types of attacks.

The Chinese Great Firewall exploits the TCP re-
set vulnerability, and is discussed by Weaver et al.
(Weaver et al., 2009) (2009) who propose mitiga-
tions. Also in 2012, Victor Julien added a detection
rule for overlapping data to the open source network
IDS Suricata. Essentially, detecting TCP injection
and MotS attacks as seen in the detection section. In
2014, Gilad et al. (Gilad and Herzberg, 2014) im-
proved upon their previous TCP injection attacks, so
it does not require the use of web malware. They also
detail the history of TCP injection attacks. While Gi-
lad et al. focus on injecting attacks over the internet,
we choose to focus on exploiting a target on the local
network, assuming that it has been compromised by a
skilled adversary.

Between 2013 and 2014, The Guardian and The
Intercept (Schneier, 2013; Gallagher and Greenwald,
2014) discuss a nation state operation called “QUAN-
TUM Inject”, which uses their wide scope to mon-
itor and inject packets into TCP streams. Follow-
ing this media attention, the security company Fox-
IT performed a deep dive into QUANTUM Inject
(Haagsma, 2015). They developed a PoC and released
patches for a number of open source network IDSs. In
2015, a report from the IETF (Trammell et al., 2015)
discussed a threat model of a passive pervasive at-
tacker, explicitly stating MotS as one example. The
company NetReSec, which performs network secu-
rity training and develops a packet analyser tool, have
written a number of times about MotS between 2015-
16 (Hjelmvik, 2015). They attempted to raise aware-
ness of the attack, and developed additional detection
tools as well as identifying TCP injection attacks from
China.

Marczak et al. (Marczak et al., 2015) likened
the Distributed Denial of Service (DOS) attack from
“China’s Great Cannon” to the QUANTUM system.
In that the techniques used to inject packets are sim-
ilar to the QUANTUM Inject method. Finally, the
closest related work the authors identified was by
Nakibly et al. (Nakibly et al., 2016), who detail MotS
attacks being used to inject Javascript, HTTP redirec-
tions and malware dropping. They performed a study
to analyse incoming and outgoing connections of four
university institutions, and identified several differ-
ent threat groups. They proposed a few MotS detec-
tion methods, which use the IP features Time To Live
(TTL) and IP ID, and timing analysis to identify MotS

SECRYPT 2020 - 17th International Conference on Security and Cryptography

288

Client Attacker Server
1. Initiate Connection

2. Send forged response (X)

3. Send legitimate response (×)

Figure 1: Sequence Diagram of Man-on-the-Side (MotS)
attack.

in the wild. The authors are unaware of any papers
detailing MotS class of attack on industrial networks,
and are certain there is no academic literature that pro-
vides reproducible experiments and packet captures
that may be used to validate new IDSs.

3 BACKGROUND

MotS, like SYN-flooding and DNS-Spoofing attacks,
are known as off-path. This differs from traditional
MitM attacks (Conti et al., 2016) which are consid-
ered on-path. An on-path attacker needs to control
the links between the victim and host, while an off-
path attacker does not. Although MotS is a weaker
class of attack than MitM, it is capable of packet in-
jection, without having to maintain connections as
a proxy. Previous work by the authors (Maynard
et al., 2014) which used Address Resolution Proto-
col (ARP) spoofing to maintain an on-the-path attack,
required a large number of ARP packets, as well as
the need to continuously forward packets to the vic-
tim. Depending on the network and host, this may
be easily detectable. It can also be resource intensive.
On the other hand, a MotS attack can be performed
with a minimum of one forged packet. Also, MotS
can not be mitigated by locking down switch ports
using Media Access Control (MAC) Access Control
Lists (ACLs), which can mitigate MitM.

A MotS attack can be successfully performed if
the attacker can: a) observe a victim’s request; b) ad-
equately replicate a response that the victim would ac-
cept; and c) transmit a response to the victim quicker
than legitimate response. If these three requirements
are met, then an adversay can perform this attack.
Fundamentally, this attack exploits the design of TCP
(RFC 793), whereby it is normal for TCP segments to
arrive more than once, and that the first segment that
arrives is accepted. The attacker needs to be in a po-
sition to know the four-tuple (Local IP address, Local
Port, Remote IP address, Remote Port) that identifies
the target connection, along with the next sequence
number expected by the target.

Figure 1 shows the sequence diagram of a MotS

Business

SCADA

Process Control

DMZ

Enterprise
Workstations

Reporting

HMI Data Historian

PLC RTU

Physical
Domain

Figure 2: A high level network diagram of an Industrial
Control System (ICS).

attack, consisting of a Client, Server and Attacker.
First, the Client initiates a connection with the server
and a TCP handshake is performed, followed by a re-
quest to the server. The attacker is positioned within
the network so that they can view this request (the
attacker does not need to view the handshake). The
attacker creates and sends a forged response, which
spoofs the four-tuple information, including the TCP
sequence number. The forged packet is accepted by
the client. Subsequently the legitimate response ar-
rives and is dropped by the client, as it has already
acknowledged the forged packet.

3.1 Industrial Control System Networks

The terms Industrial Control System (ICS) and Super-
visory Control And Data Acquisition (SCADA) are
often used interchangeably. However, SCADA may
be considered part of an ICS, which is used to mon-
itor and control physical devices. Figure 2 shows a
high level network diagram of an ICS network, that
highlights the different network segments, which have
limited access between each other.

In the diagram, the SCADA enclave is located in
the middle and provides information to the business
network, as well as monitoring the process control
enclave. A Human Machine Interface (HMI) may be
used to monitor the physical process, while a Data
Historian maintains a record of plant operations. The
process control enclave contains a number of devices
used to govern physical instruments and actuators that
interact with the physical domain. Typical devices
include Programmable Logic Controllers (PLCs) and
Remote Terminal Units (RTUs) which are rugged em-
bedded devices designed for a distinct task. The net-
work may consist of serial links, Ethernet, and IP,
as well as field bus protocols; one such protocol is
IEC104 (International Electrotechnical Commission,

Towards Understanding Man-on-the-Side Attacks (MotS) in SCADA Networks

289

2006). If MotS were to be performed on ICS network,
the risks to the system may be:

• Unauthorised Access to Information: Redirect
information to the adversary, further gaining an
insight into the operation of the system.

• Unauthorised Modification or theft of Infor-
mation: Bypassing controls an injecting modified
information.

• Denial of Service or Prevention of Authorised
Access: By injecting packets that cause the device
to trigger a DOS.

• Denial/Claim of Action that Took/Not Took
Place: By preventing legitimate responses from
arriving the adversary can force records into an
incomplete, or fictitious state.

To perform these attacks on an industrial site with-
out causing any adverse effects on the system would
require a lot of planning and resources. The exact
physical device would need to be tested, and running
the same program code as the live system, while also
ensuring the devices are networked similarly. How-
ever, the attack may also be performed blindly with-
out all the information, yet the exact results may be
unknown.

4 METHODOLOGY

When performing these experiments we assume that
a highly skilled adversary has compromised the net-
work and has positioned themselves so they can mon-
itor and inject packets at any point of the network.
This is consistent with previously reported intrusions
of state actors within industrial environments, where
it is viable for an adversary to compromise the net-
work infrastructure, such as switches and routers, and
have this level of provenance. Each experiment is
configured so that there is a: client, server, and at-
tacker. The attacker is positioned so that they are in
between the client and server, this is ensured by intro-
ducing an artificial delay of 500ms to the responding
device. This allows us to validate the methods used to
inject the forged packets. In an industrial setting, the
responding device may be in a remote location, using
several communication mediums to respond to the op-
erator, such as radio or public internet, providing an
attacker with multiple opportunities. Once the injec-
tion has been completed, a recorded packet capture
is parsed by the three IDSs, and their results manu-
ally analysed. The experiments will focus more on
the IEC104 protocol over HTTP since our aim is to
prove the possibility of applying this attack on proto-
cols other than HTTP(Haagsma, 2015), and within a
localised network.

5 EXPERIMENTS

We performed four different MotS attacks on the two
protocols, HTTP and IEC104. The HTTP experi-
ments inject a false response then redirect the client.
The IEC104 experiments consider the injection of a
recorded response, and a completely forged response.

5.1 HTTP

HTTP is a stateless protocol and is generally closed
after each request/response is completed, resulting in
the TCP handshake has to be performed for each re-
quest. With MotS, it is possible to target HTTP con-
nections based on IP addresses, as well as a spe-
cific user by triggering on cookie headers (Gallagher
and Greenwald, 2014) and other identifiable data sent
within a HTTP connection. The network layout con-
sists of three hosts (Client, Server, and Attacker) and
a switch. A 500ms artificial delay has been added to
the server to ensure messages sent by the attacker will
reliably arrive ahead of the legitimate response. When
the client initiates a HTTP GET request, the attacker
generates a forged packet based IP/TCP fields of the
request. Then, the attacker reverses the direction of
the IP/TCP source and destination addresses/ports,
while the remainder of the IP header is unchanged.
A random IP ID is generated, and the forged packet’s
TCP sequence number is set to the request’s TCP
acknowledgement, and the forged packet’s TCP ac-
knowledgement to the request’s TCP sequence num-
ber. Finally, the forged payload is injected and all
checksums calculated before being transmitted to the
client. The legitimate response from the server arrives
at the client afterwards, and is consequently dropped
by the client.

5.1.1 Experiment 1: Inject Response Page

The forged response contains a simple HTML page
with a heading. Instead of the legitimate page, the
attacker could inject malicious JavaScript, as seen
by (Nakibly et al., 2016). The result of this ex-
change is that the client renders the forged HTTP re-
sponse in the web browser, while the legitimate re-
sponse is dropped without the browser being notified.
The connection needs to be terminated by sending
the TCP flags FIN ACK, which shuts down the con-
nection. It is worth noting that if the attack uses
PUSH ACK TCP flags, which are the flags set under
normal circumstances, the TCP connection will re-
main open and the two payloads are rendered as one
by the browser. This happens even if the HTTP header
Connection: Close is sent.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

290

5.1.2 Experiment 2: Inject Redirect

This time the forged responses contain a ”HTTP 301
Moved Permanently”, instead of ”HTTP 200 OK”.
This status line requires the header field Location,
along with a URI for redirection. Once received, the
browser will automatically open and render the spec-
ified URI. This can be used to redirect the user to an
attacker-controlled site, which has obvious security
implications. The outcome is that the client follows
the 302 redirection URI, and drops the legitimate re-
sponse. Additionally, due to the nature of HTTP, the
server records the Get request into the server logs,
and is not aware that the client did not receive the
response. Consequently, the only way to detect this
happening is to monitor the network layer.

5.2 IEC 60870-5-104

IEC104 (International Electrotechnical Commission,
2006) is a protocol for transporting IEC 60870-5-101
(IEC101) frames over TCP. IEC101 is a plaintext tele-
control protocol designed for serial links. In these
experiments we will create forged IEC104 packets
with IEC101 payloads. The structure of an IEC104
packet, comprises two segments, the Application Ser-
vice Data Unit (ASDU) and Application Protocol
Control Information (APCI). The ASDU contains the
data to be exchanged, represented as Information El-
ements, and data about the number of information
elements are contained within the Data Unit Identi-
fier (DUI). The APCI is sent with all packets and is
used to specify the start/end bits along with the ASDU
length. The protocol manages protection against loss
and duplication of messages using a counter mecha-
nism. Section 5.1 of EN 60870-5-104:2006 (Interna-
tional Electrotechnical Commission, 2006) specifies
that a send sequence number N(S) and a receive se-
quence number N(R) are used based on the method
defined in ITU-T X.25. Both sequence numbers are
incremented by one for each Application Protocol
Data Unit (APDU) and each direction. These are
acknowledged by the receiver, by returning the re-
ceive sequence number N(R) to the sender using the
supervisory format. Once acknowledged, the sender
can remove the correctly transmitted APDUs from its
buffer.

Figure 3 describes the SCADA testbed used to
perform the experiments. The attacker is located on
the same Process Control enclave as the PLC, while
the victim, the HMI is located within the SCADA
enclave. The attacker uses the port mirroring fea-
ture of the Process Control switch to monitor the net-
work. The attacker builds the forged packet from the

SCADA

Process Control

IDS
VPN Server

HMI

Control Station

Data Historian

IDS

Attacker

VPN Server

Engineering Station

Data Historian

PLCPLC RTU RTU

A

B

C

Figure 3: A generalised network diagram showing two en-
claves: SCADA and Process Control.

initial General Interrogation (GI) request sent by the
HMI to the PLC (Figure 3: Step A), by switching
the MAC and IP source/destination addresses, and
switching the TCP sequence and acknowledgement
numbers. Additionally, the send and receive counters
for IEC104 are calculated to match the expected re-
sponse. The attacker then waits for the PLC to send an
ActCon (Figure 3; Step B), before sending the forged
response to the HMI (Figure 3; Step C). In the case
of IEC104, unlike the previously described HTTP at-
tacks, the TCP flags remain as PUSH ACK, which will
be explained later.

These experiments are based on a GI (GI and
C IC NA 1 will be used interchangeably) of a PLC
initiated from the HMI. In normal operation, the PLC
would return its current status in response to a GI. The
testbed is configured to generate and return data that
simulates a real world response. This contains single-
point, double-points, and step-position information.
The objective of these experiments is to investigate
how an attacker can forge a fake response to change
the data viewed by a HMI operator.

Figure 4 is a sequence diagram detailing the
steps of a GI. After the TCP handshake is suc-
cessful, the sender will initialise the connection for
data transmission using the STARTDT = act com-
mand, if successful the receiving station will re-
spond with STARTDT = con. Next, the sender
performs a GI request, using an ASDU frame
(C_IC_NA_1 = act), which is acknowledged by re-
ceiving end as C_IC_NA_1 = act con, followed by
the interrogation data. The dotted line is where the

Towards Understanding Man-on-the-Side Attacks (MotS) in SCADA Networks

291

HMI PLC
STARTDT Act

STARTDT con

C IC NA 1 Act
C IC NA 1 ActCon

DATA ActCon

S6
S7

Figure 4: Sequence diagram of a Human Machine Interface
(HMI) performing an General Interrogation (GI) command
on a Programmable Logic Controller (PLC). The dotted line
shows the injected response.

forged packets are injected within the sequence. Fi-
nally, the data is confirmed using the Supervisory for-
mat N(S), containing the number of frames received.

5.2.1 Experiment 3: Inject a Replayed Response

This experiment will replay a pre-captured response
from the PLC, matching the same number of AP-
CI/ASDU responses expected from the PLC, so that
an attacker can hide the physical state from the oper-
ator. Effectively, this attack will force the data vis-
ible to the operator to become out of sync with the
physical process, in a similar way that Stuxnet hid
real-time information from operators. Since this is
a replay attack, the injected response will contain
the same number of information elements, except the
values will be reused from an earlier transmission.
Listing 1 shows a packet capture of this experiment.
The first packets are the TCP handshake (1-3), fol-
lowed by the STARTDT act and STARTDT con mes-
sages (4-6) to start data transmission on this connec-
tion from the HMI to the PLC. The HMI sends a
GI (7), and at this point, the attacker generates the
forged response. The PLC then acknowledges the
GI (8-9), triggering the attacker to send their forged
response (10). The forged response is accepted by
the HMI (11), after which the legitimate GI response
arrives (12), and is marked in the packet capture
as TCP Spurious Retransmission. The HMI re-
sponds to the PLC with a TCP ACK (13), which is
marked as TCP Dup ACK, since it was already used
by the forged response.

After the replayed packet has been accepted, the
PLC software hangs, then drops because the TCP se-
quence number becomes out of sync due to the in-
jected segment. Although, as was the case in the
HTTP experiments, it is possible to close the con-
nection, the operation of IEC104 normally requires
long lived connections. Deliberately bringing down
this connection with a TCP reset could alert a system

administrator to an issue or intrusion within the net-
work. While the result is that the HMI operator is now
viewing stale data, the connection will be dropped and
a redundant connection used in its place. The IEC104
standard states that several connections may be main-
tained with the remote device, and periodically re-
freshed using the STARTDT command. Allowing the
connection to degrade using the time out mechanism,
overusing the TCP RST method, reduces the likeli-
hood of triggering an alert.

Listing 1: Packet Capture of IEC104 Experiment 3.
1 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 74 39394 > 2404 [SYN]

Seq=0 Win=29200 Len=0
2 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 TCP 74 2404 > 39394 [SYN,

ACK] Seq=0 Ack=1 Win=8192 Len=0
3 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39394 > 2404 [ACK]

Seq=1 Ack=1 Win=29312 Len=0
4 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 104 a p c i 72 <− U (STARTDT

a c t)
5 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 a p c i 72 −> U (STARTDT

con)
6 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39394 > 2404 [ACK]

Seq=7 Ack=7 Win=29312 Len=0
7 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 104 asdu 82 <− I (0 , 0) ASDU

=1 C IC NA 1 Act IOA=0
8 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 asdu 82 −> I (0 , 1) ASDU

=1 C IC NA 1 ActCon IOA=0
9 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39394 > 2404 [ACK]

Seq =23 Ack=23 Win=29312 Len=0
10 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 asdu 692 −> I (1 , 1)

ASDU=1 C IC NA 1 ActCon IOA=0 | −> I (2 , 1)
ASDU=1 M SP NA 1 I n r o g e n IOA [6 0] = 6 5 5 8 3 , . . . | −>

I (3 , 1) ASDU=1 M SP NA 1 I n r o g e n IOA
[4 4] = 1 1 2 0 3 6 6 , . . . | −> I (4 , 1) ASDU=1 M DP NA 1
I n r o g e n IOA [3 0] = 5 6 1 1 9 2 , . . . | −> I (5 , 1) ASDU=1
M ST NA 1 I n r o g e n IOA [2] = 1 8 7 4 0 1 9 , . . . | −> I
(6 , 1) ASDU=1 C IC NA 1 ActTerm IOA=0

11 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39394 > 2404 [ACK]
Seq =23 Ack=649 Win=30464 Len=0

12 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 asdu 692 [TCP S p u r i o u s
R e t r a n s m i s s i o n] | −> I (1 , 1) ASDU=1 C IC NA 1
ActCon IOA=0 | −> I (2 , 1) ASDU=1 M SP NA 1
I n r o g e n IOA [6 0] = 6 5 5 8 3 , . . . | −> I (3 , 1) ASDU=1
M SP NA 1 I n r o g e n IOA [4 4] = 1 1 2 0 3 6 6 , . . . | −> I
(4 , 1) ASDU=1 M DP NA 1 I n r o g e n IOA
[3 0] = 5 6 1 1 9 2 , . . . | −> I (5 , 1) ASDU=1 M ST NA 1
I n r o g e n IOA [2] = 1 8 7 4 0 1 9 , . . . | −> I (6 , 1) ASDU=1
C IC NA 1 ActTerm IOA=0

13 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 78 [TCP Dup ACK 11#1]
39394 > 2404 [ACK] Seq =23 Ack=649 Win=30464 Len
=0

5.2.2 Experiment 4: Inject Two Step Position
Responses

This experiment will investigate injecting two step
position responses into the connection, rendering the
HMI with an incomplete view of the system. In Ex-
periment 3, an old response was returned containing
the full amount of expected data, however in Exper-
iment 4 a forged response containing only two step
position values, i.e. fewer than expected, will be
returned. The motivation for this experiment is to
determine what would happen when a smaller than
expected response arrives on an active TCP connec-
tion. Note that in the HTTP experiments two payloads
would be rendered as one if the connection was not
terminated. Listing 2 shows a packet capture of this
experiment. The first packets are the TCP handshake

SECRYPT 2020 - 17th International Conference on Security and Cryptography

292

and IEC104 start data transfer acknowledgement (1-
6). Next, the GI request and acknowledgement are
seen (7-9), followed by the forged packet (10-11).
Note the payload is 120bits compared to the legiti-
mate payload of 692bits (12). As with the previous
experiment, the HMI confirms the received frames us-
ing the Supervisory format (14), this time with the re-
ceive sequence number of 4, since there were 4 frames
sent: Opening interrogation command “ActCon”; two
step positions; and Closing interrogation command
“ActTerm”. Subsequently, the connection keeps us-
ing the wrong TCP sequence number which eventu-
ally causes it to time out.

Listing 2: Packet Capture of IEC104 Experiment 4.
1 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 74 39440 > 2404 [SYN]

Seq=0 Win=29200 Len=0
2 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 TCP 74 2404 > 39440 [SYN,

ACK] Seq=0 Ack=1 Win=8192 Len=0
3 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39440 > 2404 [ACK]

Seq=1 Ack=1 Win=29312 Len=0
4 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 104 a p c i 72 <− U (STARTDT

a c t)
5 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 a p c i 72 −> U (STARTDT

con)
6 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39440 > 2404 [ACK]

Seq=7 Ack=7 Win=29312 Len=0
7 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 104 asdu 82 <− I (0 , 0) ASDU

=1 C IC NA 1 Act IOA=0
8 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 asdu 82 −> I (0 , 1) ASDU

=1 C IC NA 1 ActCon IOA=0
9 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39440 > 2404 [ACK]

Seq =23 Ack=23 Win=29312 Len=0
10 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 104 asdu 120 −> I (1 , 1)

ASDU=1 C IC NA 1 ActCon IOA=0 | −> I (2 , 1)
ASDU=1 M ST NA 1 I n r o g e n IOA [2] = 1 8 7 4 0 1 9 , . . . |
−> I (3 , 1) ASDU=1 C IC NA 1 ActTerm IOA=0

11 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 66 39440 > 2404 [ACK]
Seq =23 Ack=77 Win=29312 Len=0

12 1 0 . 5 0 . 5 0 . 9 9 > 1 0 . 5 0 . 5 0 . 1 0 3 TCP 692 [TCP Out−Of−Order]
2404 > 39440 [PSH , ACK] Seq =23 Ack=23 Win

=66560 Len=6
13 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 TCP 78 [TCP Dup ACK 11#1]

39440 > 2404 [ACK] Seq =23 Ack=77 Win=29312 Len=0
14 1 0 . 5 0 . 5 0 . 1 0 3 > 1 0 . 5 0 . 5 0 . 9 9 104 a p c i 72 <− S (4)

The PLC and the web server both had an artificial de-
lay of 500ms to allow for the injected packets to reach
the victim before the legitimate response. This is due
to the limited scale of the laboratory testbed, and con-
sequent low latency, this enabled the experiments to
be developed without concern for the attacker to beat
the legitimate packets. Nonetheless, in this testbed,
when the artificial delays were completely removed,
it was found that the forged response would arrive
ahead of the legitimate response approximately 1 in
7 times.

6 DETECTION

Each of the four experiments were analysed offline
using three of the most recent state of the art network
Intrusion Detection Systems. These are Zeek 2.6.2
(formerly Bro), Snort 2.9.13-1, and Suricata 4.1.4.

Table 1: Network IDS detection results. () Yes (#) No
(G#) Partial.

HTTP IEC104

Experiment 1 2 3 4

Zeek G# G# G# G#

Snort G# # #

Suricata #

All of the engines were updated to the latest pub-
lic rule sets as of May 2019, and were configured
to parse offline packet capture files. Table 1 shows
details of the detection results for all three engines.
Successful detection is recorded as either ’Yes’, ’No’,
or ’Partial’. ’Yes’ indicates an exact match on the
correct packet, with the triggered rule returning an
accurate description of the respective attack. ’Par-
tial’ means, for example, a rule triggered at the cor-
rect time but the reason for the alert, or the descrip-
tion provided, was not accurate. ’No’ indicates no
IDS alert was triggered. Zeek could be considered
the least accurate of the three engines in terms of its
alerts. For the HTTP experiments, Zeek alerted with
‘FIN advanced last seq’. This alert is triggered be-
cause of the server accepting the forged packet, which
brings down the connection. For the IEC104 experi-
ments Zeek alerts with ‘window recision’ on the exact
injected packet. However the IDS was not triggering
due to the specific MotS activity, rather it alerted be-
cause the TCP recv-window shrank by more than the
amount of data being ACKed, as detailed in RFC793
Section 3.7, which is strongly discouraged. There-
fore, although Zeek alerted in all four cases, the rea-
son for each alert would not be obvious to an ana-
lyst monitoring the alerts. Zeek has built in support
for detecting MotS attacks since 2015, however, it is
disabled by default and does not detect the experi-
ments. Snort alerted on the correct injected packet
in the first HTTP experiment, with the message ‘IN-
VALID CONTENT-LENGTH OR CHUNK SIZE” us-
ing the ’http inspect’ module. The second HTTP ex-
periment was also correctly detected, however, the
alerts are due to the legitimate segments arriving after
the connection is closed with ‘Data sent on stream not
accepting data’ and ‘Reset outside window’. These
are seen in both experiments 1 and 2. The only event
which Snort alerts for regarding the IEC104 injec-
tions are ‘Consecutive TCP small segments exceed-
ing threshold’, which is due to the server attempting
to renegotiate the connection, and causing a time out.
Therefore this was considered as not specifically de-
tecting the MotS attack. Suricata had the most accu-

Towards Understanding Man-on-the-Side Attacks (MotS) in SCADA Networks

293

rate detection of the three IDSs. With the HTTP ex-
periments, the ACK packets with the wrong sequence
numbers are detected and, as with Snort, the first
HTTP injection is detected with ‘SURICATA HTTP
unable to match response to request’. The most inter-
esting alert is ‘SURICATA STREAM reassembly over-
lap with different data’, which exactly describes the
MotS attack. This is displayed for all experiments,
except experiment 3, which related to injecting a re-
played response. Experiment 3 did not trigger any
alerts from Suricata, because the forged payload was
the same as the legitimate one.

7 CONCLUSION

Further work should be performed for each of the
NIDS to include detection alerts for the MotS class of
attacks. While Suricata can detect this, and notify the
operator with a somewhat descriptive name, it fails
to articulate the issue as a malicious action. Network
IDS for deployment within OT networks must have
support for the industrial protocols, otherwise, detec-
tion of these kinds of attacks and others will go unno-
ticed. As discussed in the introduction, zero-trust net-
works, VPNs (to an extent), and TLS are the best mit-
igations of this class of attack. IEC104 is has a com-
panion standard, IEC 62351, detailing securing end
to end communication, however in internal networks,
these defences are often not deployed. In part due to a
lax security mindset, or the additional complexity and
risk of deployment. While this class of attack is miti-
gated for much of the public internet via TLS, critical
network operators need to be aware of the potential
damage this attack may have on a system. Although
deploying a mitigation approach such as zero-trust
networking is the gold standard, many network opera-
tors are not in a position to do so. Threat actors, such
as nation states have used this method successfully
over several years, and it seems likely this approach
will continue to be exploited in the future. Especially
in the ICS domain, where unauthenticated local traffic
such as IEC104 is still commonplace. As the experi-
ments with Zeek, Snort and Suricata have shown, fur-
ther work is required to provide these network IDS
platforms with the detection rules and mechanisms
capable of accurately detecting MotS being exploited
by an intruder.

REFERENCES

Alexander, G., Espinoza, A. M., and Crandall, J. R. (2019).
Detecting TCP/IP Connections via IPID Hash Colli-

sions. Proceedings on Privacy Enhancing Technolo-
gies, 2019(4).

Conti, M., Dragoni, N., and Lesyk, V. (2016). A Survey of
Man In The Middle Attacks. IEEE Communications
Surveys & Tutorials.

DeCusatis, C., Liengtiraphan, P., Sager, A., and Pinelli, M.
(2016). Implementing Zero Trust Cloud Networks
with Transport Access Control and First Packet Au-
thentication. In 2016 IEEE International Conference
on Smart Cloud (SmartCloud).

Dragos (2017). CRASHOVERRIDE - Analysis of the
Threat to Electric Grid Operations. Technical report,
Dragos, Inc.

Forrester (2013). Developing a Framework to Improve Crit-
ical Infrastructure Cybersecurity. Technical report,
NIST.

Gallagher, R. and Greenwald, G. (2014). How the NSA
Plans to Infect ‘Millions’ of Computers with Malware.

Gilad, Y. and Herzberg, A. (2014). Off-Path TCP Injection
Attacks. ACM Transactions on Information and Sys-
tem Security.

Gilad, Y. and Herzberg, A. (Auguest 2012). Off-Path At-
tacking the Web. In 6th USENIX Workshop on Offen-
sive Technologies.

Green, B., Krotofil, M., and Abbasi, A. (2017). On the
Significance of Process Comprehension for Conduct-
ing Targeted ICS Attacks. In Proceedings of the 2017
Workshop on Cyber-Physical Systems Security and
PrivaCy, CPS ’17.

Haagsma, L. (2015). Deep dive into QUANTUM INSERT.
Hjelmvik, E. (2015). Covert Man-on-the-Side Attacks.
International Electrotechnical Commission (2006). EN

60870-5-104:2006. Technical report, British Stan-
dards Institution.

Johnson, B., Caban, D., Krotofil, M., Scali, D., Brubaker,
N., and Glyer, C. (2017). Attackers Deploy New ICS
Attack Framework TRITON and Cause Operational
Disruption to Critical Infrastructure.

Marczak, B., Weaver, N., Dalek, J., Ensafi, R., Fifield, D.,
McKune, S., Rey, A., Scott-Railton, J., Deibert, R.,
and Paxson, V. (2015). An Analysis of China’s “Great
Cannon”. In 5th USENIX Workshop on Free and Open
Communications on the Internet. USENIX Associa-
tion.

Maynard, P., McLaughlin, K., and Haberler, B. (2014). To-
wards Understanding Man-In-The-Middle Attacks on
IEC 60870-5-104 SCADA Networks. In ICS-CSR.

Nakibly, G., Schcolnik, J., and Rubin, Y. (2016). Website-
Targeted False Content Injection by Network Opera-
tors. In USENIX Security Symposium.

National Grid (2013). Response to NIST: “Developing a
Framework to Improve Critical Infrastructure Cyber-
security. Technical report, National Grid.

Schneier, B. (2013). Attacking Tor: How the NSA targets
users’ online anonymity. The Guardian.

Trammell, B., Huitema, C., Schneier, B., Jennings, C.,
Borkmann, D., Barnes, R., and Hardie, T. (2015).
Confidentiality in the Face of Pervasive Surveillance:
A Threat Model and Problem Statement.

Weaver, N., Sommer, R., and Paxson, V. (2009). Detecting
Forged TCP Reset Packets. In NDSS.

SECRYPT 2020 - 17th International Conference on Security and Cryptography

294

