
Fuzzy Multi-objective Optimization for Ride-sharing Autonomous 
Mobility-on-Demand Systems 

Rihab Khemiri and Ernesto Exposito 
Univ. Pau & Pays Adour, E2S UPPA, LIUPPA, EA3000, Anglet, 64600, France  

Keywords: Ride-sharing Autonomous Mobility-on-Demand Systems, Multi-objective Possibilistic Linear Programming, 
Fuzzy Logic, Goal Programming, Dispatching, Rebalancing. 

Abstract: In this paper, we propose a novel three-phase fuzzy approach to optimize dispatching and rebalancing for 
Ride-sharing Autonomous Mobility-on-Demand (RAMoD) systems, consisting of self-driving vehicles, 
which provide on-demand transportation service, and allowing several customers to share the same vehicle at 
the same time. We first introduce a new multi-objective possibilistic linear programming (MOPLP) model for 
the problem of dispatching and rebalancing in RAMoD systems considering the imprecise nature of the 
customer requests as well as two conflicting objectives simultaneously, namely, improving customer 
satisfaction and minimizing transportation costs.  Then, after transforming this possibilistic programming 
model into an equivalent crisp multi-objective linear programming (MOLP) model, the Goal Programming 
(GP) approach is used to provide an efficient compromise solution. Finally, computational results show the 
practicality and tractability of the proposed model as well as the solution methodology.

1 INTRODUCTION 

Nowadays, urban systems are characterised by the 
expansion of cities and by the growth of their 
population. This affects the current mobility trends 
marked by the continued growth of demand for 
personal mobility as well as the increasing of 
privately owned automobile.  
This trend leads to many social and environmental 
severe problems including traffic congestion, 
increased travel times, air pollution as well as the 
growth of the greenhouse gas emissions, especially in 
the densely populated areas with limited space for 
parking and road infrastructure. 

To deal with these problems, an efficient 
transportation system that responds to the mobility 
demands of people and that is more sustainable, 
reliable and efficient becomes essential. 

In this context, Autonomous Mobility-on-
Demand (AMoD) systems represent a very promising 
solution in meeting these needs. This emerging 
system is a fleet of self-driving electric vehicles 
designed to provide personal on-demand 
transportation service for passengers. AMoD systems 
offer many potential benefits such as minimizing 
pollution, avoiding the need for further routes and 

parking spaces. Moreover, autonomous vehicles may 
be safer than traditional vehicles as they can avoid 
accidents due to human errors, well known to be the 
main reason of traffic accidents. 

These several advantages have led recently a 
number of works to investigate the potential of 
AMoD systems. A key challenge in this context is the 
design of dispatching strategies that entail to 
optimally assign the customers to vehicles, thus 
satisfying the customer's request at each given station 
and at each time period. To do this, the number of 
vehicles available at each station and each period 
must satisfy customer requests.  

Nevertheless, when some stations are more in 
demand than others, at the end of the trip, vehicles 
will tend to be accumulated at these stations and 
become exhausted at others. This can lead to a spatial-
temporal distribution of vehicles, which will probably 
not be in line with the distribution of the customer 
requests in the following periods. 

Therefore, it becomes inevitable to devise 
efficient policies to deal with this problem of 
imbalance. Such rebalancing policies entail 
redistributing empty vehicles from overload stations 
to underloaded stations. However, AMoD systems 
might aggravate the congestion problem given the 
presence of these empty vehicles (Tsao et al., 2019). 

284
Khemiri, R. and Exposito, E.
Fuzzy Multi-objective Optimization for Ride-sharing Autonomous Mobility-on-Demand Systems.
DOI: 10.5220/0009779602840294
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 284-294
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



This has prompted some AMoD systems to integrate 
the emerging transportation paradigm of ride-sharing 
to improve traffic flow. 

Another important challenge is to deal well with 
rapidly varying customer requests, given several real-
world constraints. Accordingly, it becomes 
mandatory to forecast customer requests to compute 
efficient strategies, having the robustness to 
inaccuracies and uncertainties due to several external 
factors such as traffic and weathers. 

These various challenges have recently led to a 
considerable amount of studies to address the 
potential of AMoD systems. However, the majority 
of these researches do not allow easy to account for 
real-world phenomena such as the uncertain futures 
of customer demand, which limits their practical 
applications.  

Although a few recent studies have been 
developed to cope with demand uncertainty, the latter 
are usually based on probability distributions, which 
requires knowledge of historical data. When such 
information was lacking, the Fuzzy Set Theory 
(Zadeh, 1978) and the Possibility Theory (Dubois and 
Prade, 1988; Zadeh, 1965) can help to handle 
epistemic uncertainty. 

To the best of our knowledge, fuzzy logic has 
never been used to model the uncertainty in the 
context of AMoD systems. 

The aim of this paper is to present a novel fuzzy 
approach for dispatching and rebalancing RAMoD 
systems. Specifically, the paper has three important 
contributions. First, it introduces a MOPLP model 
which contemplates the uncertainty affecting future 
demand. Two primary goals are considered 
simultaneously in the MOPLP model, namely, 
improving customer satisfaction and minimizing 
transportation costs. Second, in order to find an 
efficient compromise solution to the proposed 
MOPLP model, we suggest the exploitation of the 
well-known goal programming approach (Charnes 
and Cooper, 1961), which integrates the desire of the 
decision-maker with the logic of optimization to 
satisfy various goals (Pati et al., 2008). Third, we 
demonstrate the applicability of our proposed 
approach through numerical computations. 

The remainder of this article is organized as 
follows. In the next section, we briefly review 
existing works and present their limitations. Section 
3 illustrates some fundamental concepts used in this 
work. In section 4, we present the considered 
dispatching and rebalancing problem in RAMoD 
systems. In section 5, the proposed multi-objective 
possibilistic linear programming model for RAMoD 
systems is developed. In section 6, we exploit 

appropriate strategies for converting the proposed 
fuzzy model into an equivalent crisp one. Section 7 
aims at finding an efficient compromise solution for 
the problem, thus exploiting the goal programming 
approach. We validate the proposed three-phase 
approach through numerical tests being exploited in 
Section 8. Finally, section 9 concludes the paper and 
provide future directions. 

2 RELATED WORK 

The problem of dispatching and rebalancing has 
received great attention over the last few years. The 
proposed studies can be classified into three main 
approaches, namely, simulation-based models; 
queuing-theoretical models and model predictive 
control (MPC) algorithms. 

Simulation-based models (Hörl et al., 2018; Levin 
et al., 2017; Maciejewski et al., 2017; Javanshour et 
al., 2019) can accurately describe AMoD systems, but 
being unable to provide optimal solutions.  

Queuing-theoretical models (Zhang and Pavone, 
2015; Zhang and Pavone, 2016; Iglesias et al., 2019; 
Belakaria et al., 2019) have the advantage of 
capturing the uncertainty of the customer requests. 
These models are based on the Jackson network 
concept (Serfozo, 2012), in which all arrivals at each 
queuing station should follow a Poisson process 
(Moran, 1952). This concept assumes constant rates 
of occurrence of each random variable. That is, if the 
random variable is customer’s arrival times, it 
assumes customers arrive at stations at a constant rate 
(Javanshour et al., 2019). However, in reality, the 
customer arrival process for the various origin–
destination pairs is time-variant nature. Therefore, we 
can deduce that the Queuing-theoretical models 
prevent the AMoD system modelers from capturing a 
realistic vision into these systems.  

In contrast, Model predictive control (MPC) 
algorithms (Zhang et al., 2016; Alonso-Mora et al., 
2017 ; Iglesias et al., 2018 ; Tsao et al., 2018 ; Tsao 
et al., 2019) can efficiently accommodate time-
varying future demand. However, the majority of 
existing MPC algorithms assume that future customer 
demand is deterministic and the rare studies that 
accommodate uncertainty mainly suggest the use of 
stochastic programming. The probabilistic reasoning 
approaches are usually based on evidence/data 
recorded in the past. However, in many practical 
situations, this evidence/data is unavailable or 
subjectively specified, and the standard probabilistic 
approach would not be appropriate to deal with them. 
Thus, Fuzzy set theory and possibility theory provide 
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an appropriate framework to handle uncertainty in 
such situations. Accordingly, it has been successfully 
used  to model and treat uncertainties in many fields 
such as  supply chain planning (Khemiri et al., 2017; 
Nemati and Alavidoost, 2019; Lima-Junior and 
Carpinetti, 2020), Business Process modelling 
(Yahya et al., 2017; Sarno et al., 2020), web services 
(Rhimi et al., 2016; Bagga et al., 2019), image 
processing (Ali and Lun, 2019; Nagi and Tripathy, 
2020), etc.  

Despite all this progress, the fuzzy logic and the 
possibility theory have never been exploited to handle 
uncertainties in AMoD systems.  

To the best of our knowledge, this paper is the first 
one to leverage the strengths of such techniques and 
introduce a novel strategy for solving the dispatching 
and rebalancing decisions problem with imprecise 
travel demand in RAMoD systems. 

In the next section, the basic concepts of the fuzzy 
logic are provided. 

3 THEORETICAL 
BACKGROUND 

This section briefly outlines the fuzzy set theory, the 
triangular fuzzy numbers and the goal programming 
method used in this paper. 

3.1 Fuzzy Set Theory 

Fuzzy set theory was originally introduced by Zadeh 
(Zadeh, 1965) to deal with the imprecision, 
uncertainty, and vagueness of subjective information. 

From a mathematical point of view, a fuzzy set is 
characterized by a membership function. Such a 
function attributes to each object in the fuzzy set a 
specific grade of membership ranging from zero to 
one. 

In this study, triangular fuzzy numbers are used to 
represent the imprecise data. As shown in Figure 1, a 

triangular fuzzy number 𝑍
~

 can be represented by the 
triplet (a, b, c) where a, b, c are the most pessimistic, 

the most possible and the most optimistic value of 𝑍
~

. 

The triangular fuzzy number 𝑍
~

 can be represented 
by the following membership function: 
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Figure 1: The triangular possibility distribution of 𝑍
~

. 

3.2 Goal Programming 

There are several methods in the scientific literature 
for dealing with multi-objective models. Among 
them, the goal programming (GP) method which is 
originally developed by Charnes et al. (Charnes and 
Cooper, 1961) and successfully used in several 
problems (Lee and Kim, 2000; Amin et al., 2019; 
Colapinto et al., 2020). 

The popularity of this method is based on its 
mathematical flexibility, its robustness, and its 
accuracy. 

The goal programming method consists in 
introducing for each criterion a goal to be achieved 
and to identify the solution that minimizes the sum of 
the deviations from these goals. 

Several variants of the GP have been proposed in 
the literature. Here we use the Weighted Goal 
Programming (WGP) method. The WGP can be 
represented as follows: 

Min
୶∈

ሺ w୧
ା δ୧

ା  w୧
ିδ୧

ିሻ

୬

୧ୀଵ

 (2)

Subject to: 

C୪(x)  0 , l ൌ 1,2, . . , L 
 

  F୧ሺxሻ - δ୧
ା δ୧

ି  = g୧ , i ൌ 1,2, . . , n 
 

δ୧
ା, δ୧

ି  0 

Where: 
 C୪(x) is the set of constraints. 
  δ୧

ା  and  δ୧
ି  are respectively the positive and 

negative deviation from the target value g୧. 
 w୧

ା  and w୧
ି  are respectively the weight 

attached to the positive and negative deviation. 
 F୧ሺxሻ is the evaluation of the solution x against 

the criterion i. 
 𝐠𝐢  is the aspiration level of the objective 

function i. 
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4 PROBLEM FORMULATION 

Despite the major progress that has occurred in recent 
years, these various initiatives do not take into 
account the specificities of the low-density areas. In 
the Tornado Mobility research project (Tornado, 
2020), that we are working on, the objective is to 
study the interaction between autonomous vehicles 
and connected intelligent infrastructures for serving 
mobility in low population density areas. 

For this purpose, we consider an urban area 
discretized into multiple stations and served by 
several on-demand vehicles. Each vehicle can serve 
one or more passengers without exceeding their 
capacity. The considered fleet of vehicles is 
characterized by a high level of heterogeneity: 
transportation costs, speeds, and capacities of each 
vehicle can be different.  

In the context of Tornado project, customers first 
request transportation from a pickup to a drop off 
location in the predefined urban area via a mobile 
application. 

If there are available vehicles, one of them will be 
dispatched to drive this passenger towards its 
destination.  Instead, if there are no available vehicles, 
the user instantly leaves the system (i.e. without any 
waiting time). Therefore, as in (Zhang and Pavone, 
2016; Iglesias et al., 2019), our RAMoD system 
operate according to the passenger loss model. Such 
a model is well suited for systems where a high degree 
of service is desired (Iglesias et al., 2019). 

At the end of the trip, the vehicle could be 
dispatched to accomplish other mobility demands.  It 
could also rebalance itself or even park in the drop-
off station for a certain period of time.  

For simplicity, it is assumed that each station has 
sufficient space so that vehicles can immediately be 
parked and recharged at all times. 

Unlike traditional approaches, the proposed 
model does not assume complete knowledge about 
future customer demand; instead, it assumes that such 
critical parameters are estimated by the decision-
maker using Triangular fuzzy numbers.  

Finally, it is assumed that the time is discretized 
into an ordered set of time periods. 

To deal with this challenging problem, we devise 
a three-phase approach, where the main steps are 
presented in Figure 2 and detailed in the following 
sections. 

 
 

 

Figure 2: Framework of the proposed approach. 

5 PHASE I: PROPOSED MULTI 
OBJECTIVE POSSIBILISTIC 
LINEAR PROGRAMMING 
MODEL 

5.1 Notation  

 The set of indices 
₋ S: Number of stations (s = 1, 2, …, S). 
₋ V: Number of vehicles (v = 1, 2… V). 
₋ T: Number of time periods (t = 1, 2…, T). 

 Decision variables 

₋ Missv,t : Binary variable indicating if vehicle 
v is on mission during period t. 

₋ Parkv,t,s: Binary variable indicating if 
vehicle v is parked in station s during period 
t. 

₋ Miss_Tv,s1,s2,t1,t2: Binary variable indicating 
if vehicle v is on customer transport mission 
traveling from station s1 to station s2 
beginning at period t1 and arriving at period 
t2. 

₋ Miss_Rv,s1,s2,t1,t2: Binary variable indicating 
if vehicle v is on a rebalancing mission 
traveling from station s1 to station s2 
beginning at period t1 and arriving at period 
t2. 

₋ S_Crt,s1,s2: The number of satisfied customer 
requests traveling from station s1 to station 
s2 departing at time period t. 

 Certain parameters: 

₋ Dists1, s2: distance between stations s1 and s2 
(considering the shortest way). 
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₋  Capv: Transport capacity of the vehicle v. 
₋ SPv: speed of the vehicle v. 
₋ Tr_costv: transportation cost of the vehicle v. 
₋ Local_initv,s: represents the initial 

availability of vehicle v at station s. If 
vehicle v is available at station s in the first 
periode, Local_initv,s =1 and 0 otherwise. 

 Fuzzy parameters: 

₋ 𝑪𝒓
~

t,s1,s2: number of customer requests who 
wish to travel from station s1 to station s2 
departing at time period t. 

5.2 Objective Functions 

 Objective 1: Improving customer satisfaction, 
which is to minimize the number of lost 
customer requests. 

Minimize LCr
~

 = ∑ ∑ 𝐶ୗ
ୱଵ,ୱଶୀଵ


୲ୀଵ r

~
t,s1,s2  - 

S_Crt,s1,s2   
(3)

 
 Objective 2: Minimizing the overall 

transportation cost. 
 

Minimize TC= ∑  ∑ ∑ Tr
୴ୀଵ

ୗ
ୱଵ,ୱଶୀଵ


୲ଵ,୲ଶୀଵ _costv 

(4)
*(Miss_Tv,s1,s2,t1,t2 + Miss_Rv,s1,s2,t1,t2 )* Dists1, s2

5.3 Model Constraints 

S_Crt, s1, s2  ≥ 0 and integer ∀t , ∀s1, s2 ϵ [1, S] (5)

Missv,t , Parkv,t,s , Miss_Tv,s1,s2,t1,t2 , 
Miss_R v,s1,s2, t1, t2   ϵ [0,1]  ∀t, v, s, s1, s2, t1, t2

(6)

Equations (5) and (6) guarantees the non-negativity 
of the various decision variables: S_Crt,s1,s2   is an 
integer, while other variables are binary. 

∑ Pୗ
ୱୀଵ arkv,t, s   + Miss v, t = 1    ∀v, t (7)

Equation (7) models the two possible states each 
autonomous vehicle can take namely parked at a 
station and be on a mission from one station to 
another. On the other hand, this constraint ensures 
that a vehicle can have only one state at any one time. 

Missv,t = ∑ ∑ M୲ଵ,୲ଶஸ୲
ୗ
ୱଵ,ୱଶୀଵ iss_Tv,s1,s2,t1,t2 

+ Miss_Rv,s1,s2,t1,t2      ∀v, t 
(8)

When a vehicle is on a mission, two possible 
actions can be achieved i) transport one or more 
customers from one station to another, and ii) travel 
without customers for rebalancing the system. These 
actions are modeled using equation (8), which also 

guarantees that the vehicle can only perform one 
action at a time. 

Miss_Rv,s1,s2,t1,t2 ≤ Parkv,t1-1,s1+∑ Mୱଷஷୱଵ iss_Rv,s3,s1,t3,t1-1 

                                         +∑ Mୱସஷୱଵ iss_Tv,s4,s1,t4,t1-1 

∀ v, s1, s2, t1>1, t2 = t1 + (Dists1,s2/ SPv),  
t3= t-(Dists3,s1/SPv ) -1, t4 = t1-(Dists4,s1/SPv)-1 

(9)

Miss_Tv,s1,s2,t1,t2 ≤ Parkv,t1-1,s1+∑ Mୱଷஷୱଵ iss_Rv,s3,s1,t3,t1-1 

+∑ Mୱସஷୱଵ iss_Tv,s4,s1,t4,t1-1 

∀ v, s1, s2, t1>1, t2 = t1 + (Dists1,s2/ SPv), 
t3=t1-(Dists3,s1/SPv )-1, t4 = t1-(Dists4,s1/SPv)-1      

(10)

When vehicle v is on a mission traveling from 
station s1 to station s2 beginning at period t1, it is 
necessary that v is physically located in station s1 at 
the beginning of period t1. In other words, either the 
vehicle v i) arrived at a station during the last period 
(i.e. Miss_Rv,s3,s1,t3,t1-1=1  Or Miss_Tv,s4,s1,t4,t1-1 =1 ) , or 
 ii) parked at a station during the last period (i.e. 
Parkv,t-1,s1 =1 ). The equations (9) and (10) ensure that 
this constraint is respected respectively for 
rebalancing missions and customer transport 
missions. 

Parkv,t,s ≤ Parkv, t-1,s + ∑ Mୱଵஷୱ iss_Rv,s1,s,t1,t-1 

+∑ Mୱଶஷୱ iss_Tv,s2,s,t2,t-1 
∀v, s, t >1, t1=t-(Dists1,s / SPv )-1, 

t2=t+(Dists2,s /SPv)-1 

(11)

Equation (11) guarantees that if a vehicle v is 
parked at a station s during a time period t (i.e. Parkv,t,s 
=1), it is necessary that it be physically located in s at 
the beginning of t (i.e. Parkv,t-1,s + Miss_Rv,s1,s,t1,t-1 + 
Miss_Tv,s2,s,t2,t1-1 =1). 

Parkv,t,s + Miss_Tv,s,s1,t,t1 + Miss_Rv,s,s2,t,t2 ≤ Local initv,s 
∀v, s, t=1, s1, s2, , t1=t+(Dists,s1 / SPv ), 

t2=t+(Dists,s2 / SPv ) 
(12)

Equation (12) indicates that a vehicle may only be 
parked in a station s during the first period (i.e. 
Parkv,1,s =1) if it is initially available at this station (i.e. 
Local_init v,s =1). Besides, a vehicle v may only travel 
on a rebalancing mission (i.e. Miss_Rv,s,s1,1,t1=1) or a 
customer(s) transport mission (i.e. Miss_Tv,s,s1,1,t1=1) 
if it is initially available at this station 
(Local_initv,s=1).  

S_Crt1,s1,s2  ≤   ∑ M
୴ୀଵ iss_Tv, s1, s2, t1, t2  *  Cap v 

∀s1, s2, t1, t2= t1 + (Dists1,s2 /SPv) 
(13)

Equation (13) ensures that the number of satisfied 
customer requests traveling from station s1 to station 
s2 departing at time period t1 can not exceed the total 
capacity of the vehicles transporting customers from 
station s1 to station s2 beginning at period t1. 

S_Crt, s1, s2     ≤ Cr
~

t, s1, s2    ∀t, s1, s2 (14)

Finally, equation (14) guarantees that vehicles 
transporting customer(s) from station s1 to station s2 
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beginning at time period t cannot transport more 
customers than it has been requested. 

In this study, it is assumed that the imprecise 
customer demand in the first objective function and 
constraint (14) is modeled using a triangular-shaped 
possibility distribution. As explained in section 3, 
triangular possibility distribution 𝐶𝑟෪ can be 
represented by the triplet (Crp, Crm, Cro) where Crp, 
Crm and Cro are the most pessimistic, the most 
possible and the most optimistic value of 𝐶𝑟෪ . 

6 PHASE II: STRATEGY FOR 
PROCESSING THE FUZZINESS 
CUSTOMER REQUESTS 

6.1 Treating the Imprecise Objective 
Function 

Given the imprecise customer’s request coefficients 
in the first objective function, it is generally not 
possible to determine an ideal solution to the problem 
constrained by (3)-(14). 

In the scientific literature, several approaches for 
identifying compromise solutions are proposed 
(Luhandjula, 1989; Sakawa and Yano, 1989; Tanaka 
and Asai, 1984; Tanaka et al., 1984; Lai and Hwang, 
1992). As mentioned by Hsu and Wang in (Hsu and 
Wang, 2001), the first four approaches (Luhandjula, 
1989; Sakawa and Yano, 1989; Tanaka and Asai, 
1984; Tanaka et al., 1984) are based on restrictive 
assumptions and are generally difficult to implement 
in practice, we then use Lai and Hwang's approach 
(Lai and Hwang, 1992; Liang, 2006).  

Since the imprecise customer demand has 

triangular possibility distributions, the 𝐿𝐶𝑟
~

 objective 
function would also have a triangular possibility 
distribution. This imprecise objective is represented 
by the three important points (LCrp, 0), (LCrm, 1) and	
(LCro, 0), geometrically. Therefore, minimizing the 
fuzzy objective can be achieved by pushing these 
critical points in the direction of the left-hand side. 

According to Lai and Hwang’s approach solving 
this problem becomes the process of minimizing 
LCrm, maximizing (LCrm - LCrp) and minimizing 
(LCro - LCrm). In this way, our first objective function 
can be transformed into a multiple crisp objective as 
follows: 
 

Minimize Z1=LCrm 

LCrm = ∑ ∑  ୗ
ୱଵ,ୱଶୀଵ


୲ୀଵ Cr୲,ୱଵ,ୱଶ

୫
 - S_Crt,s1,s2 (15)

Maximize Z2 = LCrm - LCrp 

LCrm - LCrp =∑ ∑ୗ
ୱଵ,ୱଶୀଵ


୲ୀଵ ሺCr୲,ୱଵ,ୱଶ

୫ - Cr୲,ୱଵ,ୱଶ
୮ ሻ 

                                                 - S_Crt,s1,s2 (16)

Maximize Z3 = LCro - LCrm 

LCro - LCrm =∑ ∑ୗ
ୱଵ,ୱଶୀଵ


୲ୀଵ ሺCr୲,ୱଵ,ୱଶ

୭ - Cr୲,ୱଵ,ୱଶ
୫ ሻ 

                                                - S_Crt,s1,s2              
(17)

6.2 Treating the Fuzzy Constraint 

Recalling that equation (14) considers the situation in 
which the crisp left-hand side is compared to the 
fuzzy right-hand side. In this study, we implement the 
well-known weighted average method for dealing 

with this situation and approximating the 𝐶𝑟
~

 
parameter by crisp number. This method is originally 
introduced by (Lai and Hwang, 1992) and has been 
successfully used in several research studies (Wang 
and Liang, 2005; Liang, 2006; Torabi and Hassini, 
2009; Khemiri et al., 2017a) due to its simplicity and 
efficiency in defuzzification.  

To do so, we first need to determine a minimal 
acceptable possibility degree of occurrence for the 
fuzzy/imprecise parameter, α. Then the original fuzzy 
constraint (14) can be represented by a novel crisp 
constraint as follows: 

S_Crt,s1,s2  ≤ w1 Cr୲,ୱଵ,ୱଶ,
୮  +w2 Cr୲,ୱଵ,ୱଶ,

୫  +w3 Cr୲,ୱଵ,ୱଶ,
୭  

∀t, s1, s2 
(18)

Where w1 + w2 + w3 = 1, and w3, w2 and w1 denote 
respectively the weights of the most optimistic, the 
weights of the most possible and the weights of the 
most pessimistic of the fuzzy demand. In practice, the 
values of these weights, as well as the minimal 
acceptable possibility degree α, can be defined 
subjectively based on the knowledge and experience 
of the decision-maker. 

 In our work, we adopt the concept of most likely 
values, which is widely used in the literature (Lai and 
Hwang, 1992). According to this concept, the most 
pessimistic and optimistic values required a lower 
weight than the one assigned to the most possible 
value. Thus, as in (Lai and Hwang, 1992) we set these 
parameters to: w1 = w3 = 1/6 ; w2 = 4/6 and α = 0.5. 

7 PHASE III: GOAL 
PROGRAMMING-BASED 
SOLUTION APPROACH 

In the previous section, the original fuzzy MOLP 
model was converted into an equivalent auxiliary 
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crisp multi-objective linear programming model. To 
deal with this multi-objective model, we use the 
Weighted Goal Programming (WGP) method, 
introducing specific weights for each criterion. 
Accordingly, we can reformulate our problem as 
follows: 

Minimize FGP  

FGP =WZ1* δଵ
ା+WZ2* δଶ

ି+WZ3*δଷ
ି +WZ4*δସ

ା (19)

Subject to: 

(5) - (13), (18) 

𝑍ଵ- 𝛿ଵ
ା = 𝑍ଵ

∗ 
 

(20)

𝑍ଶ+ 𝛿ଶ
ି = 𝑍ଶ

∗ 
 

(21)

𝑍ଷ+ 𝛿ଷ
ି = 𝑍ଷ

∗ 
 

(22)

TC - 𝛿்
ା  =𝑇𝐶∗ (23)

Where: 
 𝑍ଵ

∗  is the goal calculated using the 
mathematical model with objective function 
(15) subject to constraints (5) - (13), (18) and 
𝛿ଵ

ା is the positive deviation from this goal. 
 𝑍ଶ

∗  is the goal calculated using the 
mathematical model with objective function 
(16) subject to constraints (5) - (13), (18) and 
𝛿ଶ

ି is the negative deviation from this goal. 
 𝑍ଷ

∗  is the goal calculated using the 
mathematical model with objective function 
(17) subject to constraints (5) - (13), (18) and 
𝛿ଷ

ି is the negative deviation from this goal. 
 𝑇𝐶∗  is the goal calculated using the 

mathematical model with objective function 
(4) subject to constraints (5) - (13), (18) and 
𝛿்

ା  is the positive deviation from this goal. 
 WZ1, WZ2, WZ3 and WZ4 are the importance 

weights of the various goals, usually 
determined by the decision makers such that 
WZ1 + WZ2+WZ3 +WZ4=1. 

8 SIMULATION RESULTS 

In this section, we display two sets of simulation 
results to illustrate the validity and applicability of the 
proposed approach. First, we demonstrate that the 
dispatching and rebalancing problem in RAMoD 
systems can indeed be resolved using the proposed 
three-phase approach, especially in the presence of 
imprecise customer requests. Then, we compare the 

performance of our methodology with other dispatch 
strategies by varying customer demand over time. 

For all experiments, we consider a fleet size of 15 
autonomous vehicles and 5 stations. The planning 
horizon is decomposed into 10 periods. These periods 
correspond to 10 different predicted request demands 
with triangular distributions, synthesized in Table 1. 
Initially, the vehicles were distributed equally among 
the various stations, i.e. 3 vehicles for each station. 

 For reason of simplification, we consider that the 
travel time between two stations is one time step. The 
capacity of the vehicles is characterized by a high 
degree of heterogeneity which varies from a 
maximum capacity of a single passenger to a 
maximum capacity of 8 passengers. Additionally, we 
consider for simplicity that the weights of the various 
criteria are the same (i.e. WZ1 = WZ2=WZ3 =WZ4=1/4). 

For all simulations, the proposed approach has 
been implemented using the LINGO optimization 
package. 

8.1 Detailed Results for the Proposed 
Approach 

Figure 4 summarizes the results provided by the 
proposed approach by detailing vehicle statuses 
according to the planning horizon. We remind that the 
vehicle can be parked at one station, be on a 
customer(s) transport mission and be on a rebalancing 
mission. For the last two states, the departure and 
arrival stations were also mentioned. These decisions 
are guided by the criteria of the customer satisfaction 
maximization and the transportation cost 
minimization at each period of the planning horizon. 
Indeed, we find that the increase in the cost of 
transporting a vehicle leads to not using it (i.e. staying 
parked in the station) if customer demand can be 
satisfied by vehicles with a lower transport cost. For 
example, for the first period, customer demands were 
satisfied with the various stations. In particular for 
station S3, this fuzzy demand has been satisfied by 
using V7 and V8  with the use of ride-sharing, while 
the V9 remains parked in S3 because it has much 
higher transport cost. Also during the second period, 
the vehicle V12 remains parked in the station S4 since 
customer demand has been satisfied by vehicles with 
a lower transport cost. 

With the increase in customer demands during the 
third and fourth periods and guided by the criterion of 
maximizing customer demands satisfaction, all 
vehicles in the fleet were launched on missions, even 
the most costly ones. 

However, beyond the fifth period,  
the mobilization of all vehicles remains insufficient to  

ICSOFT 2020 - 15th International Conference on Software Technologies

290



Table 1: Fuzzy demand for each period. 

SiSj T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

S1 
S2 (0,1,2) (0,1,2) (0,1,2) (4,5,6) (1,2,3) (3,4,5) (6,8,10) (4,5,6) (4,5,6) (1,3,5)
S3 (1,2,3) (0,1,2) (0,1,2) (2,3,4) (1,3,5) (1,2,3) (4,5,6) (2,4,6) (3,5,7) (4,5,6)
S4 (0,1,2) 0 (2,3,5) (2,4,6) (2,3,4) (4,5,6) (4,5,6) (2,4,6) (3,6,9) (2,3,4)
S5 0 0 (1,2,3) 0 (2,4,6) (2,4,6) (2,4,6) (10,12,14) (6,8,10) (2,3,4)

S2 

S1 (0,1,2) (0,1,2) (1,2,3) 0 (1,2,3) (6,7,8) (1,2,3) (1,2,3) (6,8,10) (2,5,8)
S3 (0,1,2) (0,1,2) (3,4,5) 0 (0,1,2) (1,2,3) (3,4,5) (1,2,3) (1,2,3) (2,4,6)
S4 (0,1,2) 0 (0,1,2) (0,1,2) (3,4,5) 0 (1,3,5) (1,2,3) (3,5,7) (4,5,6)
S5 0 0 (0,1,2) (3,4,5) 0 0 0 (1,2,3) (3,5,7) (4,5,6)

S3 

S1 (1,2,3) (0,1,2) (2,4,6) (1,4,7) (1,2,3) (2,5,8) 0 (3,4,5) (3,5,7) (10,13,16)
S2 (0,1,2) (0,1,2) (1,2,3) (2,4,6) (1,2,3) (0,2,4) (1,2,3) (0,1,2) (0,1,2) (2,3,4)
S4 0 (0,1,2) (1,2,3) (2,4,6) (1,2,3) 0 (3,4,5) (1,2,3) (1,3,5) (2,5,8)
S5 0 0 (1,2,3) 0 0 0 0 (2,3,4) 0 0

S4 

S1 (0,1,2) (0,1,2) 0 (0,1,2) 0 0 0 0 0 0
S2 (0,1,2) (0,1,2) 0 0 0 0 0 0 0 0
S3 (0,1,2) (0,1,2) (0,1,2) (5,7,9) 0 0 0 0 0 0
S5 0 (0,1,2) (0,1,2) (1,2,3) 0 0 0 0 0 (2,5,8)

S5 

S1 0 (0,1,2) (1,3,5) (0,1,2) (1,2,3) 0 0 0 (1,2,3) (1,2,3)
S2 0 (0,1,2) 0 (0,2,4) (1,2,3) (1,4,7) 0 0 0 0
S3 0 (0,1,2) 0 (3,4,5) 0 0 0 0 0 0
S4 0 0 0 (1,3,5) 0 0 (3,5,7) 0 0 0

 

satisfy customer demand, especially when some 
stations are more in demand than others, at the end of 
the trip, vehicles are accumulating in these stations 
and depleting in the others. This justifies the use of 
rebalancing decisions from overloaded stations to 
under loaded stations. 

The rebalancing decisions are also subject to the 
cost minimization criterion. Indeed, the least 
expensive vehicles will be assigned first to 
rebalancing missions 

8.2 Performance of the Proposed 
Approach 

To evaluate the performance of the proposed 
approach (D-R-RAMoD-Fuzzy), we conducted a 
simulation study comparing it to other dispatch 
strategies. These latter are concretely three versions 
of our proposed approach: 

 D-R-RAMoD-Perfect: The dispatching and 
rebalancing approach proposed in previous 
sections based on an exact customer request as 
it appears in the data set as a "forecast" for the 
next 10 time periods. This is an efficient 
strategy to find the optimal dispatching and 
rebalancing policies for the case when the 
customer request is known in advance. Thus, it 
can be used for providing performance upper 
bounds of the system. 

 D-R-AMoD-Fuzzy: This version uses the 
same model described in section 5 for single 

capacity vehicles (without the use of ride 
sharing).  

 D-RAMoD-Fuzzy: This version is exclusively 
concerned with the “Dispatching” problem and 
vehicles do not rebalance in any situation. 

The summary results of this comparison are 
presented in Figure 3, illustrating the number of lost 
customer requests for each dispatch strategies as a 
function of time. 

 

Figure 3: The number of lost customer requests for each 
dispatch strategies as a function of time. 

As expected, the strategy with exact customer 
requests has the best performance, with a minimum 
number of lost requests and a reduced transport cost. 

The "D-R-AMoD-Fuzzy" strategy has the worst 
performance, with mean lost requests sixfold than 
that of "D-R-RAMoD-Perfect" strategy and 
multiplied by four compared to that of our proposed  
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Figure 4: Vehicle scheduling as a function of time. 

approach (i.e. "D-R-RAMoD-Fuzzy" strategy). This 
is not surprising, given that the single capacity 
strategy is here compared to the ride-sharing policies 
where the maximum capacity of vehicles is extended 
to eight. 

We can also see the marked difference in 
performance between the "D-RAMoD-Fuzzy" 
strategy and the "D-R-RAMoD-Perfect" strategy 
from Figure 3 showing the number of lost customer 
requests at any given period. Notably, the "D-
RAMoD-Fuzzy" strategy has significantly more lost 
customer requests at any given time period, with 
mean lost requests multiplied by four compared to the  
optimal strategy and multiplied by three compared to 
that of our proposed approach. This is also not 
unexpected, since we can gain much of performance 
by incorporating rebalancing trips ensuring a balance 
between the number of vehicles available in each 
station and customer requests. 

A significant performance gain is attributed by 
incorporating rebalancing trips and the fact that 
several customers can share the same vehicle. Indeed, 
we can notice that out of 10 experiments, the 
proposed approach generates an optimal solution for 
six experiments. It also offers solutions that are very 
close to the optimal solution for the other periods with 
a deviation of 35%. This highlights the robustness of 
the proposed approach for operating the fleet and 
satisfying customers, even when forecasts of 
customer requests are uncertain. 

9 CONCLUSION 

Despite the significant advances in AMoD and 
RAMoD systems, the existing studies still display a 

lack of approaches dealing with the uncertainty 
affecting travel demand forecasts. The rare studies 
dealing with this drawback mainly suggest the use of 
stochastic programming that is usually based on the 
statistical data. However, in practice, historical data 
may not be reliable or even unavailable. Accordingly, 
these traditional programming models may not be the 
best tool to deal with uncertainty. 

Thus, this work provides a new point of view on 
the problem of dispatching and rebalancing in the 
RAMoD systems by using a new alternative approach 
for managing uncertainty. Specifically, we first 
formulated the problem as a multi-objective 
possibilistic linear programming model in which 
customer requests are evaluated in an imprecise way 
using triangular possibility distribution. The proposed 
fuzzy formulation is then transformed to an 
equivalent crisp multi-objective linear programming 
model by combining appropriate strategies. In the 
third phase, the well known goal programming 
approach is being exploited to obtain a compromise 
solution. Through experiments, we show that the 
proposed approach has the capability to deal with 
realistic situations in an uncertain environment and 
provides an efficient decision tool for the dispatching 
and rebalancing decisions in RAMoD systems.  

This work leaves opens for considerable 
extensions for future research.  

First, the proposed approach can be extended in 
situations when RAMoD systems are faced with 
fluctuations of several parameters. This research area 
will require introducing forecasting models that are 
able to model not only the uncertain customer 
requests but also other critical parameters such as 
vehicle availability, costs, the states of charge of 
vehicles, etc.  
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Second, we plan to explore the integration of 
routing policies within a capacitated road network. 
This, in turn, can be subject to important uncertainties 
due to several external factors such as traffic 
congestion. Thus, the goal of this research axis is to 
devise a robust dispatching-rebalancing and routing 
policy that leverages forecasting parameters while 
considering the uncertainty that can arise in the road 
network.  

Finally, further research can study the couplings 
that could occur between public transit and the 
AMoD systems. 
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