
Transformation- and Pattern-based State Machine Mining
from Embedded C Code

Andreas Grosche1, Burkhard Igel2 and Olaf Spinczyk3

1Behr-Hella Thermocontrol GmbH, Hansastraße 40, 59557 Lippstadt, Germany
2Fachhochschule Dortmund, Sonnenstraße 96, 44139 Dortmund, Germany

3Universität Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

Keywords: State Machine Extraction, Model Mining, Reverse Engineering, Program Comprehension, Refactoring.

Abstract: Automated extraction of state machine models from source code can improve comprehension of software
system behavior required for many maintenance tasks and reuse in general. Furthermore, it can be used for
subsequent automated processing such as refactoring and model-based verification. This paper presents an
approach based on normalizing transformations of an input program and a pattern to find state machine im-
plementations in the program and to extract relevant information. The results are used to create state machine
models containing states, transitions, events, guards and actions. Fine-grained traceability between the model
and the source code enables navigation and refactoring of model elements. We evaluate the approach by apply-
ing a prototypical implementation to industrial automotive embedded code and show that 74 % of the expected
state machine implementations can be completely identified and 8 % partially.

1 INTRODUCTION

While model-based development, e.g., using Mat-
lab/Simulink, has been established for developing the
application software layer of automotive embedded
systems, low-level programming languages such as C
are preferably used for time-critical and basic soft-
ware to gain transparency and control over regis-
ters, memory, runtime and synchronization (Gross-
man et al., 2005). There are several reasons for the
motivation of reverse engineering such code:

Maintenance. A developer has to comprehend rele-
vant parts of a software system before changes can
be applied (von Mayrhauser and Vans, 1995). If
the documentation is obsolete or not available, the
source code has to be analyzed. Said et al. (Said
et al., 2019) show that state machine models ex-
tracted from C code help to understand embedded
software. In addition, state-based model-driven
development has been shown to improve effi-
ciency during maintenance (Ricca et al., 2018).

Evolution. Small state machine implementations
that are not explicitly documented due to their
simplicity can gradually evolve over time into
larger state machines that are difficult to under-
stand.

Reuse. Parts of a software system may be reused in
new projects in the original or an adapted form. A
good understanding of the interfaces and behavior
is required for correct integration.

Verification. Comprehension of the design and im-
plementation must be available to manually de-
rive or automatically generate test cases. Further-
more, finite state verification techniques can help
to detect deadlocks, livelocks and race conditions
among other properties. These techniques require
a formal model.

Validation. A design helps ensuring that the devel-
oped system meets the expectations of the cus-
tomer.

Refactoring. Restructuring a state machine in se-
quential code, e.g., merging two states, can be a
tedious and error-prone task compared to modify-
ing state machine diagrams. In addition, unstruc-
tured or disadvantageous implementations may be
replaced by more sophisticated realizations, us-
ages of common libraries or frameworks (Fowler,
2013).

Migration. Changing the development method-
ology to model-based design like

104
Grosche, A., Igel, B. and Spinczyk, O.
Transformation- and Pattern-based State Machine Mining from Embedded C Code.
DOI: 10.5220/0009769801040115
In Proceedings of the 15th International Conference on Software Technologies (ICSOFT 2020), pages 104-115
ISBN: 978-989-758-443-5
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

mbeddr1 (Voelter et al., 2019) can make ex-
isting code unusable. Since legacy code typically
contains valuable expert knowledge evolved over
years, a migration of such code may be intended.

State machines are a commonly accepted docu-
mentation and implementation technique for the dy-
namic behavior of reactive systems. They are widely
used in embedded systems to react to inputs, for de-
vice drivers that handle asynchronous sequences and
to subdivide continuous processes into smaller state-
ful steps processable in discrete time slices. However,
low-level C code is too detailed for quick understand-
ing and state machine implementations can be scat-
tered over the program making manual reverse engi-
neering of state machines tedious and error-prone.

The extraction of state machine models from
source code is known as state machine mining (Said
et al., 2018). Existing approaches are either not fully
automated, do not provide enough information or pro-
vide results that cannot be used for further automated
processing like refactoring.

In this paper, we propose an approach to auto-
matically extract a specific subset of UML state ma-
chine2 implementations from source code. The ex-
tracted models contain the states, transitions, events,
guards and actions of the implementations with trace-
ability between each model element and the source
code. These models can be used for program compre-
hension during maintenance, reuse, verification and
validation as well as automated refactoring and mi-
gration. To allow the adaptation to different imple-
mentation techniques, our approach is based on ed-
itable search patterns. The transformation-based ap-
proach allows to find implementations with several
variations.

Our evaluation using industrial automotive em-
bedded C code shows the soundness of our approach.
While the pattern matching is complete, the complete-
ness of the state machine mining depends on the spec-
ified pattern and the degree of normalization.

This paper is structured as follows: Existing ap-
proaches for state machine mining, normalization and
code search are presented in Section 2. Section 3 ex-
plains the widely used state machine implementation
technique we are interested in. Our approach to find
such implementations is introduced in Section 4. The
evaluation in Section 5 using industrial automotive
embedded code shows that 74 of 100 state machine
models could be completely extracted from the source
code. Section 6 concludes and gives an outlook.

1The mbeddr approach closes the gap between high-
level graphical models and low-level C code.

2UML sate machines are based on statecharts introduced
by Harel (Harel, 1987).

2 RELATED WORK

Dynamic State Machine Mining. Dynamic state
machine mining approaches typically instrument the
source code of a program to create execution traces or
log data that are analyzed to recover a state machine
from the program (Xiao et al., 2013; Ammons et al.,
2002). Many techniques are based on state merging
(Biermann and Feldman, 1972). The required infor-
mation can also be fetched from unit test executions
(Xie et al., 2006). These approaches tend to gener-
ate partial state machines without information about
how variables are modified. Walkinshaw and Hall
(Walkinshaw and Hall, 2016) address this issue by ex-
tending the dynamic analysis with a technique based
on genetic programming to extract additional infor-
mation. However, dynamic approaches are not appli-
cable to all embedded systems since code instrumen-
tation alters the execution time and could therefore
break the typical hard real-time constraints (Thums
and Quante, 2012). Our approach circumvents instru-
mentation by using static analysis techniques.
Static State Machine Mining. Static approaches
are commonly based on text, program representations
such as the abstract syntax tree, control flow analy-
sis, data flow analysis, symbolic execution or concolic
testing.

Prywes et al. (Prywes and Rehmet, 1996) pro-
pose a human guided approach that creates a state for
each condition as well as transitions that represent a
sequence of operations. The result is close to a con-
trol flow graph and does not reflect stateful behavior
maintained over multiple function calls.

A technique that incorporates Cpp2XMI to find
nested if and switch statements is proposed by van
den Brand et al. (van den Brand et al., 2008). Al-
though the implementation supports simple syntactic
variations, it has to be explicitly extended to support
further ones. Our approach supports many more vari-
ations implicitly using preceding normalization.

Somé and Lethbridge (Somé and Lethbridge,
2002) find state variables by naming conventions and
use a state variable definition graph to identify and re-
verse engineer state machine implementation idioms.
Our approach is independent of names.

Walkinshaw et al. (Walkinshaw et al., 2008) dis-
cover state transitions and actions with respective
source code using symbolic execution. However,
the states have to be identified manually for this ap-
proach.

Jiresal et al. (Jiresal et al., 2011) use heuristic-
based abstractions to extract statecharts. Their ap-
proach is specific to state machine implementation
techniques that use variables for the communication

Transformation- and Pattern-based State Machine Mining from Embedded C Code

105

with the context. The proposed abstractions may hin-
der automated refactoring.

Bandera (Corbett et al., 2000) automatically ex-
tracts state machines from Java code intended to be
used for model checking. The results are not meant
to be human comprehensible or to be used, e.g., for
refactoring.

The proposal of Wang et al. (Shaohui Wang et al.,
2012) uses symbolic execution to extract state ma-
chines from graphical user interface software where
screens are represented as states. This approach is re-
stricted to user interface software.

Kung et al. (Kung et al., 1994) use symbolic ex-
ecution to extract object state behaviors from object-
oriented C++ source code. Sen and Mall (Sen and
Mall, 2016) apply this approach to Java and extend
it to address some shortcomings. Said et al. (Said
et al., 2018) further extend these approaches by using
concolic testing to overcome limitations in symbolic
execution regarding complex constraint solving and
allow user-defined constraints. They further adapt the
approach for industrial automotive embedded systems
developed with the programming language C and let
the user interactively specify constraints to reduce the
complexity of the mined state machine models.

Approaches using symbolic execution or concolic
testing typically produce incomplete models, e.g.,
with missing events and actions, that are not suitable
for further automated processing like refactoring. In
contrast, our work addresses a subset of the state ma-
chines that can be found by the stated approaches that
can be automatically identified and refactored. In ad-
dition, the patterns of our approach can be adapted
to find, e.g., framework-based implementations that
cannot be found by symbolic execution or concolic
testing.

Our approach is based on the work of Knor et
al. (Knor et al., 1998) where a pattern is matched
with the source code of a program to identify pos-
sible code fragments that implement a state machine
and may be manually refactored. In contrast to the
proposed enhanced string pattern search that requires
user interaction, our approach is based on graph rep-
resentations known from program analysis to extract
all required information from the source code for au-
tomated model construction.
Normalization. Necula et al. (Necula et al., 2002)
propose transformations to normalize C code to the
C intermediate language (CIL). This subset of C re-
duces the complexity of analysis tools since less lan-
guage concepts have to be considered.

Xu and Chee (Xu and Chee, 2003) propose
transformation-based diagnosis for comparing stu-
dent programs with reference solutions for automatic

grading in the context of programming tutoring sys-
tems. The student and model programs, i.e., refer-
ence solutions, are transformed into a subset of the
programming language using semantics-preserving
transformations. The transformed programs are rep-
resented as annotated augmented object-oriented pro-
gram dependence graphs that are used for program
matching. However, the model program does not al-
low to extract information from the matched student
program via metavariables.

We use the concepts of CIL (Necula et al.,
2002) and the transformation-based diagnosis (Xu
and Chee, 2003) to normalize the state machine
search pattern and the input program to cover mul-
tiple programs with semantics-preserving variations
using only one pattern. We extend the approaches by
introducing a fine-grained traceability.
Code Search. Several tools and techniques have been
proposed for code search with placeholders for the
extraction of information from a program for further
processing. We prefer pattern-based code search with
patterns based on the input program language over
queries like ASTLOG (Crew, 1997) or A* (Ladd and
Ramming, 1995) to provide easier access to the pat-
tern language. Existing techniques range from textual
to lexical, syntactic and graph-based matching.

SCRUPLE (Paul and Prakash, 1994) analyzes the
attributed syntax tree of an input program and offers
wildcards as well as concepts in the pattern language
to cover some syntactic variations. However, these
have to be explicitly selected.

Coccinelle (Brunel et al., 2009) is a transforma-
tion tool for Linux collateral evolutions. It uses
temporal logic for matching patterns on control-
flow paths and supports metavariables. While Coc-
cinelle matches simple variations such as swappable
operands using isomorphisms, it does not match more
complex variations such as if and switch statements.
Moreover, Coccinelle does not support matching of
nested conditional statements with arbitrary nesting
depth.

We adopt the ideas of SCRUPLE and Coccinelle
and extend them by normalizing the inputs to match
more syntactic variations, e.g., if statements match
equivalent switch and case statements. In addition, our
approach supports matching of recursive fragments
such as nested if statements with arbitrary nesting
depth. Our approach furthermore provides match re-
sults as a data structure with access to data analysis
results and different program representations for the
subsequent model extraction.

ICSOFT 2020 - 15th International Conference on Software Technologies

106

3 STATE MACHINE
IMPLEMENTATION
TECHNIQUES

Several techniques are used to implement state ma-
chines in source code. These include nested switch

statements, state tables, object-oriented state de-
sign patterns as well as combinations and variations
(Samek, 2009). This paper focuses on nested switch

statements because this technique is often used due to
its simplicity, although it is difficult to read as it may
be scattered over the code and may contain large nest-
ing depths. Other implementation techniques can be
supported by adapting the pattern and extraction (see
Section 4).

Listing 1 shows a simplified example of a state
machine implementation of an embedded system’s
device driver that uses a serial peripheral interface
(SPI) to send a request to an external integrated cir-
cuit (IC) and waits for an acknowledgment from the
IC in the form of an external interrupt. The write op-
eration and waiting for the acknowledgment are asyn-
chronous processes that are handled by the state ma-
chine. In addition, a timeout handling is performed
that aborts the operation after 100 ms of missing write
completed or acknowledgment event.

A state variable holds the current state of the state
machine (see Line 8). The initialization value IDLE

represents the initial state. The functions Request,
Cyclic10ms, WriteCompleted and AckReceived represent
the events the state machine can process. Calling
the Request function (see Line 12) causes the reset
of a time counter (see Line 15), the start of the asyn-
chronous SPI write operation (see Line 16) and a tran-
sition to the WRITING state (see Line 17). The under-
lying SPI driver calls the WriteCompleted function (see
Line 36) on completion of the SPI transmission which
causes the reset of the time counter and a state change
to the WAITING FOR ACK state. An interrupt han-
dler calls the AckReceived function (see Line 43) if the
external IC raises the acknowledgment signal. As a
consequence, the state machine transits to the IDLE
state.

To implement the timeout handling, the Cyclic10ms

function (see Line 22) is called by the operating sys-
tem with a period time of 10 ms. If the state ma-
chine is in the WRITING or WAITING_FOR_ACK state, the
timeout handling is performed. The time counter is
incremented by 10 according to the function call pe-
riod time. If the time counter is greater than or equal
to 100 ms, a timeout is detected and notified calling
the NotifyTimeout function. In addition, a transition to
the TIMEOUT state is performed.

The example shows that if statements can be used

in combination with switch statements, the state ma-
chine implementation can be scattered over several
functions and guards are optional.

Listing 1: Running example of a state machine implementa-
tion in C code. Critical sections required to handle exclusive
access to the state variable from main and interrupt context
as well as other details are omitted for simplicity.

1 typedef enum {
2 IDLE ,
3 WRITING ,
4 WAITING_FOR_ACK ,
5 TIMEOUT
6 } StateType;
7

8 StateType state = IDLE;
9 int time;

10 int isTimeout;
11

12 void Request() {
13 switch (state) {
14 case IDLE:
15 time = 0;
16 SPIWrite(5);
17 state = WRITING;
18 break;
19 }
20 }
21

22 void Cyclic10ms() {
23 switch (state) {
24 case WRITING:
25 case WAITING_FOR_ACK:
26 time += 10;
27 isTimeout = time >= 100;
28 if (isTimeout) {
29 NotifyTimeout();
30 state = TIMEOUT;
31 }
32 break;
33 }
34 }
35

36 void WriteCompleted() {
37 if (WRITING != state)
38 return;
39 time = 0;
40 state = WAITING_FOR_ACK;
41 }
42

43 void AckReceived() {
44 if (state == WAITING_FOR_ACK)
45 state = IDLE;
46 }

4 STATE MACHINE MINING

We propose a transformation- and pattern-based ap-
proach as shown in Figure 1 to support several varia-

Transformation- and Pattern-based State Machine Mining from Embedded C Code

107

Figure 1: The state machine mining pipeline consisting of
the phases normalization, pattern matching and state ma-
chine extraction.

tions in the state machine implementation and adap-
tation of patterns to cover different state machine im-
plementation techniques. A state machine pattern
(SM pattern) and the source code of an input pro-
gram are normalized in the normalization phase. The
pattern matching phase uses the resulting control de-
pendence graphs (pattern and main CDG) to provide
match results containing code fragments that imple-
ment state machines. The state machine extraction
(SM extraction) phase uses the results to create state
machine models (SM models) containing states, tran-
sitions, events, guards and actions. This section de-
scribes the pattern definition and the phases in detail
using the nested switch state machine implementation
technique from Listing 1 as running example.

4.1 Pattern Definition

A pattern that matches the nested switch implemen-
tation technique from the running example must pro-
vide the following information as identified by Knor
et al. (Knor et al., 1998):
• The source code fragments that make up the state

machine. These fragments can be scattered over
the program, e.g., split into multiple functions as
shown in Listing 1. The pattern is designed to
cover all relevant fragments.

• The state space consisting of all possible states of
the state machine. The pattern matches statements
where a constant expression is assigned to a state
variable as well as expressions where a state vari-
able is compared to a constant expression using
the equality operator ==. The constant expressions
are interpreted as concrete states.

• The state variable that holds the current state of
the state machine. This variable is determined
by using the variable in the statements from the
aforementioned state space identification.

• The event space consisting of all events the state
machine accepts. Somé and Lethbridge (Somé
and Lethbridge, 2002) identified two implementa-
tion techniques for event handling. Single routine
implementations use a single function that han-
dle events using a switch statement comparable to

guard handling. Multiple routine implementations
provide a distinct function for each event. Call-
ing such function lets the state machine handle
the event. The pattern in Listing 4 covers a sin-
gle function. To address the multiple routine im-
plementation from the running example (see List-
ing 1), the results of multiple matches are merged
in the extraction phase described in Section 4.4.

• The state transitions, guards and actions are
matched by the pattern using metavariables. The
values of the metavariables are used in the extrac-
tion phase (see Section 4.4) to create the transi-
tions and add the guards and actions.

To explain the concepts of the pattern and match-
ing we incrementally develop a pattern to match the
state machine implementation from Listing 1 in three
steps. Starting with a small pattern that matches only
one code fragment in the first step, the second step
matches all but one and the last step matches all code
fragments.

4.1.1 First Step

The first pattern (see Listing 2) is designed to match
the simplest code fragment, namely the contents of
the AckReceived function (see Listing 1 Line 43). This
code fragment changes the state to IDLE if the current
state is WAITING_FOR_ACK.

A pattern is defined in the programming language
C with additional semantics. The code fragments to
be matched are wrapped in functions called pattern
declarations. Each pattern declaration annotated with
@main is matched with each function of the input pro-
gram. A pattern declaration matches a code fragment
from the input program if all statements and expres-
sions match. Variable declarations are ignored dur-
ing matching since the location of the declarations are
considered arbitrary by default and matching of the
usages is sufficient3.

The if statement of the pattern (see Listing 2
Line 6) is matched with the if statement of the
AckReceived function from the input program (see
Listing 1 Line 44). Metavariables can be used to
match variables and constant expressions by using
the built-in types varmetavar and constmetavar, respec-
tively. The pattern in Listing 2 declares the stateVar

metavariable to match variables in the input program.
Each reference to stateVar in the pattern has to match
with a variable reference to the same variable in the
input program. Regarding the AckReceived function,
stateVar matches the state variable. The stateConst0

3Variable declaration locations to be matched can be
constrained by annotating the respective declarations in the
pattern.

ICSOFT 2020 - 15th International Conference on Software Technologies

108

and stateConst1 metavariables match the constant ex-
pressions WAITING_FOR_ACK and IDLE, respectively. Dis-
tinct metavariables have to be used since the constant
expressions evaluate to different values. The values
of metavariables can be used for further processing in
the extraction phase.

Listing 2: Pattern of the first step that matches the contents
of the AckReceived function from the input program shown
in Listing 1.

1 /** @main */
2 void PStateCheckAndChange() {
3 varmetavar stateVar;
4 constmetavar stateConst0;
5 constmetavar stateConst1;
6 if (stateVar == stateConst0)
7 stateVar = stateConst1;
8 }

4.1.2 Second Step

The normalization preceding the matching transforms
the switch statement in function Request (see Listing 1
Line 13) to an if statement and the not equal operator
of function WriteCompleted (see Line 37) to an equal
operator. These normalized conditions are already
matched by the condition stateVar == stateConst0

from the first pattern. However, the pattern matches
if statements where the then branch contains only
the assignment of a new state to the state variable.
Code fragments containing additional statements in
the then branch like in functions Request, Cyclic10ms

and WriteCompleted are not covered. The pattern
shown in Listing 3 extends the first pattern to match
these statements which are interpreted as actions exe-
cuted during the state transition.

Sequential statements can be moved to a new pat-
tern declaration. The new pattern declaration can be
referenced using the built-in Match statement and pro-
viding a match expression. The contents of the ref-
erenced pattern declaration are matched instead of
the Match statement. Match expressions are inspired
by regular expressions where character classes like
[A-Z] are replaced with names of pattern declarations,
e.g., [PatternName] to reference a pattern declaration.
These references can be embedded in named groups
of the form (?<GroupName>[PatternName]). The code
fragment matched by the referenced pattern declara-
tion is available in the extraction phase using the spec-
ified group name.

In the pattern shown in Listing 3, the assignment
of a new state to the state variable is moved to the
new pattern declaration PStateChange (see Line 12).
To match an arbitrary number of statements with an

acts[0] acts[1] sc[0]

PStateCheck
stateConst = IDLE
"if (state == IDLE)"

^PStateChange
"time = 0"

^PStateChange
"SPIWrite(5)"

PStateChange
stateConst = WRITING
"state = WRITING"

Global metavars:
stateVar = state

Figure 2: The pattern instances tree shows the instances
of the pattern declarations from Listing 3 created during
matching with the Request function from the running ex-
ample (see Listing 1).

eventual state change, the PStateChange pattern dec-
laration is referenced twice. The first reference (see
Line 7) uses the negation operator ˆ and the quantifi-
cation * known from regular expressions to match an
arbitrary number of any statement but a state change.
The second reference matches the state change, i.e.,
an assignment of a constant expression to the state
variable.

The pattern matcher creates pattern instances for
each successfully matched pattern declaration. This
includes the entry pattern declaration annotated with
@main as well as referenced pattern declarations. The
resulting pattern instances tree from matching the
pattern from Listing 3 with the Request function from
Listing 1 is shown in Figure 2.

Metavariables can be declared locally or globally.
Local metavariables are declared within a pattern dec-
laration (see Line 5 and Line 13). Local metavariables
of different pattern instances may contain different
values. Global metavariables are declared outside a
pattern declaration (see Line 1). A global metavari-
able referenced by different pattern instances must
have the same value for a successful match. For ex-
ample, the stateVar global metavariable referenced in
PStateCheck and PStateChange always match the vari-
able state from the input program (see Figure 2).

Listing 3: Pattern of the second step that matches the con-
tents of all functions but Cyclic10ms from the input program
shown in Listing 1.

1 v a r m e t a v a r s t a t e V a r ;
2

3 /∗ ∗ @main ∗ /
4 void PSta t eCheck () {
5 c o n s t m e t a v a r s t a t e C o n s t ;
6 i f (s t a t e V a r == s t a t e C o n s t) {
7 Match (” (?< a c t s >[ˆ PS ta t eChange] ∗) ”) ;
8 Match (” (?< sc >[PS ta t eChange]) ”) ;
9 }

10 }
11

12 void PSta t eChange () {
13 c o n s t m e t a v a r s t a t e C o n s t ;
14 s t a t e V a r = s t a t e C o n s t ;
15 }

Transformation- and Pattern-based State Machine Mining from Embedded C Code

109

4.1.3 Third Step

The pattern from the second step does not match the
Cyclic10ms function since it does not support state
changes that are indirectly control dependent on state
checks, i.e., it does not support guards.

Listing 4: Pattern of the third step that matches the contents
of all functions from the input program shown in Listing 1.

1 varmetavar stateVar;
2

3 /** @main @level 0 @coverage
partialtoplevel */

4 void PStateCheck() {
5 constmetavar stateConst;
6 if (stateVar == stateConst)
7 Match("(?<guardWActs >[PGuardWActs]) |

(?<sc>[PStateChangeWActs])");
8 else
9 Match("(?<check >[PStateCheck]?)");

10 }
11

12 void PGuardWActs() {
13 Match("(?<acts >[ˆPGuard]*)");
14 Match("(?<guard >[PGuard])");
15 }
16

17 void PGuard() {
18 exprmetavar guard;
19 if (guard)
20 Match("(?<scwa >[PStateChangeWActs])");
21 else
22 Match("(?<guard >[PGuard]) | (?<stmts >[

Stmt]*)");
23 }
24

25 void PStateChangeWActs() {
26 Match("(?<acts >[ˆPStateChange]*)");
27 Match("(?<sc>[PStateChange])");
28 }
29

30 void PStateChange() {
31 constmetavar stateConst;
32 stateVar = stateConst;
33 }

The pattern in Listing 4 circumvents this limita-
tion by introducing the PGuardWActs and PGuard pattern
declarations. In addition, the two match statements
used to match actions and a state change are moved to
the new pattern declaration PStateChangeWActs. More-
over, the if statement in PStateCheck allows an op-
tional else branch by specifying a reference to the
PStateCheck pattern declaration and using the ? quan-
tifier. This recursive reference matches state checks
nested in the false branch of a state check. Since
the normalization phase transforms switch statements
to nested if statements, the switch statement of the
Cyclic10ms function is matched by this pattern.

The PStateCheck pattern declaration expects either
a guard (PGuardWActs) or a state change with optional
actions (PStateChangeWActs) in the then branch. The
alternation is denoted using the or operator | known
from regular expressions.

A guard as declared in PGuard is an if statement
with an arbitrary condition. The metavariable guard

of type exprmetavar matches any expression. The then
branch consists of a state change with optional actions
(PStateChangeWActs) and the else branch consists of a
nested guard (PGuard) or arbitrary statements (Stmt).
Stmt is a built-in pattern declaration that matches any
statement.

4.2 Normalization

Searching for state machine implementations accord-
ing to the nested switch statement technique, possi-
ble code variations have to be considered. For ex-
ample, a switch statement can be replaced by if state-
ments and the operands of the equality operator == can
be swapped. Variations between two programs that
change the computational behavior while maintain-
ing the computational result are known as semantics-
preserving variations (Xu and Chee, 2003).

The normalization phase uses different program
representations to transform the input program and
the pattern to remove semantics-preserving varia-
tions. These semantics-preserving transformations
are based on Xu’s and Chee’s (Xu and Chee, 2003)
approach for comparing student programs with a
specimen program for programming tutoring systems
as well as the C intermediate language (Necula et al.,
2002). We adapt these approaches by using a sub-
set of the proposed transformations that still allow for
tracing back to the original code and the identification
of state machine implementations.

4.2.1 Abstract Syntax Tree

The first step of the normalization phase is parsing
the source code and representing it as an abstract syn-
tax tree (AST). This step involves textual transforma-
tions performed by the C preprocessor, tokenization
and parsing to construct the AST.

The AST represents the source code without syn-
tactic details such as formatting. Subsequent trans-
formations remove syntactic variations from the pro-
gram. These include, e.g., the replacement of switch

statements with nested if statements. Conditions of if
statements are normalized by swapping the then and
else branches if necessary. For example, the not equal
operator != in Listing 1 Line 37 is normalized to an
equal operator == by introducing an empty else branch
and swapping the then and else branches.

ICSOFT 2020 - 15th International Conference on Software Technologies

110

<0> T

<4> T

<2> F

<5> T<3> T

<3> T <4> T<2> T

<3> T <2> T

[B0 (ENTRY)]

[B1]

if (state == WRITING)

[B9]

isTimeout = 99 < time

[B12]

state = TIMEOUT

[B17]

if (state == WAITING_FOR_ACK)

[B19]

if (isTimeout)

[B21]

time = time + 10

[B23]

NotifyTimeout()

Figure 3: The control dependence graph of function
Cyclic10ms from the running example shows the control de-
pendences between the statements.

4.2.2 Control Flow Graph

The second step of the normalization is the creation
of a control flow graph (CFG) based on the AST.
The CFG abstracts the sequential source code lines
by making the control flow explicit and hiding goto

and label statements.

4.2.3 Control Dependence Graph

The control dependence graph (CDG) is constructed
using the control flow graph by computing the post-
dominators, constructing the post-dominator tree and
determining the control dependences as proposed by
Ferrante et al. (Ferrante et al., 1987). We use a sim-
plified variant where the nodes of a CDG represent
statements and the edges represent the control condi-
tions on which the statements are executed.

Figure 3 shows the CDG of the Cyclic10ms func-
tion from the running example (see Listing 1). Nodes
containing an if statement are predicate nodes where
the conditional expression result of the if statement
determines whether the statements referenced with an
edge labeled with T (true) or F (false) are executed.
We extend the control dependence edge labels by the
execution order of the statements.

A node can be control dependent on multiple
nodes. Consider the fallthrough of case WRITING: from
Listing 1 Line 24 as an example. Nodes [B9], [B21]

and [B19] are control dependent on blocks [B1] and
[B17], i.e., the statements are executed if one of the
conditions is true which is equivalent to the semantics
of the fallthrough construct.

4.2.4 Traceability

Traceability throughout the whole normalization
phase is maintained to support forward and backward
navigation between the normalized program and the
input program source code. This is especially re-
quired to support navigation from each element of
the resulting state machine diagram to the associated
source code locations.

The C preprocessor tracks the character locations
during textual transformations. The tokens created
during tokenization refer to the expanded locations.
Each AST node created by the parser contains the lo-
cations and lengths of the represented tokens.

During the subsequent semantics-preserving
transformations, newly created AST nodes are linked
with the original AST nodes or nodes from previous
normalization iterations. Changes in the control flow,
e.g., swapping the then and else branches of an if

statement to normalize the boolean condition of the
if statement are stored in the AST node representing
the if statement.

Each node of the control flow graph references an
AST subtree representing a statement. Each node of
the control dependence graph references a node of the
control flow graph.

The resulting chain from control dependence
graph node over control flow graph node over AST
subtree over tokens to the text in the source code real-
izes the required fined-grained traceability. The map-
ping maintained by the C preprocessor during the tex-
tual transformations allows AST nodes and their to-
kens to be found in preprocessor macro definitions
and the locations where they are referenced.

4.3 Pattern Matching

The pattern matching phase starts with the identifica-
tion of the pattern declarations marked as entry points
using the @main annotation (see Listing 4 Line 3). Each
of these main pattern declarations is matched with
each function of the input program using the respec-
tive control dependence graphs (see Figure 4 and Fig-
ure 3). For a pair consisting of a main pattern dec-
laration and an input program function, a pattern in-
stances tree (see Figure 5) with an instance of the
main pattern declaration as root node is created. A
pattern instance stores the values of local metavari-
ables as well as the mapping of pattern CDG nodes to
input program CDG nodes.

For each pattern declaration and function pair, a
top-down analysis of the pattern control dependence
graph is performed comparing the edges and nodes of
the pattern with the corresponding elements of the in-

Transformation- and Pattern-based State Machine Mining from Embedded C Code

111

put program control dependence graph. Two nodes
are compared by comparing the AST subtrees ref-
erenced by the nodes. For example, matching of
PStateCheck with Cyclic10ms starts with matching pat-
tern node [B9] (see Figure 4) with input program node
[B1] (Figure 3). The statements referenced by the
nodes are compared traversing the AST subtrees us-
ing a depth-first search. Two nodes match if all AST
node pairs are equivalent. For variable metavariable
references such as stateVar, the input program AST
node must be a variable reference, e.g., state. The ref-
erenced variable declaration is stored in the metavari-
able. For constant metavariable references such as
stateConst, the input program AST node must be a
constant expression, e.g., a literal or reference to an
enum member like WRITING. The successful matching
of the two CDG nodes is stored in the pattern instance
as mapping [B9]→ [B1].

When the top-down analysis reaches pattern node
[B5], a new instance of the referenced pattern dec-
laration PStateCheck is created and the matching is
continued with the control dependence graph of the
referenced pattern declaration. Pattern node [B9]

is matched with input program node [B17]. Since
the metavariable stateVar is global and has already
matched in node [B1], the variable referenced in node
[B17] has to be the same as known from the previous
match. Otherwise, the matching would not be suc-
cessful, aborted and restarted for the next location in
the program.

In contrast to stateVar, the metavariable stateConst

is local and can be different for each pattern in-
stance. In case of node [B17], state is mapped to
WAITING_FOR_ACK.

Input program nodes that are control dependent
on multiple predicate nodes can be matched multiple
times. For example, the input program node [B9] is
matched twice. The PGuard pattern instance covering
the second match refers to the node as [B9’].

The @level 0 annotation (see Listing 4 Line 3)
lets the matcher start a matching process only
at the top level of the input program. The
@coverage partialtoplevel annotation configures the
matcher so that a match of the pattern top level with
a subset of the input program top level is sufficient
for success. The pattern would therefore still match
if statements were placed before or after the switch

statement in Listing 1 Line 23.

4.4 State Machine Extraction

The state machine extraction phase uses the pattern
instances tree and metavariable values provided by
the matching phase to extract relevant information

T

F T

[B0 (ENTRY)]

[B9]
if (stateVar == stateConst)

[B5]
Match("(?<check>[PStateCheck]?)")

[B11]
Match("(?<guardWActs>[PGuardWActs])
| (?<sc>[PStateChangeWActs])")

Figure 4: The control dependence graph of pattern declara-
tion PStateCheck from Listing 4. Metavariable declarations
are omitted since they are skipped during matching.

guardWActs[0] check[0]

acts[0] acts[1] guard[0]

scwa[0]

acts[0] sc[0]

guardWActs[0]

acts[0] acts[1] guard[0]

scwa[0]

acts[0] sc[0]

PStateCheck

stateConst = WRITING

[B9][B1]

PGuardWActs

^PGuard

[B21']

^PGuard

[B9']

PGuard

guard = isTimeout

[B9][B19']

PStateChangeWActs

^PStateChange

[B23']

PStateChange

stateConst = TIMEOUT

[B1][B12']

PStateCheck

stateConst = WAITING_FOR_ACK

[B9][B17]

PGuardWActs

^PGuard

[B21]

^PGuard

[B9]

PGuard

guard = isTimeout

[B9][B19]

PStateChangeWActs

^PStateChange

[B23]

PStateChange

stateConst = TIMEOUT

[B1][B12]

Global metavars:

stateVar = state

Figure 5: The pattern instances tree shows the instances
of the pattern declarations from Listing 4 created during
matching with the Cyclic10ms function from the running ex-
ample.

from the input program. Control and data flow analy-
sis results are also available for more complex extrac-
tions.

The extraction phase traverses the pattern in-
stances tree (see Figure 5) using a depth-first search
to build the state machine model. Following the
guardWActs[0] edge of a PStateCheck pattern instance
node, the current state can be inferred from the
stateConst metavariable of the node. The value of the
metavariable is the constant expression, i.e., the enum
member, that represents the state. For the root node,
the value is WRITING.

For each visited pattern instance of type PGuard,
a choice pseudostate and a transition from the cur-
rent state to the choice is created. An example for
the pattern instance node that matches the input pro-
gram node [B19’] is shown in Figure 6. The event

ICSOFT 2020 - 15th International Conference on Software Technologies

112

Cyclic10ms /

time += 10;

isTimeout = time >= 100;

[else]

[isTimeout] /

NotifyTimeout();
WRITING TIMEOUT

Figure 6: Transition mined from function Cyclic10ms.

of the transition is the function Cyclic10ms matched
by the pattern declaration. The siblings of the PGuard

pattern instance cover the input program nodes im-
plementing the actions to be executed if the event is
processed. The underlying statements are time += 10;

and isTimeout = time >= 100;.
The guard expression isTimeout is stored for the

eventual creation of the transition to the new state. In
addition, a default transition with guard [else] is in-
serted that terminates the state transition if isTimeout

does not evaluate to true. The aforementioned actions
are still executed in this case.

Each time the traversal reaches a pattern instance
of type PStateChange, a transition from the current state
or the last choice pseudostate to the state identified by
the stateConst metavariable is created. The previously
stored guard expression is used as guard, if any. In
this example, the guard expression isTimeout is used.
The siblings of the pattern instance, i.e., the nodes ref-
erenced by the acts[*] edges of the parent node, are
the actions executed with the newly created transition.
The action introduced in Figure 6 is NotifyTimeout();.

The state machine models are iteratively extended
by analyzing all pattern instances trees. Existing state
machines are recognized via the state variable and ex-
isting states are recognized via the associated evalu-
ated constant expression. The resulting state machine
extracted from Listing 1 is shown in Figure 7.

The traceability allows to show pretty printed AST
nodes of the AST created from the input program
source code instead of the normalized code. Since
each AST node contains the source code location, the
model can be used, e.g., to replace the state machine
implementation with a more sophisticated one. For-
mal verification would identify TIMEOUT as a dead-
lock state.

5 EVALUATION

We implemented a prototype and used online tutorials
describing the implementation of state machines in C
code using the nested switch statement technique to
define the pattern and implement the extraction phase.
We then applied the implementation to industrial code
to evaluate our approach.

We used the first ten example code fragments from
tutorials, which we could find online, to fine-tune the

Request /

time = 0;

SPIWrite(5);

Cyclic10ms /

time += 10;

isTimeout = time >= 100;

WriteCompleted /

time = 0;
[else]

[isTimeout] /

NotifyTimeout();

AckReceived

Cyclic10ms /

time += 10;

isTimeout = time >= 100;

[isTimeout] /

NotifyTimeout();

[else]

IDLE

WRITING

TIMEOUT

WAITING_FOR_ACK

Figure 7: The complete state machine model mined from
the C code shown in Listing 1.

pattern as well as the extraction implementation. We
defined a single pattern that covers eight of these code
fragments. The remaining two fragments used tem-
porary variables and extracted the state handling in
separate functions, i.e., the state check and transi-
tion are performed in different functions. These frag-
ments could be covered using inlining and elimination
of temporary variables in the normalization phase.
However, these kind of normalizations have not been
implemented, yet. The resulting pattern and extrac-
tion implementation support different variations, e.g.,
where the state is not checked at the top level but at an
arbitrary level of nested guards. We further adapted
the pattern to cover several corner cases. The result-
ing pattern has 118 lines of code.

We applied our state machine mining approach to
handwritten industrial automotive C code from a cen-
ter information display project. The project consists
of 329 .c files containing 201,315 physical lines of
code. We removed generated files and analyzed the
remaining 286 handwritten .c files containing 147,333
physical lines of code. To define the expected results
(ground truth), we started with a simplified pattern to
extract state variable candidates possibly used to im-
plement a state machine. A state variable candidate
has to be a global or static local variable to be able to
hold a state over multiple function calls. In addition,
a state variable candidate has to be compared with a
constant expression using an if or switch statement.
At least one state change has to be directly or in-

Transformation- and Pattern-based State Machine Mining from Embedded C Code

113

directly control dependent on the stated comparison.
The state change is expected to be an assignment of a
constant expression to the state variable candidate.

The simplified pattern revealed 165 state variable
candidates. We manually investigated all usages to re-
move candidates used as counters or where the state is
fetched from external sources as well as pointers that
reference different objects. We found 100 state ma-
chine implementations our approach should be able
to extract.

We then applied our prototype to the code and
verified the resulting state machine models for cor-
rectness and completeness. While typical analysis
times range from several seconds to few minutes,
14 state machine implementations (see Table 1) lo-
cated in three files could not be extracted since these
files are too complex to be analyzed by our proto-
type. Four extracted state machine models could not
be verified, because the resulting models contained so
many transitions that the resulting diagrams could not
be read. 74 state machine implementations could be
completely extracted. Eight implementations could
be partially extracted. The uncovered code fragments
use temporary variables or are spread over multiple
files which is not supported by our prototype, yet.

Table 1: Evaluation results applying our approach to indus-
trial automotive embedded code.

Too Complex for Analysis 14
Too Complex for Verification 4
Successful 74
Successful With Limitations 8
Total 100

In summary: Our prototype could completely ex-
tract 74 % of the expected state machine implemen-
tations automatically. The results can be improved by
introducing optimizing normalizations such as inlin-
ing and removal of temporary variables.

6 CONCLUSION AND FUTURE
WORK

In this paper, we introduced a transformation- and
pattern-based approach to extract UML state ma-
chine models from embedded code. Normalizing the
pattern and input program covers several semantics-
preserving variations. The approach can be used to
extract state machines using different implementation
techniques. We showed how to apply the approach
to the nested switch statement technique. We per-
formed an evaluation using a prototypical implemen-
tation and industrial automotive embedded code.

Future work will examine the extension of the
pattern to extract complete statecharts (Harel, 1987)
including orthogonal regions, hierarchical states and
history. In addition, it has to be shown which imple-
mentation techniques besides the nested switch can be
matched.

Further research is required to improve the seman-
tic level of matching. This includes optimizing nor-
malizations as known from compilers, e.g., inlining,
dead code elimination, removal of temporary vari-
ables and loop unrolling. However, thorough opti-
mization can break the required fine-grained trace-
ability.

Complex embedded software is typically config-
urable and uses variability mechanisms using the C
preprocessor. Our current approach requires to select
a specific configuration before analysis. Future work
will address variability-aware parsing (Kästner et al.,
2011) to provide state machine models covering prod-
uct lines.

The transformation- and pattern-based approach is
not restricted to state machine mining. Future work
will address other fields like the automatic evalua-
tion of student programs. This will probably require
to perform matching using the whole program de-
pendence graph (Ferrante et al., 1987) to cover per-
mutable statements.

Although the pattern is defined in the same lan-
guage as the input program, the pattern definition is
not trivial when it comes to recursion. For example,
switch statements with an arbitrary number of case

statements can be currently matched using a recursive
pattern declaration with an if statement. We plan to
simplify the pattern language, e.g., by allowing to use
a switch statement with a repeatable case.

REFERENCES

Ammons, G., Bodı́k, R., and Larus, J. R. (2002). Min-
ing specifications. In Proceedings of the 29th ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 4–16.

Biermann, A. W. and Feldman, J. A. (1972). On the
synthesis of finite-state machines from samples of
their behavior. IEEE Transactions on Computers, C-
21(6):592–597.

Brunel, J., Doligez, D., Hansen, R. R., Lawall, J. L.,
and Muller, G. (2009). A foundation for flow-based
program matching: Using temporal logic and model
checking. In Proceedings of the 36th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 114–126.

Corbett, J. C., Dwyer, M. B., Hatcliff, J., Laubach, S.,
Pasareanu, C. S., Robby, and Zheng, H. (2000). Ban-
dera: extracting finite-state models from java source

ICSOFT 2020 - 15th International Conference on Software Technologies

114

code. In Proceedings of the 2000 International Con-
ference on Software Engineering, pages 439–448.

Crew, R. F. (1997). Astlog: A language for examin-
ing abstract syntax trees. In Proceedings of the
USENIX Conference on Domain-Specific Languages,
pages 229–242.

Ferrante, J., Ottenstein, K. J., and Warren, J. D. (1987). The
program dependence graph and its use in optimiza-
tion. ACM Trans. Program. Lang. Syst., 9(3):319–349.

Fowler, M. (2013). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Grossman, D., Hicks, M., Jim, T., and Morrisett, G. (2005).
Cyclone: A type-safe dialect of c. C/C++ Users Jour-
nal, 23(1):112–139.

Harel, D. (1987). Statecharts: a visual formalism for com-
plex systems. Sci. Comput. Program., 8(3):231–274.

Jiresal, R., Makkapati, H., and Naik, R. (2011). Statechart
extraction from code – an approach using static pro-
gram analysis and heuristics based abstractions. In
Proc. of 2nd India Workshop on Reverse Engineering.

Kästner, C., Giarrusso, P. G., Rendel, T., Erdweg, S., Os-
termann, K., and Berger, T. (2011). Variability-aware
parsing in the presence of lexical macros and condi-
tional compilation. SIGPLAN Not., 46(10):805–824.

Knor, R., Trausmuth, G., and Weidl, J. (1998). Reengineer-
ing c/c++ source code by transforming state machines.
In Development and Evolution of Software Architec-
tures for Product Families, pages 97–105.

Kung, D., Suchak, N., Gao, J., Hsia, P., Toyoshima, Y., and
Chen, C. (1994). On object state testing. In Proceed-
ings Eighteenth Annual International Computer Soft-
ware and Applications Conference, pages 222–227.

Ladd, D. A. and Ramming, J. C. (1995). A*: a language
for implementing language processors. IEEE Trans-
actions on Software Engineering, 21(11):894–901.

Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W.
(2002). Cil: Intermediate language and tools for anal-
ysis and transformation of c programs. In Proceedings
of Conference on Compilier Construction, pages 213–
228.

Paul, S. and Prakash, A. (1994). A framework for source
code search using program patterns. IEEE Transac-
tions on Software Engineering, 20(6):463–475.

Prywes, N. and Rehmet, P. (1996). Recovery of software
design, state-machines and specifications from source
code. In Proceedings 2nd IEEE International Confer-
ence on Engineering of Complex Computer Systems,
pages 279–288.

Ricca, F., Torchiano, M., Leotta, M., Tiso, A., Guerrini, G.,
and Reggio, G. (2018). On the impact of state-based
model-driven development on maintainability: a fam-
ily of experiments using unimod. Empirical Software
Engineering, 23(3):1743–1790.

Said, W., Quante, J., and Koschke, R. (2018). Towards
interactive mining of understandable state machine
models from embedded software. In Proceedings
of the 6th International Conference on Model-Driven
Engineering and Software Development, pages 117–
128.

Said, W., Quante, J., and Koschke, R. (2019). Do extracted
state machine models help to understand embedded
software? In Proceedings of the 27th International
Conference on Program Comprehension, pages 191–
196.

Samek, M. (2009). Practical uml statecharts in c/c++:
Event-driven programming for embedded systems.

Sen, T. and Mall, R. (2016). Extracting finite state repre-
sentation of java programs. Software & Systems Mod-
eling, 15(2):497–511.

Shaohui Wang, Srinivasan Dwarakanathan, Oleg Sokolsky,
and Insup Lee (2012). High-level model extraction via
symbolic execution.

Somé, S. S. and Lethbridge, T. C. (2002). Enhancing pro-
gram comprehension with recovered state models. In
Proceedings of the 10th International Workshop on
Program Comprehension, pages 85–93.

Thums, A. and Quante, J. (2012). Reengineering embed-
ded automotive software. In Proceedings of the 28th
IEEE International Conference on Software Mainte-
nance, pages 493–502.

van den Brand, M., Serebrenik, A., and van Zeeland, D.
(2008). Extraction of state machines of legacy c code
with cpp2xmi. In Proceedings of the 7th Belgian-
Netherlands Software Evolution Workshop, pages 28–
30.

Voelter, M., Kolb, B., Szabó, T., Ratiu, D., and van Deursen,
A. (2019). Lessons learned from developing mbeddr:
a case study in language engineering with mps. Soft-
ware & Systems Modeling, 18(1):585–630.

von Mayrhauser, A. and Vans, A. M. (1995). Program com-
prehension during software maintenance and evolu-
tion. IEEE Computer, 28(8):44–55.

Walkinshaw, N., Bogdanov, K., Ali, S., and Holcombe, M.
(2008). Automated discovery of state transitions and
their functions in source code. Software Testing, Veri-
fication and Reliability, 18(2):99–121.

Walkinshaw, N. and Hall, M. (2016). Inferring computa-
tional state machine models from program executions.
In Proceedings of the IEEE International Conference
on Software Maintenance and Evolution, pages 122–
132.

Xiao, H., Sun, J., Liu, Y., Lin, S.-W., and Sun, C. (2013).
Tzuyu: Learning stateful typestates. In Proceedings
of the 28th IEEE/ACM International Conference on
Automated Software Engineering, pages 432–442.

Xie, T., Martin, E., and Yuan, H. (2006). Automatic extrac-
tion of abstract-object-state machines from unit-test
executions. In Proceedings of the 28th International
Conference on Software Engineering, pages 835–838.

Xu, S. and Chee, Y. S. (2003). Transformation-based diag-
nosis of student programs for programming tutoring
systems. IEEE Transactions on Software Engineer-
ing, 29(4):360–384.

Transformation- and Pattern-based State Machine Mining from Embedded C Code

115

