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Abstract: Nematodes are microscopic, worm-like organisms with applications in monitoring the environment for 
potential ecosystem damage or recovery. Nematodes are an extremely abundant and diverse organism, with 
millions of different species estimated to exist. This trait leads to the task of identifying nematodes, at a species 
level, being complicated and time-consuming. Their morphological identification process is fundamentally 
one of pattern matching, using sketches in a standard taxonomic key as a comparison to the nematode image 
under a microscope. As Deep Learning has shown vast improvements, in particular, for image classification, 
we explore the effectiveness of Nematode Identification using Convolutional Neural Networks. We also seek 
to discover the optimal training process and hyper-parameters for our specific context. 

1 INTRODUCTION 

Convolutional Neural Networks (CNNs) are state-of-
the-art algorithms that have made significant 
advances in computer vision tasks, especially in 
Image Classification. The CNN processes multi-
dimensional, grid-like forms of data, such as images 
and video (LeCun et al., 2015; Goodfellow et al., 
2016). CNNs are a type of neural network which first 
attracted attention when used to solve the task of 
recognising handwritten digits using the LeNet-5 
architecture (LeCun et al., 1998). Since then, the 
accuracy of these types of networks has been steadily 
increasing, with the most recent EfficientNet models 
(Tan and Le, 2019) achieving a Top-5 accuracy on the 
ImageNet dataset of 97.1%. 

The availability of Deep Learning frameworks, 
such as TensorFlow and PyTorch, has made Deep 
Learning more accessible to a broader group of people 
allowing applications of Deep Learning in many areas, 
from healthcare to self-driving cars (Dargan et al., 
2019). Thus, other contexts which require some form 
of image recognition should be able to capitalise on this 
new capability. One potential use-case is that of 
Nematode Identification. 

Nematodes have been proven to be good 
environmental bioindicators (Wilson and Kakouli-
Duarte, 2009). A bioindicator is a species that can 
provide useful information about the status of the 
environment. To be classified as a bioindicator, the 

species must play an essential role in the ecosystem, be 
abundant and not be capable of being killed by low 
levels of pollutants (Cortet et al., 1999). Their 
responses should also be measurable and reproducible. 

However, Nematodes are an incredibly diverse and 
abundant group of organisms that live in terrestrial and 
aquatic environments (Dodds and Whiles, 2010; 
Poinar, 2016). There are many different families of 
nematodes, categorised by their feeding behaviours. 
These different groups, known as trophic groups, 
consist of bacteria feeders, fungi feeders, predators, 
omnivores and herbivores (Kennedy and Luna, 2005). 
Due to their small size, and with such a variety of 
species, it becomes challenging to identify which types 
are present in a particular sample. The current method 
is a manual one which is time-consuming and 
susceptible to error. 

In this research, we explore the feasibility of 
designing a CNN suitable for classifying microscope 
photographs of nematodes. We use entomopathogenic 
nematodes (EPN) which are parasitic nematodes that 
cause harm to insects by infecting them with insect-
pathogenic bacteria, to allow us to culture batches of 
nematodes in the lab. EPNs have been explored for 
their potential to replace the use of chemical pesticides, 
which can cause contamination in the environment 
(Dillman and Sternberg, 2012; de Oliveira et al., 2016). 
For this research, we use three different species of 
EPNs: Heterorhabditis bacteriophora, Steinernema 
carpocapsae and Steinernema feltiae. 
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While we confine ourselves to specific nematodes 
in this research, the automatic feature extraction of a 
CNN will prove invaluable to improving the state-of-
the-art in identifying nematodes. The automatic feature 
extraction will allow for the possibility of the model 
scaling to more groups of nematodes in the future, and 
with greater ease than the traditional approaches. 

2 EXISTING APPROACHES TO 
NEMATODE IDENTIFICATION 

Nematode identification can be achieved using their 
morphological, biochemical and molecular features 
(Seesao et al., 2017). While there are many 
approaches, morphological identification is the 
cheapest method and is readily available as only a 
light microscope is required. The identification 
process involves observing the illuminated nematode 
under a microscope and referencing a printed 
taxonomic key with sketches for comparison. This 
process not only is time-consuming but requires a 
certain level of expertise in identifying the essential 
characteristics of the nematodes themselves. Also, 
printed aids can be seen to be too rigid and unreliable 
(Bouket, 2012). 

2.1 Computer-Aided Approaches 

Using technology to aid in nematode identification 
goes back to the 1980s. An overview, presented by 
(Diederich et al., 2000), shows many different 
approaches to computer identification aids. These 
approaches include using cluster analysis, similarity 
coefficient and expert systems. However, despite 
some success, these approaches do not appear to have 
been adopted by the wider community (Diederich et 
al., 2000). 

An attempt to improve the system of the printed 
taxonomic key led to the creation of a web application, 
NEMIDSOFT, using the genus Merlinius, plant-
parasitic nematodes (Bouket, 2012). NEMIDSOFT 
allows the user to enter in morphological 
measurements that get compared to a database for the 
closest match. With the use of a database, this 
application offers more flexibility to be updated and 
scaled to other species. It is unclear how well this 
application performed, as the website hosting it no 
longer exists. 

More recently, artificial neural networks have been 
investigated as a means to learn specific photographic 

features. These algorithms have been successfully 
deployed to detect and count the eggs of soybean cyst 
nematodes using a convolutional autoencoder 
(Akintayo et al., 2016, 2018; Kalwa et al., 2019). Other 
examples include identifying different strains of the 
nematode species Caenorhabditis elegans based on 
video recordings of their behaviour and movements 
(Javer et al., 2018). This method showed improvement 
over the state-of-the-art with manual-crafted features. 

3 METHODOLOGY 

In this section, we will describe the overall study 
design, including our considerations around the CNN 
architecture, training data and parameter tuning. 

3.1 Overview 

Our high-level design included developing a CNN, 
obtaining photographs of nematodes, training the 
CNN on these photographs and validating the 
resulting network. One of the primary considerations 
with any artificial neural network implementation is 
what the network structure will be. Given the success 
of CNNs in image recognition, we looked to existing 
state-of-the-art architectures to choose the most 
appropriate. 

A second consideration was the training data. For 
our specific context, this turned out to be more 
problematic, given the differences between juvenile 
and adult nematodes. Also, given the lack of existing 
photographs of our species, we would need to generate 
our images. This requirement raised the concern that 
the amount of training and validation data could be 
relatively small. 

3.2 CNN Architecture 

We initially investigated designing a CNN model 
from scratch for this task, using inspiration from the 
state-of-the-art models. However, designing a neural 
network architecture is a time-consuming task and 
requires experience and expertise. Therefore, we 
decided to use a state-of-the-art model architecture 
already available. 

As we are using the Keras deep learning library, 
there are 13 CNN architectures available to be used, 
with or without pre-trained weights. These 
architectures include Xception, VGG16, VGG19, 
ResNet, Inception, InceptionResNet, MobileNet, 
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Figure 1: Overview of state-of-the-art models (Culurciello, 2018).

DenseNet and NASNet. To determine which model we 
use, we test each model on the same task. This task 
consists of training each model for 200 epochs on one 
of our generated datasets, without any pre-trained 
weights and using the SGD optimiser. The best epoch 
for each model is recorded based on the lowest 
validation loss value achieved. 

Out of the 13 CNN architectures, DenseNet169, 
DenseNet201 and NASNetLarge could not train due to 
memory limitations. NASNetMobile, VGG16, 
VGG19 and MobileNetV2 achieved validation 
accuracies between 30% and 55%. This leaves 
InceptionResNetV2, DenseNet121, Xception, 
ResNet50, InceptionV3 and MobileNet achieving 
accuracies between 90% and 100%. Out of all these 
models, InceptionResNetV2 has the highest Top-5 
accuracy on the ImageNet dataset at 95.3%. However, 
InceptionResNetV2 is quite a large model, with a depth 
of 572 layers and 55,873,736 parameters. To avoid 
potential problems, we decide to use the next best 
model, the Xception model (Figure 2), which has a 
Top-5 accuracy of 94.5%, a depth of 126 layers and 
22,910,480 parameters. 

 

Figure 2: Image of Depthwise Separable Convolutions used 
in Xception (Tsang, 2018). 

3.3 Data Gathering 

To gather the images required, we first culture the 
three different species by infecting the larva of the 
honeycomb moth, Galleria mellonella, and storing 
them in Petri dishes in an incubator, at 21℃, until the 
infected host dies and discolouration occurs. This 
process usually takes a week after the initial infection. 
When extracted, the EPNs are killed and preserved in  
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DESS solution (Yoder et al., 2006) and then mounted 
onto microscopic slides to begin the image capturing 
process. We use a light microscope, with an OPTIKA 
camera attached, available in the lab to take the 
images. The extraction process and image capturing 
differ between the infective juveniles (IJ) and the 
adults. 

3.3.1 Infective Juveniles 

As we are dealing with nematodes from the same 
feeding group, namely entomopathogenic nematodes, 
there is very little difference between each species at 
the juvenile stage as they are still developing. There 
is a lack of very distinct features between species, 
such as genitalia or a pronounced mouth. However, 
there is one distinct difference between species at this 
life stage, the length of the IJ’s body. 

The extraction process of the IJ from the dead 
Galleria mellonella uses the White trap method (White, 
1927). To use this method, we place the Galleria 

mellonella on a small platform, covered in filter paper, 
in a container. Water surrounds this platform and soaks 
some of the filter paper to create a way for the IJs, 
emerging from the cadaver, to enter the water. 

To capture images of the IJs, we use a 20x 
magnification level on the light microscope. This 
magnification level ensures that there is a full focus on 
the nematode while also decreasing the amount of 
background and any noise visible. There is a total of 
188 images in the IJ dataset. The dataset comprises 50 
images of Heterorhabditis bacteriophora, 72 images 
of Steinernema carpocapsae and 66 images of 
Steinernema feltiae. 

3.3.2 Adults 

The extraction process of the adult nematodes 
requires dissecting the dead Galleria mellonella in a 
solution of dissolved salts, known as Ringer’s 
Solution. This process is necessary as the adult 
nematodes never leave the infected host’s body. Once. 

 

Figure 3: Sample images of infective juveniles from each species at 20x magnification: Heterorhabditis bacteriophora (left), 
Steinernema carpocapsae (middle), Steinernema feltiae (right). 

 

Figure 4: Sample images of adult nematodes from each species at 100x magnification: Heterorhabditis bacteriophora (left), 
Steinernema carpocapsae (middle), Steinernema feltiae (right). 
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dissected, we fish out the nematodes from the cadaver, 
using a dissecting needle, and transfer them to a 
separate dish of Ringer’s Solution. 

To capture images of the adults, we use a 100x 
magnification on the light microscope in order to 
identify specific features of the nematode. Specific 
features of interest are the head, tail and genitalia of the 
nematode, the vulva for the female and the spicule for 
the male. This dataset contains a total of 234 images. 
The images vary in specific features of the nematode 
present, as shown in Figure 4.  This dataset contains 81 
images of Heterorhabditis bacteriophora, 96 images 
of Steinernema carpocapsae and 57 images of 
Steinernema feltiae. 

3.4 Image Pre-processing 

3.4.1 Image Size 

The acquired images have an original image size of 
2048x1536 pixels. This size would require a large 
amount of memory and would take a long time to train. 
Therefore using the original full size is not feasible. 
To make the images more manageable, we reduce the 
image to a size of 224x224 pixels as they load in using 
the PIL library available for the python programming 
language. 

3.4.2 Rotations 

Considering that both nematode datasets contain a 
small number of images, we use methods to generate 
more samples for the CNN model. When under a 
microscope, nematodes can vary in position and 
orientation on the microscope slide. However, CNNs 
have issues with rotated objects as the features 
learned by a CNN are not rotation invariant. An 
example of this issue would be that if a CNN were to 
be trained on a set of images and evaluated on the 
same set of images flipped upside-down, the CNN 
would not be able to make accurate predictions. To 
solve this issue, we apply random rotations to the 
images as they load in. We also apply random vertical 
and horizontal flips to the images with a 50% chance 
of applying each flip. 

3.4.3 Pixel Scaling 

The final step in pre-processing the images is to scale 
the pixels down to a smaller range of numbers. This 
process reduces large computations and allows for 
faster convergence. As we are dealing with image 
pixel values, they range from 0 to 255. Using a 
method available in the Keras library, for use with the 

ImageNet dataset, these values get scaled down to a 
range of -1 to 1, achieved by dividing the values by 
half of the maximum pixel value, which is 127.5, and 
then subtracting by 1. 

3.5 Development Environment 

To develop and train our CNN models, we employ the 
use of a Dell Inspiron 15 7000 Series laptop with an 
NVIDIA GTX 960M GPU (4 GB VRAM), an Intel 
i7-6700HQ CPU and 16 GB of RAM. This low 
amount of VRAM available is taken into 
consideration while training, reducing the training 
batch size when required to avoid running out of 
memory during training. 

3.6 Model Training 

Using this Xception model, we explore the best 
possible method to train on our datasets. To do this 
we use three different training methods: Feature 
Extraction, Fine-Tuning and Random Initialisation. 
Feature Extraction and Fine-Tuning are methods 
referred to as Transfer Learning, as they use a pre-
trained model to speed up training and convergence 
due to existing features already from a separate 
dataset. In the case of the Xception model, the dataset 
used is ImageNet (Chollet, 2017). In contrast, 
Random Initialisation uses the Xception model with 
random weights and bias values, so the model gets 
trained from scratch. 

The use of those three different training methods 
results in training three different models, for both 
nematode life stage, and evaluating their performances. 
However, we also explore the use of different 
optimisers and techniques to find the best combination 
for our task. We use SGD, RMSProp and Adam as the 
three optimisers for comparison. The other techniques 
we apply are Gradient Clipping and Label Smoothing 
to see the difference made by applying them versus not 
applying them. 

Gradient Clipping is an optimiser specific 
technique used to avoid large gradient values, also 
known as exploding gradients. Label Smoothing is a 
technique applied to the one-hot array target output, 
decreasing the value of the actual label by a small value 
and increasing the values of the other labels by that 
small value divided by the number of other labels. We 
use a value of 2 for gradient clipping and a value of 0.1 
for label smoothing when these techniques are in use. 

The effect that label smoothing has on the model is 
that it decreases or smoothes out the model’s prediction 
distributioin (Pereyra et al., 2017). This effect leads to 
the model becoming less overly confident and more 
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able to generalise. Lastly, we add additional layers to 
the model before the output layer to both explore 
whether the addition helps or hinders performance and 
to provide more trials for better comparisons of other 
techniques applied. 

3.6.1 Hyper-Parameter Tuning 

Each model trained takes roughly one to three hours 
to train on our GPU. The variation in training times is 
due to the implementation of early stopping to the 
models. To allow our models a chance to converge, 
we set the total number of epochs to train to a high 
value of 2000 epochs. We also set the patience of the 
early stopping monitor to 150 epochs, so if the model 
does not achieve a lower validation loss than its best 
in that time, the training will stop. The best validation 
loss for each model is recorded to a spreadsheet for 
later comparison. Models that crash during training 
are tested again to confirm that the crash occurred due 
to memory limitations. 

We use a simple bash script to control the training 
process, passing in arguments to the python program to 
indicate which hyper-parameter settings are to be used. 
These hyper-parameters include: the three choices of 
training methods, the use of label smoothing, the use of 
gradient clipping and the three choices of optimiser. 
This resulted in 36 different models being trained for 
each nematode life stage, generating a total of 72 
models. 

The training process was semi-automated as the 
addition of model layers required a manual change to 
the model and allowed for an assessment of the 
progress before training continued. The additional 
layers are applied between the global average pooling 
layer of the Xception model and the final dense layer. 
The additional layers include Dropout, Batch 
Normalisation, and Dense layers. The number of units 
(neurons) used for the dense layer are based on the 
output of the global average pooling layer, which is 
2,048 units. Therefore, the models were trialled using 
a dense layer with half the number of units, the same 
number of units and double the number of units. Other 
changes tested included changing the gradient clipping 
value and the early stopping patience value. 

Overall, each additional change to the model 
required training of all 72 models. The total number of 
changes to the model explored resulted in 11 different 
changes leading to a total of 792 different models 
trained. Following the training process, the 
misclassification percentage was calculated for each 
model using a separate script on a set of non-nematode 
images and results were recorded to the spreadsheet. 

4 RESULTS 

For our results, we measure two different types of 
metrics, the validation measures (accuracy and loss) 
and the misclassification percentage. To calculate the 
misclassification percentage of a model, we get the 
model’s predictions on a set of 5000 non-nematode 
images. We then use a threshold value of 0.8 on the 
softmax outputs and mark the output as incorrect if 
any of the label predictions exceed the threshold 
value. This measure uses an extreme case to 
determine whether a model is too confident on the 
images of nematodes that it will give a high prediction 
of a nematode label even if a nematode is not present 
in the image. 

Some models would crash during their training due 
to the memory required exceeding the total amount of 
memory available. We omit these models from our 
analysis. More often, models that were prone to 
crashing were the models that had additional layers 
added. This fact is more due to the memory limitations 
of our hardware. However, a surprising effect shown 
was that models trained using Adam as the optimiser 
crashed significantly more often than models using the 
other optimisers. 

 

Figure 5: Validation accuracy by nematode stage. 

Figure 5 shows the difference in validation 
accuracy performance between the juvenile dataset and 
the adult dataset. This figure includes all recorded 
training results, including all training methods. This 
figure shows that models trained on the IJ dataset 
achieved significantly higher accuracies than ones 
trained on the adult dataset. The cause for this is most 
likely due to the difference in features of interest 
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between the two. The X marks the mean validation 
accuracies for each nematode stage. 

 

Figure 6: Validation accuracy by nematode stage, separated 
by training method. 

Separating these results by training method 
provides us with Figure 6. This figure gives us a more 
precise image as to how each training method affects 
the performance of a model. With both nematode 
stages, feature extraction leads to the lowest 
performance accuracy, while fine-tuning leads to the 
highest performance accuracy, often staying at 100% 
for the IJ dataset. 

 

Figure 7: Misclassification Percentage by Nematode Stage, 
excluding results using Label Smoothing and Gradient 
Clipping. 

The adult dataset presents a vast range of values 
for validation accuracy across all training methods. 
This fact is most likely due to the small amount of 
variation in the adult nematode dataset. Rotations do 
provide enough images to train on; however, more 
samples of nematodes would help increase the 
variation and lead to less varied performance 
between models. 

As the models present the ability to perform 
adequately on both datasets, we now look at how these 
models perform in an extreme case using non-
nematode images. Figure 7 shows that both datasets 
have an average misclassification percentage of over 
50%, meaning that most models incorrectly predicted 
more than half of the non-nematode images as a 
nematode. When explored carefully, the models appear 
to have a default label they predict, which presents a 
possibility of over-fitting. We will now show how each 
training method affects this misclassification 
percentage. 

 

Figure 8: Misclassification percentage by training method, 
excluding results using Label Smoothing and Gradient 
Clipping. 

Figure 8 presents a more precise image and 
allows us to understand what is happening. While 
feature extraction showed to have a generally lower 
accuracy compared to the other training methods, it 
shows here to have a lower level of misclassification 
on non-nematode images. This fact is due to the 
preservation of the weights of all the layers from the 
pre-trained Xception model while training. The 
learned ImageNet features allow for the model to be 
less likely to label a non-nematode image as a 
nematode. 
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Random initialisation performs the worst, evident 
by the IJ dataset having very high misclassification 
percentages, due to these models training from scratch 
with no pre-existing knowledge to use. However, Fine-
Tuning shows high misclassification percentages as 
well, even with pre-existing knowledge. Our 
implementation of fine-tuning allows all layers to have 
their weights updated during training. This 
implementation alters the pre-existing feature 
extraction leading to a significant variation in 
misclassification percentage values. 

To combat this issue, we investigated using some 
techniques applied in some state-of-the-art models: 
Label Smoothing and Gradient Clipping (Szegedy et 
al., 2016; Zoph et al., 2017). Upon first discovering the 
trend of misclassification, we selected these methods 
to test if models were exhibiting exploding gradients 
and if models were becoming overly confident with 
their predictions. 

 

Figure 9: The effects of Gradient Clipping (left) and Label 
Smoothing (right) on misclassification of non-nematode 
images. 

We can see the effects that these techniques have 
on the misclassification percentage in Figure 9. On the 
left, it shows that gradient clipping does not affect the 
level of misclassification exhibited by the models. 
However, label smoothing shows a considerable 
decrease in the average misclassification of a model on 
non-nematode images. 

 

Figure 10: Misclassification percentage by training method, 
using Label Smoothing. 

To further show the effect of label smoothing, we 
have Figure 10 presenting the misclassification 
percentage of models using label smoothing. This 
figure is comparable to that of Figure 7. Figure 10 
presents a considerable decrease with all training 
methods. This decrease is especially evident with Fine-
Tuning and Random Initialisation, both having had 
very high misclassification percentages without the use 
of label smoothing. 

4.1 Comparisons 

As there is no standard benchmark for the task of 
identification, it is difficult to compare with other 
approaches that use similar techniques. Other 
researchers have used similar techniques, but for 
different purposes such as detection, counting and 
identification based on behavioural dynamics rather 
than morphological features. However, we see a 
significant improvement compared to cases where 
deep learning has been used for tasks involving 
nematodes including identification, detection and 
counting. 

Other image classification models have been 
trained with a more substantial number and variety of 
images, such as the Xception model which achieved a 
79% Top-1 accuracy on the ImageNet dataset (Chollet, 
2017). Although we make use of the Xception model 
architecture, in comparison, our dataset is small in 
quantity and variation. Despite this, it still performs 
well. Our models achieved an average validation 
accuracy of 88.28% for the juveniles dataset and 
69.45% for the adult dataset. 
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5 CONCLUSION 

From our analysis, we show that while there is no 
single best model for performing our specific task, 
there are many techniques that show improvements to 
performance over others. The use of Fine-Tuning 
provides our model with existing knowledge, from 
the ImageNet dataset, to speed up training and allow 
for faster convergence. However, these models risk 
becoming overly confident and misclassifying non-
nematode images at a high rate. With the use of Label 
Smoothing, these models are less likely to make 
incorrect predictions on non-nematode images, as 
they become more able to generalise. 

As this study was dealing with nematodes from the 
same trophic group and even two nematode species 
from the same family, this technology has shown no 
issues in being able to differentiate between them. This 
is an achievement for the technology, as often there are 
only minuscule differences between species, especially 
species belonging to the same family. While we used 
nematodes from the same trophic group, an 
investigation will be required into how well this 
technology will scale to more nematode species, due to 
thousands of different species of nematodes existing 
and with millions more estimated to exist. 

There is a need for more images, both of the ones 
used in this study and of other nematode species, to 
determine how well this technology will scale. 
Utilising images from other nematode researchers 
would provide a variety of types of nematodes and a 
variation in images. This can also cut down on any time 
required for data gathering, as culturing nematodes is 
very time-consuming. Creating a sizeable standard 
dataset with these images would also provide more 
opportunities to explore improving Nematode 
Identification with Deep Learning and any other 
advancing technology. 

As most approaches using computers to aid in 
Nematode Identification have failed to be adopted by 
an audience other than the authors themselves, we hope 
that increased research could help improve the state of 
computer-aided approaches. These approaches not 
only being Nematode Identification but many other 
tools, such as counting, to improve the analysis of these 
organisms. 
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