
REFERENCES 
Akamatsu,  M.,  Green,  P.,  &  Bengler,  K.  (2013). 
Automotive Technology and Human Factors Research: 
Past,  Present,  and  Future.  International  Journal  of 
Vehicular Technology, 2013, 27. 
Bagheri, S. M., Assemi, B., Mesbah, M., & Hickman, M. 
(2018).  Cost-effective  ubiquitous  method  for  motor 
vehicle  speed  estimation  using  smartphones.  IET 
Wireless  Sensor  Systems,  8(6),  340-349. 
https://doi.org/10.1049/iet-wss.2018.5023 
Binding,  C.,  Gantenbein,  D.,  Jansen,  B.,  Sundström,  O., 
Andersen,  P.,  Marra,  F., Poulsen,  B.,  &  Træholt,  C. 
(2010). Electric vehicle fleet integration in the Danish 
EDISON project—A virtual power plant on the island 
of  Bornholm.  1-8. 
https://doi.org/10.1109/PES.2010.5589605 
Bingham, C., Walsh, C., & Carroll, S. (2012). Impact of 
driving  characteristics  on  electric  vehicle  energy 
consumption  and  range.  IET  Intelligent  Transport 
Systems,  6(1),  29-35.  https://doi.org/10.1049/iet-
its.2010.0137 
Boriboonsomsin,  K.,  Barth,  M.  J.,  Zhu,  W.,  &  Vu,  A. 
(2012).  Eco-Routing  Navigation  System  Based  on 
Multisource  Historical  and  Real-Time  Traffic 
Information.  IEEE  Transactions  on  Intelligent 
Transportation  Systems,  13(4),  1694-1704. 
https://doi.org/10.1109/tits.2012.2204051 
Braun,  M.,  Schubert,  J.,  Pfleging,  B.,  &  Alt,  F.  (2019). 
Improving Driver Emotions with Affective Strategies. 
Multimodal  Technologies  and  Interaction,  3(1),  21. 
https://doi.org/10.3390/mti3010021 
CEER.  (2019).  Report  on  Regulatory  Frameworks  for 
European Energy Networks, CEER (N.
o
 C18-IRB-38-
03).  https://www.ceer.eu/documents/104400/-/-
/9665e39a-3d8b-25dd-7545-09a247f9c2ff 
De Cauwer, C., Van Mierlo, J., & Coosemans, T. (2015). 
Energy Consumption Prediction for Electric Vehicles 
Based on Real-World Data. Energies, 8(8), 8573-8593. 
https://doi.org/10.3390/en8088573 
Dielmann, K., & Velden, A. (2003). Virtual power plants 
(VPP)—A new perspective for energy generation? 18-
20. https://doi.org/10.1109/SPCMTT.2003.1438108 
Guerrero, J. I., Personal, E., García, A., Parejo, A., Pérez, 
F.,  &  León,  C.  (2019).  Distributed  Charging 
Prioritization  Methodology  Based  on  Evolutionary 
Computation  and  Virtual  Power  Plants  to  Integrate 
Electric  Vehicle  Fleets  on  Smart  Grids.  Energies, 
12(12), 2402. https://doi.org/10.3390/en12122402 
Guerrero, J. I., Personal, E., Parejo, A., García, S., García, 
A.,  &  León,  C.  (2019).  Forecasting  Recharging 
Demand to Integrate Electric Vehicle Fleets in Smart 
Grids. Advanced Communication and Control Methods 
for  Future  Smartgrids. 
https://doi.org/10.5772/intechopen.88488 
He, Y., Chowdhury, M., Ma, Y., & Pisu, P. (2012). Merging 
mobility and energy vision with hybrid electric vehicles 
and  vehicle  infrastructure  integration. 
https://doi.org/10.1016/j.enpol.2011.11.021 
Hiermann,  G.,  Puchinger,  J.,  Ropke,  S.,  &  Hartl,  R.  F. 
(2016).  The  Electric  Fleet  Size  and  Mix  Vehicle 
Routing Problem with Time Windows and Recharging 
Stations. European Journal of Operational Research, 
252(3),  995-1018. 
https://doi.org/10.1016/j.ejor.2016.01.038 
Hu, J., Morais, H., Sousa, T., & Lind, M. (2016). Electric 
vehicle fleet management in smart grids: A review of 
services, optimization and control aspects. Renewable 
and  Sustainable  Energy  Reviews,  56,  1207-1226. 
https://doi.org/10.1016/j.rser.2015.12.014 
Road  vehicles—Diagnostic  systems—Part  2:  CARB 
requirements  for  interchange  of  digital  information, 
ISO 9141-2:1994 (1994). 
Izquierdo-Reyes, J., Ramirez-Mendoza, R. A., Bustamante-
Bello, M. R., Navarro-Tuch, S., & Avila-Vazquez, R. 
(2018).  Advanced  driver  monitoring  for  assistance 
system (ADMAS). International Journal on Interactive 
Design and Manufacturing (IJIDeM), 12(1), 187-197. 
https://doi.org/10.1007/s12008-016-0349-9 
Jansen, B., Binding, C., Sundström, O., & Gantenbein, D. 
(2010). Architecture and Communication of an Electric 
Vehicle  Virtual  Power  Plant.  2010  First  IEEE 
International  Conference  on  Smart  Grid 
Communications,  149-154. 
https://doi.org/10.1109/SMARTGRID.2010.5622033 
Khan, M. Q., & Lee, S. (2019). A Comprehensive Survey 
of Driving Monitoring and Assistance Systems. Sensors 
(Basel,  Switzerland),  19(11). 
https://doi.org/10.3390/s19112574 
Kieny,  C.,  Berseneff,  B.,  Hadjsaid,  N.,  Besanger,  Y.,  & 
Maire, J. (2009). On the Concept and Interest of Virtual 
Power Plant: Some Results from the European Project 
FENIX.  1-6. 
https://doi.org/10.1109/PES.2009.5275526 
Lazar, J. (s. f.). Electricity Regulation In the US: A Guide. 
228. 
Mansour, S., Harrabi, I., Maier, M., & Joós, G. (2015). Co-
simulation  study  of  performance  trade-offs  between 
centralised,  distributed,  and  hybrid  adaptive  PEV 
charging  algorithms.  Computer  Networks:  The 
International  Journal  of  Computer  and 
Telecommunications  Networking,  93(P1),  153–165. 
https://doi.org/10.1016/j.comnet.2015.08.036 
Marra, F., Sacchetti, D., Pedersen, A. B., Andersen, P. B., 
Træholt, C., & Larsen, E. (2012). Implementation of an 
Electric Vehicle test bed controlled by a Virtual Power 
Plant  for  contributing  to  regulating  power  reserves. 
2012  IEEE  Power  and  Energy  Society  General 
Meeting,  1-7. 
https://doi.org/10.1109/PESGM.2012.6345269 
Marra, Francesco, Sacchetti, D., Træholt, C., & Larsen, E. 
(2011). Electric vehicle requirements for operation in 
smart  grids.  1-7. 
https://doi.org/10.1109/ISGTEurope.2011.6162648 
Mashhour, E., & Moghaddas-Tafreshi, S. M. (2009). The 
opportunities for future virtual power plant in the power 
market, a view point. 2009 International Conference on 
Clean  Electrical  Power,  448-452. 
https://doi.org/10.1109/ICCEP.2009.5212014 
Emotional Factor Forecasting based on Driver Modelling in Electric Vehicle Fleets
611