
GoSecure: Securing Projects with Go

Maria Spichkova, Achal Vaish, David C. Highet, Isthi Irfan, Kendrick Kesley and Priyanga D. Kumar
School of Science, RMIT University, Melbourne, Victoria 3000, Australia

Keywords: Software Engineering, Cloud Security.

Abstract: This paper presents an automated solution for security vulnerability scanning of Google Cloud Platform (GCP)
projects, to cover gaps in the capabilities of solutions to scan GCP projects for common security issues. The
elaborated security inspection tool, GoSecure, can scan multiple GCP instances against industry recognised
Center for Internet Security (CIS) benchmarks for GCP. GoSecure covers all categories listed under the CIS
benchmarks for GCP, providing an overview of the existing security profile of all GCP projects, along with
suggestions for improvement in configurations for the individual projects.

1 INTRODUCTION

Cloud Security is of increasing importance to many
enterprises as companies migrate data and applica-
tions to cloud computing resources from in house data
centres. Securing resources in the Cloud brings a dif-
ferent set of challenges to an enterprise.

Our research is focused on securing Google Cloud
Platform (GCP) projects, and scaling the security
management when dealing with multiple projects.
GCP was introduced in 2008 with their first prod-
uct, Google App Engine (Ciurana, 2009; Zahariev,
2009). In 2018, Google Cloud Platform has a world-
wide market share of 9.5%, claiming the third posi-
tion after Amazon Web Services and Microsoft Azure
(Alto, 2019).

One of the most common and dangerous incor-
rectly configured resource are storage buckets such as
those provided by Google Cloud (Cloud Storage) or
Amazon S3 (Amazon’s cloud storage solution) where
the bucket has been incorrectly configured to provide
public access to sensitive data. An example of this is a
2019 breach where Medico, Inc., a healthcare vendor
left an S3 bucket exposed to public access. The bucket
titled “medicoar” contained 1.7GB of data including
insurance claims and personal medical information,
see (Upguard Inc., 2019). Breaches such as these can
be costly to companies in terms of reputation, fines
for regulatory non-compliance and lost business. For
individuals affected having personally identifiable in-
formation exposed (PII) can leave individuals suscep-
tible to fraud.

The security requirements are initially anchored

to CIS (Center for Internet Security) Benchmarks
for Google Cloud Platform. These benchmarks fo-
cuses on 7 fundamental services which are Identity
and Access Management, Logging and Monitoring,
Networking, Virtual Machines, Storage, Cloud SQL
Database Services, and Kubernetes Engine as they
are seen as the foundations of most projects. Secu-
rity Solutions based off similar benchmarks such as
the Center for Internet Security (CIS) benchmarks can
assist enterprises with ensuring that security vulnera-
bility checks are provided consistently irrespective of
which platform an application is deployed to.
Contributions. The purpose of our project is to pro-
vide solutions for gaps in the capabilities of existing
software to scan GCP projects for common security
issues. Our aim is to develop a security inspection
tool in the form of a web application that scans mul-
tiple GCP instances against industry recognised CIS
benchmarks for GCP. CIS provides a document list-
ing benchmarks in 7 security categories.

To solve the problem, we developed a web-based
tool, GoSecure, which could be deployed to multiple
organizations with capabilities to manage users at the
team, project or user level. The application uses a mi-
croservices architecture hosted in GCP which allows
for automatic scaling of resources and high levels of
availability. The tool covers all categories listed under
the CIS benchmarks for GCP, providing an overview
of the existing security profile of all GCP projects,
along with suggestions for improvement in configu-
rations for the individual projects.
Outline. The rest of the paper is organised as fol-
lows. Section 2 presents the background analysis and

Spichkova, M., Vaish, A., Highet, D., Irfan, I., Kesley, K. and Kumar, P.
GoSecure: Securing Projects with Go.
DOI: 10.5220/0009591605870594
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 587-594
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

587

related work. The proposed solution is introduced in
Section 3, which implementation is then discussed in
Section 4. Finally, Section 5 summarises the paper.

2 BACKGROUND AND RELATED
WORK

In this section, we would like to provide an introduc-
tion to the background of our work: Center for In-
formation Security benchmarks, Google Cloud Plat-
form (GCP) Services as well as existing security so-
lutions for GCP. For a general analysis of the secu-
rity issues as well as the corresponding comparison of
cloud platforms we would like to refer to the follow-
ing publications. A comprehensive analysis of exist-
ing challenges and issues involved in the cloud com-
puting security problem, see (Almorsy et al., 2016).
A survey on security and privacy in cloud computing
was introduced in (Zhou et al., 2010). A more recent
survey on security mechanisms of Amazon Web Ser-
vices, Google Cloud Platform, Microsoft Azure, IBM
SmartCloud, and Rackspace, was presented in (Panth
et al., 2014).

2.1 CIS Benchmarks

Center for Internet Security (CIS)1 is a nonprofit or-
ganisation, established in 2000, which provides a set
of benchmarks and software intended to improve in-
ternet security. The CIS benchmarks are offered for
all three major public Cloud providers (AWS, GCP
and Azure). This is an advantage as tools can be built
with consistent security standards across all three
clouds using the benchmarks. As noted in the intro-
duction the CIS benchmarks for Google Cloud Plat-
form cover seven areas: Identity and Access Manage-
ment, Logging and Monitoring, Networking, Virtual
Machines, Storage, Cloud SQL Database Services,
and Kubernetes Engine.

The CIS benchmarks have the concept of 2 lev-
els. Level 1 is the minimum level of security that
any project should have. Level 2 is a higher level
aimed at projects which require a higher level of se-
curity. These are not recommended for every project
as implementing “may negatively inhibit the utility
or performance of the technology”, as per CIS def-
inition. They are intended for defence in depth and
where security is paramount. The benchmarks each
have a note marking whether they are “scored” or
“not scored”. These are used for the tools provided
by CIS security and provide a compliance score. As

1https://www.cisecurity.org/

the scoring method does not appear to be publicly
available we have chosen not to implement a scoring
method within the current project. As the solution we
have created is intended to scan for all benchmarks
included in the Google Cloud Platform Foundation
Benchmarks a brief outline of each section follows to
give some context to what the solution implements.

The core CIS benchmarks are as follows:
• Identity and Access Management Benchmarks: in-

clude service account, service and API key and
credential standards. An example is a benchmark
to ensure multifactor authentication is enabled for
each GCP account.

• Logging and Monitoring Benchmarks: are con-
cerned with ensuring that good logging and moni-
toring practices are followed so that security anal-
ysis, resource change tracking and compliance
management can take place. Ensuring that log
sinks are enabled for storage buckets is an exam-
ple.

• The Networking Benchmarks: cover areas such as
preventing SSH access, controlling VPC access
and ensuring that potentially insecure default or
legacy networks are not present.

• Virtual Machines Benchmarks: are rules for
Google Compute VM instances. It includes rules
around SSH keys, IP forwarding and oslogin is-
sues.

• Storage Benchmarks: include IAM and logging
rules for Storage buckets.

• The Cloud SQL Benchmarks: are largely con-
cerned with ensuring that unauthorised or inap-
propriate users/systems can not access a Cloud
SQL Database. This can include ensuring SSL
is activated for all incoming connections or that
users with administrative privileges connect with
a password for example.

• Kubernetes Engine Benchmarks: are rules for
Google Kubernetes Engine (GKE) deployments.
It covers a wide range of recommendations in-
cluding logging, authorisation and various other
configuration recommendations.

2.2 Google Cloud Platform Services

Google Cloud Platform offers a very large range of
services which are too numerous to mention here.
This section provides an overview of some of the im-
portant services that the CIS benchmarks cover and
some of the security considerations that need to be
taken into account. Especially important from a secu-
rity perspective are services which expose data to the
open internet:

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

588

• Compute Engine: is an Infrastructure as a Service
(IaaS) which enable creating and running Virtual
Machines on Google Infrastructure.

• Kubernetes Engine: is a managed environment
for deploying Kubernetes clusters. Kubernetes is
system for automating deployment, scaling, and
management of containerised applications.

• App Engine: is a file storage service for accessing
data hosted on GCP infrastructure. It offer similar
capabilities to the well known AWS S3 storage
service.

• CloudSQL: is a managed service for administer-
ing and running Relational Databases hosted in
Google Cloud. It works with either MySQL or
PostgreSQL databases.

2.3 Existing Security Solutions

The existing solutions to Cloud Security on the GCP
platform and beyond can be divided in two groups:
enterprise solutions (such as GCP Audit, Forseti Se-
curity, Cloud Security Scanner, and AWS Trusted Ad-
visor) and non-enterprise solutions (auch as Hayat).
In what follows we present them in more details.

GCP Audit2: was initially introduced by Spotify
as an internal tool, which was used to scan their 800+
GCP projects for security vulnerabilities. This tool
was based on an internal rules repository which had
rulesets defined that was customised to their needs.
The overall goal of Spotify’s GCP Audit tool was
to highlight common security issues such as permis-
sions, misconfigured SQL and exposed instances to
the public internet. This tool was later open sourced
and discontinued whilst Spotify moved on to con-
tribute to the Forsetti Security tool.

Forseti Security3: is a set of open source security
tools for GCP. It is is built as a traditional server appli-
cation running in dedicated Virtual Machines. Forseti
Security uses a system of modules which includes In-
ventory for information about resources, Real-Time
Enforcer for remediation and Scanner for scanning
projects. The Scanning functionality looks for mis-
configuration and security bugs.

Cloud Security Scanner4: is a web security scan-
ner provided by Google Cloud to scan App Engine,
Compute Engine, and Google Kubernetes Engine
apps for common vulnerabilities. Scans can be run
on-demand or at scheduled times. It is aimed at com-
mon web vulnerabilities and can scan for XSS, Flash
injection, Mixed-content, Clear text passwords and

2https://github.com/spotify/gcp-audit
3https://forsetisecurity.org
4https://cloud.google.com/security-scanner

usage of insecure JavaScript libraries. Cloud Security
Scanner could be considered complementary to the
solution we have developed as it has a limited amount
of vulnerabilities but these are not covered under the
CIS benchmarks.

AWS Trusted Advisor5: is a well known SaaS of-
fered by Amazon for their public cloud that imple-
ments seven basic checks. More checks are available
on higher tier support plans. It covers not just Secu-
rity, but also performance, Fault Tolerance and Ser-
vice Limit checks. It is comparable to our solution in
that it does not need to be self-hosted as it is offered
as a SaaS.

Hayat6: is a GCP Auditing and hardening script
developed by an independent programmer. It’s avail-
able as an open source Github project and employs the
bash scripting structure with a combination of Unix
and gcloud commands. The domains covered by this
project are based on CIS benchmarks and is closely
comparable to our solution. However, the script-
based tool is considered more as a non-enterprise so-
lution since it is suited for an ad-hoc scanning of a
GCP project but cannot be used for a multi-project
instance.

3 PROPOSED SOLUTION

In this section we introduce the proposed solution:
its architecture as well as the way the project can be
managed within the system. The back-end is written
in the Go language(Donovan and Kernighan, 2015),
which also has given the name of the proposed sys-
tem: GoSecure

3.1 System Architecture

Figure 1 presents the architecture of our proposed so-
lution. The front-end of the application is a static
website stored in a Cloud Storage bucket. All subsys-
tems will be deployed into a Google Cloud Platform
project. We propose to use CloudBuild to build and
deploy those subsystems to production environment.

Google Cloud Functions are a Function as a Ser-
vice (FaaS) similar in operation to Amazon Lambda.
They are Google Cloud’s solution for providing
event-triggered stateless compute containers and we
use them to perform all the business logic in our ap-
plication. A function or a group of functions is ex-
ecuted in a dedicated Cloud Function. As shown in

5https://aws.amazon.com/premiumsupport/echnology/
trusted-advisor/

6https://github.com/DenizParlak/hayat

GoSecure: Securing Projects with Go

589

Figure 1: Architecture of the proposed solution.

Figure 1 processing of scanning results, management
of team, users and projects and the vulnerability scan-
ners themselves are all handled by Cloud Functions
which communicate with the database and the front
end to process and serve results and managerial func-
tions.

The solution applies serverless architecture to
define the scanners individually, specifically using
Google Cloud Function. Each function will be re-
sponsible for a single service, and will hold multiple
tests to be checked against the projects. The scanners
are using Google Cloud Platform API for Go to check
services configurations. A serverless architecture pro-
vides benefits in terms of scalability, reliability and
ease of development. For example, Google Cloud will
automatically create new instances of Cloud Func-
tions where the number of incoming requests exceed
the number of instances available. Each instance of
a Cloud Function can only handle one concurrent re-
quest at a time so new instances must be created for
each request. Moreover, compared to hosting the ap-
plication in a traditional instance, serverless architec-
ture provides a more cost-efficient solution as it only
charges while the function is running. However, this

is only true until a certain point. When the requests
are very large, hosting an instance is cheaper as the
serverless will count every request as an invocation.

The API requires a form of authentication. Our
proposed solution uses a custom service account for
each project which will be uploaded by the users.
Scanners which does not have sufficient permissions
will give an empty result. However, the system as a
whole allows partial permissions (e.g., the service ac-
count has IAM permissions but not Storage).

Vulnerability Scanning is triggered by a Cron job.
Thus, each scanner is be triggered repeatedly using
a CRON job which is managed by a service called
Cloud Scheduler. Each project will be assigned to a
single CRON job. Therefore, users can customise the
interval for each of their projects. At the end of ev-
ery scanning job, the function will save the test result.
This result are saved independently in which each re-
sult would have a uuid of their own. The result struc-
ture is presented in Figure 2, where group denotes the
service for individual service (in this case it’s refer-
ring to IAM service), and project denotes the project
which the result is for. issues are an array of com-
bined tests for the service. Each test is identified by

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

590

id field which will have a resources key to hold the
issues, if exist, for each resource.

1 {
2 "group": "giam",

3 "previous_uuid": "xxxxxxxx -xxxx -xxxx -xxxx -

xxxxxxxxxxxx",

4 "project": "gosecure",

5 "status": 200,

6 "timestamp": "last scanning time",

7 "uuid": "yyyyyyyy -yyyy -yyyy -yyyy -

yyyyyyyyyyyy",

8 "issues" [

9 {
10 "id": "1.1",

11 "resources": [

12 {
13 "name": "gosecure",

14 "resource_issues": [

15 {
16 "issue_time": "recorded

time for this issue

",

17 "text": "issue

description"

18 }
19]

20 }
21]

22 }
23]

24 }

Figure 2: Result structure of the vulnerability scanning.

The front-end of the application is hosted by the
Google Cloud storage which serves the front end
part of the system. One significant reason for us-
ing the cloud storage is to increase the availability
of the designed website as cloud storage has redun-
dant servers.The application interacts with the cloud
function APIs to display the security vulnerabilities
category wise along with their recommendations to
resolve each issue. A centralized state management is
achieved by the system with the use of React-Redux
technology. Redux aids in the consistency of the ap-
plication regardless of the environment it is hosted.
Another API is also proposed to get any result based
on the uuid of the result. This is used to compare
the latest result with the previous one to generate diffs
from both results. Diffs can be used to quickly iden-
tify new reported vulnerabilities and user/organisa-
tion can act accordingly.

The core aim of the proposed GoSecure applica-
tion is to identify the issues. An important extension
is also how users may correct the issues that are dis-
covered. The CIS benchmarks provide remediation
instructions for each issue. The application shows this

remediation verbatim to the user. No automatic reme-
diation is provided as the application does not have
write access to projects.

3.2 Project Management

A Google Cloud Platform’s customer can have mul-
tiple projects in their organisation, and each of their
project might have multiple instances with varying
configurations. Our proposed solution has the ability
to manage projects which include creating, updating,
and removing projects from our scanning schedules.
To be able to add a project, users need to upload a
service account key which give our proposed solution
access to read their deployment configurations.

For every project, an encryption key is created
using Google KMS (Key Management Service), and
stores the project’s encrypted service account key into
a Firestore collection. However, Google Cloud Plat-
form does not allow key deletion. Therefore, when
the project is deleted from our system, the key won’t
be deleted as well. Each project in Firestore will also
hold a key to their latest results for all services. We
propose to only use the result’s uuid in here to reduce
duplication. Figure 3 illustrates this idea on a sample
project. schedule will hold the interval between scan-
ning. It is broken down into the interval and time unit
so we can have flexible timings.

1 {
2 "id": "gosecure",

3 "key": "encrypted service account key",

4 "schedule": {
5 "interval": 3,

6 "time_unit": "hour"

7 },
8 "latest_result": {
9 "giam": { "uuid": "aaaaaaaa -aaaa -aaaa" }

,

10 "gkubernetes": { "uuid": "bbbbbbbb -bbbb"

},
11 "glogging": { "uuid": "cccccccc -cccc" },
12 "gnetwork": { "uuid": "dddddddd -dddd" },
13 "gsql": { "uuid": "eeeeeeee -eeee -eeee" }

,

14 "gstorage": { "uuid": "ffffffff -ffff" },
15 "gvm": { "uuid": "gggggggg -gggg -gggg -

gggg" }
16 }
17 }

Figure 3: Sample project.

Our proposed solution for identity and access man-
agement includes a fine-grained permission control
for projects. Permissions are attached to a concept
called pod. Each pod can have multiple users. Ev-

GoSecure: Securing Projects with Go

591

ery user who belongs to a pod will derive the per-
missions of that pod. Users may belong to multiple
pods. In that case, we aggregate the permissions of a
user’s pods, and use the aggregated permissions to in-
teract with the system. Figure 4 presents a sample of
our pod structure. roles will determine which actions
and resources are allowed for a pod. The key denotes
allowed actions, while the value denotes allowed re-
sources for that specific action. We currently have 8
action types, which can be seen below.

• project/read: read projects which are registered
through the system and their configurations.

• project/write: add new projects, update existing
project configurations, and delete projects from
the system.

• project/result: view the vulnerability reports for
allowed projects.

• pod/read: read pods which are registered through
the system.

• pod/write: add new pods, update existing pods,
and delete pods from the system.

• pod/member: manage members in allowed pods.
Users with this permission can add or remove
members from the pods.

• user/read: read users who are registered through
the system.

• user/write: add new users, update existing users,
and delete users from the system.

1 {
2 "uuid": "aaaaaaaa -aaaa -aaaa -aaaa -

aaaaaaaaaaaa",

3 "name": "Security Reviewer",

4 "roles": {
5 "project/result": ["project -a", "project

-b", "project -c"]

6 },
7 "members": ["user -a", "user -b"]

8 }

Figure 4: Sample of the pod structure.

Our solution uses Google Firebase Authentication to
authenticate users. Google Firebase is a mobile and
web application development platform which offers a
drop in authentication solution. However, we won’t
have any correlation between users and pods in Fire-
base. Therefore, we’re not relying only in Firebase,
but also in our customised function to authorise users.
We also need to replicate certain data from Firebase
to our Firestore collection as there are some perfor-
mance benefit when listing users in pods. Figure 5
presents a sample of user model in our Firestore.

1 {
2 "uid": "user -a",

3 "email": "john.doe@example.com",

4 "display_name": "John Doe",

5 "pods": ["aaaaaaaa -aaaa -aaaa -aaaa -

aaaaaaaaaaaa"]

6 }

Figure 5: Sample of user model.

The proposed solution will replicate uid, email,
and display name from Firebase. Every time users
change their email or display name in our system, we
reflect the updates to Firebase as well.

We also propose to store users’ membership into
both pods and users collections. This is so that we can
list all users when reading pods efficiently and vice
versa. Without this duplication, if we store the mem-
bership in pods collection, we would have to search
for members in pods collection if we want to display
the pods that a user belongs to. On the other hand,
if we store the membership in users collection, we
would have to search for pods in users collection if
we want to display all members of a pod.

4 DISCUSSION

The proposed GoSecure system is highly relevant to
many segments of end users and meet their expected
needs in scanning applications for security vulnerabil-
ities. Firstly, a major advantage of the design would
be that, its loosely coupled serverless functions which
means additional features can be added and irrelevant
features can be removed too.

Similarly, the security standards that define rules
are based off CIS Benchmarks which is an indus-
try accepted standard for application security bench-
marking that our application follows which makes the
application maintainable as standards continuously
reviewed, making it efficient in updating rules in Go-
Secure.

From a client perspective no deployment is nec-
essary as our solution operates as ’Software as a Ser-
vice’. To set up a user must be authorised for an ac-
count and can then set up users, pods and add projects
by providing a key for that project. This is different
to solutions that require deployment on the users own
infrastructure. As the end user does not need to de-
ploy the software this saves time and does not require
knowledge of how to deploy the GoSecure software.

Deploying an alternative solution to a Virtual Ma-
chine (VM) can entail significantly more time and
knowledge to deploy. For example, Forseti Secu-

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

592

rity requires creating a new GCP project, deploying
a server VM, a Forseti security service account, cre-
ating a database and installing the client to use as an
end user. An alternative is to deploy to Kubernetes
but this requires an IT administrator with Kubernetes
knowledge.

Forseti Security uses an IAM plugin called “IAM
Explain” to facilitate Identity and Access Manage-
ment for the solution. There are additional IAM
roles needed for the forseti-gcp-reader service ac-
count over what is required for normal Forseti Secu-
rity operation. None of the additional IAM roles are
documented on the Forseti Security site (Lesperance,
2018). The additional roles needed for the forseti-
gcp-reader service account to allow Forseti Security
IAM Explainer to function:

Organization Level Roles

• Container Analysis Notes Attacher

• DLP Jobs Reader

• Organization Creator

• StackDriver Maintenance Window Editor

• StackDriver Maintenance Window Viewer

In contract to this solution, GoSecure manages roles
and permission using the concept of pods and users to
ensure security. Pods are essentially groups of users
with the same roles and permissions. Each pod has
certain permissions and resources associated with it:

Permissions

a Admin: Members can read/write to the
resource and add other non-admin members to
the pod.

b Read: Members can view or read from the
resource

c Write: Members can make changes to the
resource

d Member Manager (only for pods): A
non-admin member

Resources

a Project: Permissions apply to project-wide
scope

b User: Permissions apply to user data
management

c Pod: Permissions apply to pod data
management

For instance, the project admins for the various
projects under a GCP instance are assigned to the
same pod. In this scenario, admin is defined as the
type of role and project as type of the resource, which
is beneficial for the project management.

5 CONCLUSIONS

This paper presents a web-based solution for se-
curity vulnerability scanning. Our tool, GoSecure,
provides an effective mean for managing multiple
Google Cloud Projects across an organisation with
fine-grained permissions. This covers a large gaps in
the capabilities of solutions to scan GCP projects for
common security issues.

Implementing the CIS benchmarks with regular
scheduled scans helps an organization to ensure that
security standards are maintained consistently across
the organization’s GCP projects. GoSecure not only
covers all categories listed under the CIS benchmarks
for GCP, but also provides an overview of the exist-
ing security profile of all GCP projects, along with
suggestions for improvement in configurations for the
individual projects.

This research project was conducted under
the initiative Research embedded in teaching, see
(Spichkova, 2019; Simic et al., 2016; Spichkova and
Simic, 2017). This initiative was proposed at the
RMIT University (Melbourne, Australia) within the
Software Engineering projects in collaboration with
industrial partners. The aim of this initiative is to en-
courage students’ curiosity for Software Engineering
and Computer Science research. To reach this aim
we include research components as bonus tasks in the
final year projects (on both undergraduate and post-
graduate levels), which typically focus on software
and system development. Few weeks long research
projects have been sponsored by industrial partners,
who collaborated with the students and academic ad-
visers through the final year projects. Respectively,
the topics of these short research projects focus align
the topics final year projects. The successful results
of this initiative are presented in (Christianto et al.,
2018; Clunne-Kiely et al., 2017; Spichkova, 2018;
Spichkova et al., 2018; Spichkova et al., 2019b; Sun
et al., 2018; Chugh et al., 2019; Gaikwad et al., 2019;
Spichkova et al., 2019a).

ACKNOWLEDGEMENTS

We would like to thank Shine Solutions Group Pty
Ltd for sponsoring this project under the research
grant RE-04210. We also would like to thank the
experts from the Shine Solutions Group, especially
Aaron Brown, for numerous discussions as well as
their valuable advice and feedback.

GoSecure: Securing Projects with Go

593

REFERENCES

Almorsy, M., Grundy, J., and Müller, I. (2016). An analysis
of the cloud computing security problem. arXiv.

Alto, P. (2019). Cloud infrastructure spend grows 46% in
q4 2018 to exceed us$80 billion for full year. Canalys
Press Release.

Christianto, A., Chen, P., Walawedura, O., Vuong, A.,
Feng, J., Wang, D., Spichkova, M., and Simic, M.
(2018). Enhancing the user experience with vertical
transportation solutions. Procedia computer science,
126:2075–2084.

Chugh, R., Chawla, N., Gracias, R. M., Padda, J. S., Li,
S., Nguyen, M. T., Spichkova, M., and Mantri, N.
(2019). Automated gathering and analysis of cannabi-
noids treatment data. Procedia Computer Science,
159:2570–2579.

Ciurana, E. (2009). Developing with Google App engine.
Apress.

Clunne-Kiely, L., Idicula, B., Payne, L., Ronggowarsito,
E., Spichkova, M., Simic, M., and Schmidt, H.
(2017). Modelling and implementation of humanoid
robot behaviour. In 21st International Conference on
Knowledge-Based and Intelligent Information & En-
gineering Systems, pages 2249–2258. Elsevier Sci-
ence Publishers BV.

Donovan, A. A. and Kernighan, B. W. (2015). The Go pro-
gramming language. Addison-Wesley Professional.

Gaikwad, P. K., Jayakumar, C. T., Tilve, E., Bohra, N., Yu,
W., and Spichkova, M. (2019). Voice-activated solu-
tions for agile retrospective sessions. Procedia Com-
puter Science, 159:2414–2423.

Lesperance, J. P. (2018). A review of forseti security for
gcp. https://www.jplesperance.me/2018/02/a-review-
of-forseti-security-for-gcp.

Panth, D., Mehta, D., and Shelgaonkar, R. (2014). A sur-
vey on security mechanisms of leading cloud service
providers. International Journal of Computer Appli-
cations, 98(1):34–37.

Simic, M., Spichkova, M., Schmidt, H., and Peake, I.
(2016). Enhancing learning experience by collabo-
rative industrial projects. In ICEER 2016, pages 1–8.
Western Sydney University.

Spichkova, M. (2018). Automated analysis of the impact of
weather conditions on medicine consumption. In 2018
25th Australasian Software Engineering Conference
(ASWEC), pages 166–170. IEEE.

Spichkova, M. (2019). Industry-oriented project-based
learning of software engineering. In ICECCS, pages
51–61. IEEE.

Spichkova, M., Bartlett, J., Howard, R., Seddon, A., Zhao,
X., and Jiang, Y. (2018). Smi: Stack management
interface. In 23rd International Conference on En-
gineering of Complex Computer Systems (ICECCS),
pages 156–159.

Spichkova, M. and Simic, M. (2017). Autonomous systems
research embedded in teaching. In Intelligent Interac-
tive Multimedia Systems and Services, pages 268–277.
Springer.

Spichkova, M., van Zyl, J., Sachdev, S., Bhardwaj, A., and
Desai, N. (2019a). Comparison of computer vision ap-
proaches in application to the electricity and gas meter
reading. In ENASE, pages 303–318. Springer.

Spichkova, M., van Zyl, J., Sachdev, S., Bhardwaj, A., and
Desai, N. (2019b). Easy mobile meter reading for
non-smart meters. In 14th International Conference
on Evaluation of Novel Approaches to Software Engi-
neering. IEEE.

Sun, C., Zhang, J., Liu, C., King, B. C. B., Zhang, Y., Galle,
M., Spichkova, M., and Simic, M. (2018). Software
development for autonomous and social robotics sys-
tems. In International Conference on Intelligent Inter-
active Multimedia Systems and Services, pages 151–
160. Springer.

Upguard Inc. (2019). Medical procedure: How
a misconfigured storage bucket exposed medical
data. https://www.upguard.com/breaches/data-leak-
hipaa-medico-s3.

Zahariev, A. (2009). Google app engine. Helsinki Univer-
sity of Technology, pages 1–5.

Zhou, M., Zhang, R., Xie, W., Qian, W., and Zhou, A.
(2010). Security and privacy in cloud computing: A
survey. In 2010 Sixth International Conference on Se-
mantics, Knowledge and Grids, pages 105–112. IEEE.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

594

