
An Elasticity Description Language for Task-parallel Cloud Applications

Jens Haussmann1 a, Wolfgang Blochinger1 b and Wolfgang Kuechlin2 c

1Parallel and Distributed Computing Group, Reutlingen University, Germany
2Symbolic Computation Group, University of Tuebingen, Germany

Keywords: Cloud Computing, High Performance Computing, Parallel Application, Elasticity.

Abstract: In recent years, the cloud has become an attractive execution environment for parallel applications, which in-
troduces novel opportunities for versatile optimizations. Particularly promising in this context is the elasticity
characteristic of cloud environments. While elasticity is well established for client-server applications, it is a
fundamentally new concept for parallel applications. However, existing elasticity mechanisms for client-server
applications can be applied to parallel applications only to a limited extent. Efficient exploitation of elasticity
for parallel applications requires novel mechanisms that take into account the particular runtime characteristics
and resource requirements of this application type. To tackle this issue, we propose an elasticity description
language. This language facilitates users to define elasticity policies, which specify the elasticity behavior at
both cloud infrastructure level and application level. Elasticity at the application level is supported by an ade-
quate programming and execution model, as well as abstractions that comply with the dynamic availability of
resources. We present the underlying concepts and mechanisms, as well as the architecture and a prototypical
implementation. Furthermore, we illustrate the capabilities of our approach through real-world scenarios.

1 INTRODUCTION

Cloud computing evolved into a mature computing
paradigm that has turned out to be a promising tech-
nological path heading the utility computing vision.
Employing cloud environments for executing paral-
lel applications is particularly promising since prop-
erties like pay-per-use, on-demand access, and elas-
ticity open up new opportunities. For instance, one
can explicitly control and optimize monetary costs on
the level of individual parallel application runs. How-
ever, existing parallel applications have almost never
been designed for execution in cloud environments.
It is still not completely known in which ways and to
what extent they can profit from the opportunities that
have been emerged from cloud computing. This issue
motivated an increasing activity in a wide-ranging re-
search domain concerning the exploitation of cloud
characteristics for parallel applications.

In principle, several classes of parallel applica-
tions can exploit cloud characteristics with no or few
modifications, like some HPC applications, such as
e.g., in the following scenario: By employing a sim-

a https://orcid.org/0000-0003-0986-7594
b https://orcid.org/0000-0002-5946-7225
c https://orcid.org/0000-0002-5469-5544

ple ”copy and paste” approach, users can substitute
their HPC infrastructure by virtual hardware, harness-
ing the on-demand self-service and pay-per-use char-
acteristics of the cloud model. This approach provides
several benefits: First, the user only pays for actu-
ally used resources. This characteristic is well suited
for institutions that otherwise would have to deal with
underutilized resources or a restricted budget that pre-
vents an investment for on-site clusters. Second, the
on-demand self-service characteristic of cloud offer-
ings allows additional execution scenarios. For exam-
ple, jobs submitted to grids or clusters are typically
handled by a scheduling system, stored in a queue
and executed later when resources become available.
In contrast, unlimited and immediately available re-
sources in cloud environments allow the execution of
all jobs in parallel, avoiding waiting times.

In this work, we focus on a cloud characteristic
of fundamental significance for parallel applications:
Elasticity. For parallel applications elasticity is a new
concept, to which our research contributes towards
its understanding and utilization. Elasticity is com-
monly defined as the degree to which a system can
adapt to workload changes by provisioning and de-
provisioning resources in an autonomic manner, such
that at each point in time, the available resources
match the current demand as closely as possible. To

Haussmann, J., Blochinger, W. and Kuechlin, W.
An Elasticity Description Language for Task-parallel Cloud Applications.
DOI: 10.5220/0009579004730481
In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pages 473-481
ISBN: 978-989-758-424-4
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

473

date, there exists a substantial body of research that
addresses various aspects of elasticity in cloud com-
puting. However, previous studies mostly focused on
elasticity regarding traditional client-server cloud ap-
plications, like web-, mail-, and database servers. De-
spite its promising potential, implications and oppor-
tunities of elasticity on parallel applications have not
been studied in depth. To benefit from elasticity, it is
not sufficient to focus solely on the elasticity of the in-
frastructure. Instead, parallel applications are also re-
quired to consider the application’s internal structure
and runtime behavior. To this end, it is mandatory
to support elasticity at the application level by pro-
viding adequate programming and execution models
as well as abstractions that take into account the dy-
namic availability of resources.

The main contributions of this paper are:

• We describe an approach of elasticity mechanisms
that control the logical parallelism of the applica-
tion and the physical parallelism of the cloud in-
frastructure.

• We show how to efficiently leverage elasticity for
task-parallel applications in cloud environments.

• We develop an elasticity description language for
parallel applications in the cloud with a corre-
sponding programming model and report on the
experimental evaluation.

The remainder of the paper is organized as fol-
lows: In Section 2, we motivate our study by dis-
cussing in more detail the specific problem we are ad-
dressing. Section 3 describes in detail our approach
for comprehensive elasticity management of parallel
cloud applications. Later, in Section 4, we discuss
several use-cases to substantiate the capabilities of our
proposed elasticity mechanisms. In Section 5, we re-
port on our experimental evaluation. Next, Section 6
gives an overview of related work. Section 7 con-
cludes the paper and outlines directions for future re-
search.

2 PROBLEM STATEMENT

Among all characteristics that paved the way for the
success of cloud computing, elasticity is widely con-
sidered to be the most fundamental of all. It is a
novel characteristic in resource management that dis-
tinguishes the cloud from other computing paradigms.
Elasticity offers the ability to allocate computing re-
sources dynamically, according to the current de-
mand. This introduces a wide range of new oppor-
tunities to optimize individual executions of an appli-
cation with changing resource requirements.

Generally, elasticity can be profitable for appli-
cations with dynamic resource demand during exe-
cution. However, while many applications possess
this property, previous work has mostly been lim-
ited to client-server applications. Typically, these are
client-server applications such as web servers, e-mail
servers, and database servers whose workload is de-
fined by external and independent user requests. The
rate at which these requests arrive constitutes the ap-
plication’s resource demand. Since the arrival rate
can change over time, static resource capacity can
lead to over-/under-provision of resources. In such
situations, these applications profit from the elastic-
ity of cloud infrastructures by dynamically matching
resource allocation to the current resource demand.

For parallel applications, however, elasticity is a
new concept to which our research contributes to-
wards understanding and utilization. Unlike client-
server applications, the workload of parallel appli-
cations is defined by a set of input parameters, in-
cluding a description of the problem to be processed.
The left part of Figure 1 summarizes the most im-
portant factors that necessitate leveraging elasticity
mechanisms for parallel applications. Parallel appli-
cations also differ from client-server applications in
certain other aspects. Typically, they are executed on
dedicated HPC clusters consisting of a static number
of processing elements. In addition, they are often
dependent on a particular type of hardware and uti-
lize optimized runtime systems, programming mod-
els, middleware, and software libraries (Blochinger
et al., 1999; Blochinger et al., 1998). However, these
instruments do not sufficiently support the elasticity
mechanisms present in cloud environments. Such
limitations prevent the exploitation of elasticity with-
out a major redesign of the existing parallel applica-
tion.

In order to exploit elasticity, mechanisms are
needed at both the infrastructure and the application
level. Cloud providers offer APIs at the infrastructure
level to control the number of processing elements,
which we refer to as physical parallelism. To leverage
these processing elements, the application must pro-
vide a sufficient number of tasks, which we call log-
ical parallelism. For efficient parallel computations,
the degree of logical parallelism must match the de-
gree of physical parallelism. Controlling both levels
is a complex task that can be considerably simplified
with elasticity policies, Elasticity policies express the
requirements on both parallelism levels and their en-
forcement in a descriptive way.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

474

Optimize
costs

Optimize
quality of
results

Optimize
computation
time

Environment parameters
• Problem description
• Result quality
• Deadline

Runtime behavior
• Communication quantity
• Computation granularity
• Degree of parallelism

Changes of resource
costs
• Communication
• Processing

Changes of availability
of virtual resources
• Failure
• Volatile resources

Changes of performance
of virtual resources
• Migration
• Multi tenancy

Reasons for Adaptations Actions Goals

Sc
al

e
Ph

ys
ic

al

Pa
ra

lle
lis

m

Sc
al

e
Lo

gi
ca

l
Pa

ra
lle

lis
m

Figure 1: Elasticity of parallel applications.

3 ENABLING ELASTICITY FOR
TASK-PARALLEL
COMPUTATIONS

In this section, we present our solution that enables ef-
ficient exploitation of elasticity for task-parallel appli-
cations. Particularly, we focus on the discussion of the
essential components and their interaction. One im-
portant aspect is the programming model, which has
to offer mechanisms for taking into account elasticity
at the program structure level, along with an appro-
priate model of the parallel execution. Additionally,
we present the elasticity description language (EDL)
that enables users to define the elasticity behavior of
the parallel system.

3.1 Programming and Execution Model

In this work, we employ the task pool execution
model for task management and load balancing. A
task pool consists of a set of processing elements,
each of which maintains a queue for storing tasks.
Task decomposition and processing is performed by
each processing element individually. Generated
tasks are stored in the local queue, and any processing
element may fetch them for processing through work-
stealing. The resulting dynamic mapping of tasks to
processing elements decouples problem decomposi-
tion and processing.

Programming models for parallel applications can
be classified according to their abstraction level in
terms of parallelism. According to (Skillicorn and
Talia, 1998), there are six different abstraction lev-
els, ranging from models that completely abstract par-

allelism (level 1) to models in which parallelism is
completely explicit (level 6). In this work, we em-
ploy a modified version of the fork-join program-
ming model, being at abstraction level 2. This model
is also used by Cilk (Blumofe et al., 1995) and
OpenMP (Galante and Bona, 2014). At this abstrac-
tion level, the parallelism in the program is marked
explicitly, while task generation, mapping, and com-
munication is implicit. Thus, developers are aware
that the application is running in parallel, while they
only need to express that part of the code that might
run in parallel. The fork-join statements allow de-
velopers to specify potential parallelism at the pro-
gram level, which can be transformed into logical
parallelism in the form of tasks. In the basic fork-
join model, the degree of logical parallelism increases
whenever a fork statement is encountered. Com-
monly, there is a fixed relationship between calling
the fork statement and instantiating new tasks, with
each fork typically instantiating a single task. In the
following, we will refer to this relationship as fork
policy. An accurate formulation of the fork policy
is essential, as creating new tasks results in overhead
in the form of excess computation and communica-
tion. A fixed fork policy is well suited for executions
with a static number of processing elements, since the
policy for fork statements and thus the granularity of
the tasks can be specified prior to execution. How-
ever, cloud infrastructures feature a dynamic resource
capacity and therefore require a dynamic policy for
efficient parallel execution, and will be discussed in
the next section. The parallelism levels which have
to be aligned are therefore: 1) Parallelism at the pro-
gram level, specified with the fork-join programming
model. 2) Logical parallelism through the tasks cre-

An Elasticity Description Language for Task-parallel Cloud Applications

475

ated by the task pool. 3) Physical parallelism through
the processing elements of the cloud infrastructure.

3.2 Elasticity Description Language

From a cloud user’s perspective, elasticity require-
ments of a cloud system are often specified in a tem-
plate file written in a markup language such as YAML.
This specification contains a set of conditions that the
system must fulfill together with appropriated scal-
ing operations to be carried out in the case of viola-
tion. A fundamental advantage of this method lies in
its straightforward usability. The specification file is
read, interpreted, and automatically enforced by ser-
vices from the cloud provider (e.g., heat), shielding
the user from details of the implementation. Hence,
elasticity is enabled in a transparent manner, i.e., users
do not have to deal with burdens like modifications of
the applications’ source code, monitoring tools, and
APIs for interaction with the cloud infrastructure.

Although there exist several languages for the
specification of elasticity requirements, most of them
focus on elasticity for client-server applications with
elasticity mechanisms operating at the infrastructure
level. Hitherto, there are only a few languages capable
of defining elasticity requirements on multiple levels
of cloud systems, like SYBL (Copil et al., 2015) The
SYBL language defines several constructs that enable
the specification of multi-level elasticity requirements
for cloud services. While several implementations of
these constructs have been developed to date, none
of them has yet addressed the elasticity specification
at the parallel programming model and infrastructure
level.

We remedy this limitation and propose our elas-
ticity description language (EDL) that provides elas-
ticity support for fork-join applications. The language
facilitates detailed elasticity specifications of the par-
allel system with logical and physical parallelism be-
ing the control levers. A template file written in the
EDL is called an elasticity policy. This policy de-
scribes the scope of states within which it should be
operating and the elastic mechanisms through which
this is achieved. The structure of our language is pri-
marily based on the languages of YAML, YAQL, and
HOT. To control elasticity beyond the hardware level,
we use the same level of abstraction for our compo-
nents as in SYBL. We provide three core components
for the construction of elasticity policies, which are
described in more detail below: Monitor, constraint,
and strategy. The basic structure of a policy is shown
in Listing 1. Both, constraints and strategies have
configurable properties and are grouped into two sep-
arate lists within a policy. In contrast to constraints

1 constraints:
2 - [Constraint 1]
3 - [Constraint 2]
4 ...
5 - [Constraint n]
6 ↪→

7 ↪→
8 strategies:
9 - [Strategy 1]

10 - [Strategy 2]
11 ...
12 - [Strategy n]

Listing 1: Basic structure of an elasticity policy.

and strategies, monitors are implicitly available and
do not need to be explicitly defined in a policy be-
fore use. We will now move on to a more detailed
discussion of the use and concepts of the introduced
components from our EDL.

A monitor is applied to check the current state of a
particular component within the parallel system. Tra-
ditionally, monitors gather information related to the
employed cloud resources at the infrastructure level
like CPU-utilization, network bandwidth, or disk I/O.
However, since our EDL addresses both physical
and logical parallelism, application-level monitoring
is also required for efficient elasticity management.
Monitors at the infrastructure level, such as processor
utilization, are not further elaborated here as the cloud
provider usually provides them. In the following, we
discuss in more detail the information gathered by the
monitors at the application level. At the application
level, there are several categories within the task pool
execution model where monitor implementations en-
able insights of significant relevance:

• Load Balancing: No. of task stealing attempts,
no. of received tasks, response time, consumed
CPU-time, etc.

• Local Task Queue: Size, no. of accesses, details
of most recent access (time, type, initiator), etc.

• Task Processing: No. of completed tasks, con-
sumed CPU-time, status, up-time, no. of basic op-
erations, etc.

• Current Task: Elapsed processing time, no. of
child tasks, occupied memory, etc.

• Task Decomposition: No. of decompositions
(tasks created), no. of failed decompositions, con-
sumed CPU-time, etc.

• Overall Task Pool: No. of active workers, arrival
rate of tasks, up-time, etc.

As part of the prototypical runtime system that
leverages our EDL (cf. Section 5), we provide a set of
monitors that are implicitly accessible without a prior
declaration.

Constraints define the conditions that the system
must fulfill and trigger the execution of strategies

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

476

1 constraints:
2 - name: <string>
3 properties:
4 value_L: <number|monitor name>
5 #left hand value of

comparison↪→

6 value_R: <number|monitor name>
7 #right hand value of

comparison↪→

8 comparison_operator:
9 <le|ge|eq|lt|gt|ne>

10 #operator to compare
right/left↪→

11 time_constraint: <number>
12 #constraint validity in sec

Listing 2: Constraints section within an elasticity policy.

when they are not fulfilled. The structure of a con-
straint is shown in Listing 2. Based on the three prop-
erties (value_L, value_R, comparison_operator),
conditional expressions can be specified. An expres-
sion defines threshold values for a particular aspect
of the parallel system within it is supposed to oper-
ate. Furthermore, the constraints reflect individual
trade-offs that exist between several conflicting op-
timization goals at runtime, obliging the user to de-
fine a suitable solution. For parallel computations
in cloud environments, for example, these conflict-
ing goals are usually fast processing and low mon-
etary costs. The properties value_L and value_R
can be assigned with constant numeric values or
real-time data retrieved from monitors. Finally,
the time_constraint property defines the operation
time in seconds, i.e., the period for which the con-
straint is active and gets evaluated.

Strategies are used to specify the steps that need to
be taken if a constraint gets violated. Listing 3 shows
the basic structure of a strategy. The condition
property defines the constraint whose violation trig-
gers the execution of the strategy’s actions. The em-
ployed set of actions is in accordance with the pre-
viously discussed levels of parallelism. Hence, there
exist actions for controlling the physical parallelism
(e.g., adapting the number of processors) and for con-
trolling the logical parallelism (e.g., adapting the fork
policy for task decomposition).

4 USE-CASES

In this section, we present two exemplary use-cases to
substantiate the capabilities of our proposed elasticity
mechanisms.

1 strategies:
2 - name: <string>
3 properties:
4 condition: <constraint>
5 #Triggering constraint
6 actions: <list of actions>
7 #Actions carried out

Listing 3: Strategies section within an elasticity policy.

In general, parallel applications that rely on dy-
namic problem decomposition (e.g. Boolean satisfi-
ability or discrete optimization) share a set of com-
mon runtime characteristics. For example, a reason-
able assumption is that the ongoing decomposition
during computation continuously reduces the granu-
larity of newly generated tasks. The task granular-
ity is defined by the amount of essential computations
in ratio to the amount of communication overhead.
As parallel computation progresses, the overhead for
decomposition and load balancing increases, which
in turn continually reduces parallel efficiency. Ul-
timately, decomposition of tasks reaches a granular-
ity where the overhead outweighs the gains achieved
by parallel execution. Particularly at the end of the
computation, when remaining work becomes scarce
and processors begin to compete, decomposition gen-
erates fine-grained tasks, and parallel execution be-
comes inefficient. Since computing resources can no
longer be utilized efficiently, users would pay for par-
allel overhead rather than for essential computations.

Whether this is the case can be assessed by moni-
toring the mean time required for the execution of in-
dividual tasks. Falling below a certain threshold, effi-
ciency can be optimized by decreasing the number of
processors. In this way, the degree of physical paral-
lelism is adapted to the degree of logical parallelism.
The specification of the threshold enables users to opt
for a trade-off between cost and speedup. Listing 4
shows the elasticity policy containing the specifica-
tion for this use-case.

The policy can be created with minimal effort, as
it requires only a few lines of code. In particular, we
can formulate the previously stated elasticity require-
ments by employing only two elements: One con-
straint and one strategy. Constraint c granularity (cf.
Line 2) defines the granularity limit of generated tasks
that must be maintained during execution. The first
three properties of the constraint are constituents of
a logical expression, specifying that the mean execu-
tion time of tasks must be at least 1000 milliseconds.
The current mean task execution time is obtained by
the monitor m taskProcessingTime. Finally, the last
property specifies that the evaluation of the constraint

An Elasticity Description Language for Task-parallel Cloud Applications

477

1 constraints:
2 - name: c_granularity
3 properties:
4 value_L: m_taskProcessingTime
5 value_R: 1000
6 comparison_operator: ge
7 time_constraint: infinity
8

9 strategies:
10 - name: s_scaleInPhysicalParallelism
11 properties:
12 conditions: c_granularity
13 actions:
14 physicalParallelism: 0.75

Listing 4: Elasticity specification of first use-case.

is not limited to a given point in time or period. Com-
plementary to the constraint c granularity, strategy
s scaleInPhysicalParallelism (cf. Line 10) is respon-
sible for its enforcement. According to its properties,
violations of c granularity lead to a decrease in phys-
ical parallelism, i.e., fewer processors will be utilized
during parallel execution. Each violation triggers a
scale-in action, reducing the number of processors to
75% of the currently utilized number.

In the following use case we will deal with an-
other source of parallel overhead in the context of
dynamic problem decomposition, namely processor
idling. Minimizing processor idling is of particular
importance in cloud environments due to the pay-per-
use billing model. Since compute resources are billed
per time unit, without regard to their actual utilization,
idle resources can be an excessive cost driver. In par-
allel applications, a major source of idling overhead
is the lack of logical parallelism, i.e., the number of
available tasks is too low. However, the EDL can be
employed to control the problem decomposition pro-
cess at runtime and thus the number of task instanti-
ations. By monitoring the idling time of processing
units in the task pool, one can assess whether there
is a lack of logical parallelism. If the idle time falls
below a certain threshold, the ratio of called and per-
formed fork statements is adjusted so that the calls re-
sult more often in task instantiations. Listing 5 shows
the elasticity policy for this use-case.

5 EXPERIMENTAL EVALUATION

In this section, we present an experimental evaluation
of the proposed elasticity description language. First,
the methodology and setup of the experimental plat-
form are described in Section 5.1. In Section 5.2, we

1 constraints:
2 - name: c_lowIdleOverhead
3 properties:
4 value_L: m_idle
5 value_R: 0.25
6 comparison_operator: lt
7 time_constraint: infinity
8

9 strategies:
10 - name: s_scaleOutLogicalParallelism
11 properties:
12 conditions: c_lowIdleOverhead
13 actions:
14 logicalParallelism: 1.25

Listing 5: Elasticity specification of second use-case.

then report on a detailed analysis of the correlation be-
tween the elasticity requirements specified in a policy
and the runtime behavior of a parallel computation.

5.1 Methodology and Platform

To put our work into practice, we have implemented a
prototype of a runtime system that manages the elas-
ticity of a parallel system based on EDL policies. This
prototype employs the distributed task pool execution
model, with each worker being hosted on a separate
virtual machine equipped with 1 vCPU and 2 GB
RAM. The experiments were conducted on our pri-
vate cloud running OpenStack during regular multi-
tenant operation. The hardware underlying this cloud
consists of a cluster of identically configured servers,
each equipped with two Intel Xeon E5-2650v2 CPUs
and 128 GB RAM.

To demonstrate broad applicability and improve
the reliability of our results, we require an applica-
tion whose parallel execution shows differing runtime
characteristics depending on the input data. This par-
ticularly holds for the class of state space search prob-
lems, which we employ for evaluation purposes. Al-
gorithms that deal with this class of problems implic-
itly construct a search tree in which each node rep-
resents a state, edges constrain state properties, and
paths represent results. As the computation proceeds,
these algorithms explore the state space tree by ex-
panding tree nodes, aiming to find profitable paths.
For parallel search algorithms, where the exploration
of individual subtrees takes place simultaneously, the
different and unpredictable sizes of the subtrees can
lead to an imbalance of the load, which in turn signif-
icantly affects scalability. Due to this dynamic pro-
cess, the shape and size of the tree highly depend on
the input data and cannot be estimated in advance by

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

478

a (semi-)static analysis. Since this behavior corre-
sponds to our requirements for the runtime character-
istics, state space search problems are well suited for
our evaluation. However, standard implementations
of representative state space search problems, such
as Boolean satisfiability or discrete optimization ex-
hibit randomization, resulting in highly varying paral-
lel runtimes for the same input. Furthermore, we can-
not directly control the runtime characteristics, which
renders a systematic investigation of elasticity control
mechanisms unfeasible. Therefore, we employ for
evaluation purposes the Generic State Space Search
Application (GSSSA) presented in (Haussmann et al.,
2018). This application exhibits all relevant charac-
teristics of state space search applications, particu-
larly w.r.t. parallel execution, and allows to explicitly
control runtime characteristics through a small set of
parameters. The total workload is represented by ran-
dom SHA-1 hash calculations and defined by the pa-
rameters wr and wi, each representing a fraction of
the search tree of different structure. The parame-
ter wr defines the regular fraction where expansions
lead to two subtrees of equal workload. On the other
hand, wi defines the irregular fraction where the bal-
ancing parameter b specifies the partitioning of the
workload between the expanded subtrees. Finally, the
parameter g specifies the smallest permissible work-
load of expansions. For our evaluation we applied the
parameters wr = 2,500,000,000, wi = 7,500,000,000,
b = 0.001, and g = 1.

5.2 Experimental Analysis of Use-case

In the following, we investigate whether the elasticity
requirements specified in a policy are adequately ful-
filled during execution. There are several aspects that
determine the efficiency of our approach, such as the
responsiveness of corrective elasticity actions taken
and their impact on the runtime behaviour. In this
evaluation we will employ the elasticity policy of the
first use-case, presented in Section 4 (cf. Listing 4).
In particular, we analyze the parallel computations for
four different parameterizations of this policy, which
are shown in Table 1. In the following we refer to
the parameterizations by their IDs (#1-#4). Addition-
ally, we will examine the same parallel computation
utilizing a constant number of processors. This refer-
ence values enables us to draw a comparison between
computations with and without employing elasticity
policies. We performed each computation on a clus-
ter with a capacity of 32 virtual machines.

In the following, we evaluate the performance and
cost aspects of parallel computations employing elas-
ticity policies. Of particular interest for our evaluation

Table 1: Policy parameterizations used for evaluation.

Parameterization
#1 #2 #3 #4

constraints
name c granularity
properties

value L [ms] m taskTime
value R [ms] 500 100 50 10
operator gt

strategies
name s scaleInPhysicalParallelism
properties

conditions not: c granularity
actions physicalParallelism: 0.75

are the parallel runtime Tpar, speedup S, efficiency E,
and the costs stemming from the total consumption
of processing time C. Due to the pay-per-use billing
model of the cloud, the consumed processing time di-
rectly translates into monetary costs (thus we can as-
sume w.l.o.g. costs of 1$ per processing time unit).
Without using an elasticity policy, computation gener-
ally would be performed utilizing a constant number
of processors that is selected by the user. As compara-
tive data for our evaluation, we employ two scenarios:
A sequential computation (i.e. number of processors
p = 1) and a parallel computation utilizing a number
of processors p = 32, which will be denoted as #seq
and #par, respectively. This, in turn, allows to de-
termine the overhead that results from the performed
elasticity operations. All computations were carried
out five times and the results shown in Figure 2 are
based on the arithmetic mean.

The sequential computation #seq has a runtime of
Tseq = 5,163 sec, and thus costs of C = 5,163 $. On
the other hand, the parallel computation #par that uti-
lizes a constant number of processors p = 32, has a
parallel runtime of Tpar = 295 sec, resulting in costs
of C = 9,424 $, a speedup of S = 17.53 and an effi-
ciency of E = 0.55. Concerning the parallel runtime
Tpar of computations that employ elasticity policies,
one can observe that Tpar decreases for smaller lim-
its of the task granularity. This effect occurs since
the number of processors is reduced at earlier stages
of the computation when using large granularity lim-
its. Ordered by decreasing granularity limit, the par-
allel runtime Tpar is 3,333 sec, 1,205 sec, 620 sec, and
296 sec. The corresponding speedups are 1.55, 4.29,
8.32, 17.44 and the efficiencies are 0.92, 0.87, 0.83,
and 0.65 accordingly. Compared to the parallel com-
putation #par that utilizes a constant number of pro-
cessors p = 32, policy #4 has the best cost-speedup
trade-off as the runtime is only increased by 0.3%,
but the costs are reduced by 15.5%. Depending on

An Elasticity Description Language for Task-parallel Cloud Applications

479

0

5

10

15

20

#par #1 #2 #3 #4

Speedup

0,00

0,20

0,40

0,60

0,80

1,00

#par #1 #2 #3 #4

Efficiency

0

2000

4000

6000

8000

10000

#seq#par #1 #2 #3 #4

Costs

0

1000

2000

3000

4000

5000

6000

#seq #par #1 #2 #3 #4

Runtime[sec] [$]

Figure 2: Results of parallel computations with and without employing elasticity policies.

whether speedup or cost-savings are considered to be
more relevant, the other policies are preferable. Com-
pared to the most cost-efficient computation, which
in this case is the sequential computation #seq, policy
#1 decreases the runtime by 35.4%, but increases the
costs only by 8.8%.

6 RELATED WORK

As of today, it has been recognized that the utilization
of cloud resources is by no means limited to client-
server applications but also includes parallel applica-
tions. Major cloud providers, like Amazon and Mi-
crosoft, already offer several products that are specifi-
cally designed for parallel applications (Aljamal et al.,
2018). Unlike standard virtual resources, which often
possess heterogeneous processing speeds and high-
latency network-links (Jackson and Ramakrishnan,
2010), these are performance-optimized virtual re-
sources with a high-speed interconnect such as Infini-
Band (Zhang et al., 2017) (Mauch and Kunze, 2013).

From the perspective of cloud consumers, there
exists also a growing trend to migrate parallel ap-
plications into the cloud and render them cloud-
aware (Gupta and Faraboschi, 2016).Recent research
has indicated that several classes of parallel applica-
tions are well suited for migration, while some oth-
ers can only be migrated with limitations (Kehrer
and Blochinger, 2019c). How this migration takes
place depends on the requirements of the respective
application. The survey conducted in (Kehrer and
Blochinger, 2019a) has found that there exist three
prevalent cloud migration strategies of varying com-
plexity in existing research: Copy and paste, cloud-
aware refactoring, and cloud-aware refactoring, in-
cluding elasticity control. For parallel applications,
on the one hand, these strategies aim to mitigate the
adverse effects of characteristics inherent in cloud
environments. For example, heterogeneous capaci-
ties of virtual resources such as processors and net-
works, degrade the performance of parallel appli-
cations, especially when synchronous communica-

tion is required. On the other hand, more sophis-
ticated strategies aim to enable parallel applications
to take advantage of cloud characteristics such as
on-demand resource access, elasticity, and pay-per-
use billing (Netto et al., 2018), (Rajan and Thain,
2017), (Haussmann et al., 2019).

Elasticity, in particular, is a cloud characteris-
tic that holds great potential for parallel applica-
tions. Previous research such as (Galante et al.,
2016) and (Kehrer and Blochinger, 2019b) high-
lighted the need for elasticity support at the appli-
cation level and emphasized the relevance of novel
frameworks for constructing elastic parallel cloud ap-
plications. Our work validates these results and pro-
vides a better insight into the underlying elasticity
mechanisms for parallel cloud applications.

Rule-based control of cloud systems has become
an increasingly important topic in the domain of cloud
computing. On the one hand, most cloud providers
have such offers directly available to consumers on
their platforms, such as OpenStack or AWS, which
leverage the formats HOT and CFN. Meanwhile, an
increasing number of studies on this issue indicates
a growing interest in research. In (Copil et al.,
2015), the authors introduce a language that enables
the specification of multi-level elasticity requirements
for cloud services. These elasticity requirements are
high-level demands, formulated by the user, concern-
ing a cloud service. Furthermore, they proposed a
model that considers elasticity as a multidimensional
space in which the system can oscillate. An architec-
ture for controlling the behavior of cloud services is
presented in (Jennings and Stadler, 2014). By lever-
aging the introduced abstractions and rules engine,
applications can exploit virtual resources from differ-
ent cloud providers simultaneously to control appli-
cation behavior. In contrast to our work, their ap-
proach focus on elasticity for client-server applica-
tions, while elasticity mechanisms mainly act at the
infrastructure level. Our work focuses on parallel ap-
plications and enables elastic task parallelism in cloud
environments, by applying elasticity on both the logi-
cal and the physical level of a parallel system.

CLOSER 2020 - 10th International Conference on Cloud Computing and Services Science

480

7 CONCLUSION

In this paper, we introduced an elasticity description
language that enables the specification and utiliza-
tion of elasticity policies at both the cloud infrastruc-
ture and application level. Concepts and mechanisms
of this language are specifically designed for parallel
applications that rely on the fork-join programming
model. Our work deals with aspects of elasticity that
go beyond the traditional context, which usually con-
siders virtual infrastructures solely. The use cases pre-
sented and the evaluation performed have proven the
viability of our work and demonstrate that elasticity
is an issue beyond the infrastructure level.

REFERENCES

Aljamal, R., El-Mousa, A., and Jubair, F. (2018). A com-
parative review of high-performance computing major
cloud service providers. In Proc. of the 9th Int. Conf.
on Information and Communication Systems, pages
181–186.

Blochinger, W., Küchlin, W., Ludwig, C., and Weber, A.
(1999). An object-oriented platform for distributed
high-performance symbolic computation. Mathemat-
ics and Computers in Simulation, 49(3):161–178.

Blochinger, W., Weber, A., and Küchlin, W. (1998). The
Distributed Object-Oriented Threads System DOTS.
In Proc. of the 5th Int. Symp. on Solving Irregularly
Structured Problems in Parallel, pages 206–217.

Blumofe, R. D., Leiserson, C. E., and Joerg, C. F. (1995).
Cilk: An Efficient Multithreaded Runtime System.
In Proc. of the 5th ACM SIGPLAN Symposium, vol-
ume 30, pages 207–216.

Copil, G., Moldovan, D., and Dustdar, S. (2015). On Con-
trolling Elasticity of Cloud Applications in CELAR.
In Emerging Research in Cloud Distributed Comput-
ing Systems, pages 222–252.

Galante, G. and Bona, L. C. (2014). Supporting elasticity in
OpenMP applications. In Proc. of the 22nd Int. Conf.
on Parallel, Distributed, and Network-Based Process-
ing, pages 188–195.

Galante, G., Erpen De Bona, L. C., Mury, A. R., Schulze,
B., and da Rosa Righi, R. (2016). An Analysis of
Public Clouds Elasticity in the Execution of Scientific
Applications: a Survey. Journal of Grid Computing,
14(2):193–216.

Gupta, A. and Faraboschi, P. (2016). Evaluating and Im-
proving the Performance and Scheduling of HPC Ap-
plications in Cloud. IEEE Transactions on Cloud
Computing, 4(3):307–321.

Haussmann, J., Blochinger, W., and Kuechlin, W. (2018).
Cost-efficient Parallel Processing of Irregularly Struc-
tured Problems in Cloud Computing Environments.
Cluster Computing, 22(3):887–909.

Haussmann, J., Blochinger, W., and Kuechlin, W. (2019).
Cost-optimized Parallel Computations using Volatile

Cloud Resources. In Proc. of the 16th Int. Conf. on the
Economics of Grids, Clouds, Systems, and Services,
pages 45–53.

Jackson, K. and Ramakrishnan, L. (2010). Performance
Analysis of High Performance Computing Applica-
tions on the AWS Cloud. In Proc. of the 2nd Int. Conf.
on Cloud Computing Technology and Science, pages
159–168.

Jennings, B. and Stadler, R. (2014). Resource Management
in Clouds. Journal of Network and Systems Manage-
ment, 23(3):567–619.

Kehrer, S. and Blochinger, W. (2019a). A Survey on Cloud
Migration Strategies for High Performance Comput-
ing. In Proc. of the 13th Advanced Summer School
on Service-Oriented Computing. IBM Research Divi-
sion.

Kehrer, S. and Blochinger, W. (2019b). Elastic Parallel Sys-
tems for High Performance Cloud Computing: State-
of-the-Art and Future Directions. Parallel Processing
Letters, 29(2).

Kehrer, S. and Blochinger, W. (2019c). Migrating parallel
applications to the cloud: assessing cloud readiness
based on parallel design decisions. Software-Intensive
Cyber-Physical Systems, 34(2-3):73–84.

Mauch, V. and Kunze, M. (2013). High performance cloud
computing. Future Generation Computer Systems,
29(6):1408–1416.

Netto, M. A., Calheiros, R. N., Rodrigues, E. R., Cunha,
R. L., and Buyya, R. (2018). HPC cloud for scientific
and business applications. ACM Computing Surveys,
51(1).

Rajan, D. and Thain, D. (2017). Designing Self-
Tuning Split-Map-Merge Applications for High Cost-
Efficiency in the Cloud. IEEE Transactions on Cloud
Computing, 5(2):303–316.

Skillicorn, D. B. and Talia, D. (1998). Models and lan-
guages for parallel computation. ACM Computing
Surveys, 30(2):123–169.

Zhang, J., Lu, X., and Panda, D. K. (2017). Designing local-
ity and NUMA aware MPI runtime for nested virtual-
ization based HPC cloud with SR-IOV enabled Infini-
Band. In Proc. of the 13th ACM SIGPLAN/SIGOPS,
pages 187–200.

An Elasticity Description Language for Task-parallel Cloud Applications

481

