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Abstract: Evaluation of a tissue biopsy is often required for the diagnosis and prognostic staging of a disease. Recent 
efforts have sought to accurately quantitate the distribution of tissue features and morphology in digitized 
images of histological tissue sections, Whole Slide Images (WSI). Generative modeling techniques present a 
unique opportunity to produce training data that can both augment these models and translate histologic data 
across different intra-and-inter-institutional processing procedures, provide cost-effective ways to perform 
computational chemical stains (synthetic stains) on tissue, and facilitate the creation of diagnostic aid 
algorithms. A critical evaluation and understanding of these technologies is vital for their incorporation into 
a clinical workflow. We illustrate several potential use cases of these techniques for the calculation of nuclear 
to cytoplasm ratio, synthetic SOX10 immunohistochemistry (IHC, sIHC) staining to delineate cell lineage, 
and the conversion of hematoxylin and eosin (H&E) stain to trichome stain for the staging of liver fibrosis. 

1 INTRODUCTION 

The field of histopathology is the study of disease 
using morphological and spatial distributions of 
tissue features observed under a microscope as 
performed by a board-certified pathologist. Tissue is 
biopsied or excised, fixed via a combination of 
formalin and heat processing, embedded in paraffin 
to create formalin-fixed and paraffin-embedded 
tissue blocks (FFPE). The tissue is then sectioned via 
a microtome into thin sheets (typically 2µM-8µM in 
thickness), and chemically stained with various 
reagents (most commonly hematoxylin and eosin, 
H&E). Slides and tissue blocks are typically stored 
for at least 10 years (depending on legal and 
institutional regulations), although there is no 
effective limit to their shelf life beyond slow 
bleaching of dyes and degradation of DNA/RNA  and 
many academic institutions retain all tissue 
indefinitely. Despite advancements in “gold-
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standard” scoring metrics for tissue examination, 
some diagnoses have a high inter-observer 
disagreement between pathologists. Like other 
medical professionals, pathologists are increasingly 
overworked and reporting high levels of burnout 
(Miller & Brown, 2018) which can significantly 
impact turn-around-time (TAT) and in severe cases, 
diagnostic accuracy. Moreover, maintaining a CLIA-
certified (Raab, 2000) histopathology laboratory 
capable of performing special stains and 
immunohistochemistry (IHC) is expensive and 
requires specialized technologists, licenses, 
instruments and reagents. Thus, there is a great need 
for the development of accurate, interpretable, 
quantitative medical decision aid algorithms and 
workflows  (Levy et al., 2020). In this article, we 
evaluate the application of generative, quantitative 
techniques in a variety of common scenarios in the 
application of digital pathology to current analogue 
workflows. 
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Generative modelling techniques aim to produce 
partially or wholly synthetic data that has a similarly 
high fidelity as the original or target data source. In 
some cases, data produced by these generative 
models can be used to enhance the performance of a 
variety of downstream prediction or inference tasks 
without the need to acquire additional, expensive, 
expert annotated data. These modelling techniques 
are useful in a wide variety of domains, including 
inferring ties in social networks for modelling the 
spread of healthy behaviors, robust translation for 
hundreds of languages, and the imputation of 
genomics data for the inference of more favorable 
disease prognosis as it relates to therapy choices 
(Lotfollahi et al., 2019; O’Malley, 2013; Young et al., 
2018). 

An important application of these generative 
techniques is the use of deep learning in medical 
imaging. Deep learning approaches are data-driven 
computational heuristics that “learn” to specify a 
large set of nonlinear interactions between predictors 
to understand their relationship with clinical 
outcomes of interest through the use of artificial 
neural networks (ANN) (Krizhevsky et al., 2012). 
ANN are comprised of layers of nodes that represent 
levels of abstraction of the data, where nodes 
aggregate weighted information from the previous 
layer of nodes, transform the data, and pass it to 
downstream layers of nodes to characterize the tissue 
image. We focus on a subclass of these methods, 
generative adversarial networks (GANs).  

GANs simultaneously train two ANN. The first 
network generates an image of, for instance, 
histological tissue, from a latent data distribution 
(generator), and the other ANN discriminates whether 
the supplied image is “real” or “fake” 
(discriminator/critic). The number of publications on 
GANs in medical imagery has rapidly increased in 
recent years, with topics spanning medical image 
segmentation, nucleus detection, style translation, 
and upsampling of images (Yi et al., 2019).  

A growing collection of studies have used GANs 
to synthetically stain images of histological tissue 
sections, which can save institutions time and money 
(both in reagents and technologists’ time) 
(Bayramoglu et al., 2017; Borhani et al., 2019; De 
Biase, 2019; Lahiani et al., 2018; Quiros et al., 2019; 
Rana et al., 2018; Rivenson, Liu, et al., 2019; 
Rivenson, Wang, et al., 2019; Xu et al., 2019). GAN 
models have also been used to remove artificial and 
natural discolorations in images of stained 
histological tissue sections that could perturb deep 
learning analyses (Bentaieb & Hamarneh, 2018; 
Ghazvinian Zanjani et al., 2018; Pontalba et al., 

2019). Other studies have sought to use GANs to 
generate synthetic training data to increase the 
generalizability of deep learning histopathology 
models (Wei et al., 2019). A few studies used deep 
generative techniques to derive nucleus masks 
without the use of physician supplied annotations 
(Bug et al., 2019; Gadermayr et al., 2019; Hollandi et 
al., 2019; Mahmood et al., 2018).  

Traditional unconditional GANs generate data by 
using the discriminator to estimate and match the 
distribution of the generated data to the real data. 
Conditional GANs such as Pix2Pix (Isola et al., 2018) 
are conditioned on the original labelled data while 
attempting to directly match the target image. This 
requires the pairing of images to learn the mapping 
from source to target domain (Figure 1a). In 
histopathology, perfectly registered paired images of 
differentially stained tissue can often be difficult to 
acquire (even when stereotactic sections are only 
separated by 5µM) and therefore require accurate 
annotation and registration, in which the images must 
be warped, rotated and translated to most accurately 
match the source domain. These registrations are not 
entirely accurate and assume that the matched tissue 
has no artifacts present (Borovec et al., 2019). 
Additionally, the computational resources required to 
register high resolution WSI with up to 
80,000x80,000 pixels per color channel can be 
exceedingly high. Another GAN architecture resolves 
these issues: unconditional image-to-image 
translation models such as CycleGAN (Zhu et al., 
2018) and UNIT (Zhu et al., 2018). In addition to 
distributional matching of the real and synthetic target 
and source domains, CycleGAN models learn to 
recapitulate the source/target domain after using a 
generator to construct the target/source image and 
another generator to reconstruct the original image 
(Figure 1b), which obviates the need to include 
matched images. A mathematical description of these 
two deep learning techniques have been included in 
the appendix. 

In light of the successes of these GAN techniques 
in other domains, we sought to explore their 
applications to the WSI’s generated during clinical 
operations at the Dartmouth-Hitchcock Medical 
Center Department of Pathology and Laboratory 
Medicine (DHMC-PLM, a mid-sized National 
Cancer Institute Cancer Center, NCI-CC). In this 
study, we present preliminary results for the 
application of the CycleGAN and Pix2Pix techniques 
in calculating the nuclear to cytoplasm ratio of cells 
in urine cytology specimens, the conversion of H&E 
stains to predicted SOX10 immunohistochemistry, 
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and the trichrome staining of liver tissue for fibrosis 
analysis. 

 

Figure 1: Illustration of (A) CycleGAN and (B) Pix2Pix 
Deep Learning Techniques. (A) Trichrome stain is 
generated from an H&E input image, which is in turn is 
used to generate a reconstruction of the original H&E 
image. The reconstructed image is compared to the original 
via a reconstruction loss: the distribution of generated stains 
are compared to the distribution of original stains via a 
discriminator. The same process is used when converting 
trichrome to H&E. (B) The urine segmentation mask is 
generated from the real image. Real and generated 
distributions are parameterized and compared both via the 
discriminator and directly between paired generated masks 
and ground truth segmentation masks. 

2 METHODS 

2.1 Data Preparation 

Liver core needle biopsies obtained by various 
approaches were fixed in formalin and processed into 
FFPE tissue blocks; tissue sections were cut at 5μm 
thickness and stained with H&E and trichrome stains 
on adjacent levels, then scanned using the Leica 
Aperio-AT2 scanner at 20x magnification. The 
resulting images were stored natively as SVS files 
and then converted to NPY and ZARR files for 
preprocessing using PathFlowAI (Levy et al., 2020). 
An SQL database was created containing patches 
with 95% or greater non-white space. We extracted 
500,000 and 290,000, unpaired, 256 pixel x 256 pixel 
subimages from 241 H&E and Trichrome stained 
WSI respectively as training data for a CycleGAN 
model. Seventy-five percent of the liver WSI (n=178 
specimens with both H&E and trichrome WSI) were 
used to train the model, while 25% of the data was 
reserved for testing (n=63 specimens with both H&E 

and trichrome WSI).  
For the urine cytology dataset, a total of 217 

ThinPrep® urine cytology slides were collected and 
scanned at 40x magnification using a Leica Aperio-
AT2 scanner to 80K x 80K SVS files. These files 
were extracted to TIF images and resized to 40K x 
40K. Via a process of background deletion and 
connected component analysis (Vaickus et al., 2019) 
we created libraries of cells from each of the WSI and 
randomly sampled 10,936 cell images from the 
25×106 extracted cellular objects. Manually 
annotated and algorithmically (AutoParis) derived 
segmentation masks delineating pixel-by-pixel areas 
of the nucleus, cytoplasm and background were 
paired with the original cell images (Vaickus et al., 
2019). The cell images were separated into 60% 
training, 20% validation and 20% testing sets for 
Pix2Pix.  

For the SOX10 IHC, an unpaired dataset 
containing a total of 15,000 H&E and 15,000 IHC, 
256 pixel x 256 pixel subimages of skin and lymph 
node histology were acquired to train a CycleGAN 
model. Next, 30,000 paired H&E and IHC patches 
were registered to each other using an alignment 
technique that constructs a coarse pose 
transformation matrix to perform an initial alignment 
of the tissue, then dynamically warps and finetunes 
the IHC to the respective H&E tissue. Alignments 
with significantly poor warping were filtered out to 
yield 15,000 paired images for training a Pix2Pix 
model. The Pix2Pix IHC model data was split into 
60% training, 20% validation and 20% testing. The 
CycleGAN model data was split into 60% training 
and 20% validation sets and shared the same test set 
with the Pix2Pix model.  An additional 20 melanoma 
and 18 nevus cases (split into 224 x 224 pixel 
subimages) were processed for subjective grading of 
Pix2Pix and CycleGAN model outputs. 

2.2 Analytic Approach 

A CycleGAN model was fit on the liver dataset with 
the purpose of converting H&E stained images into 
trichrome stained images. We prioritized the ability 
of the model to identify pronounced fibrous tissue 
(portal tracts, large central veins, cirrhosis: 
highlighted in blue by the trichrome stain). 
Accordingly, highly blue patches were upsampled (as 
determined by blue color channel thresholds) and the 
reconstruction loss of trichrome stained tissue of the 
CycleGAN was upweighted to 0.8 versus H&E 
reconstructions (a process we are still fine-tuning). 
The model was trained for a total of 6 epochs and then 
the resulting model was utilized to construct entire 
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synthetic trichrome WSI from H&E WSI in the test 
set. As a preliminary analysis, these synthetic images 
were qualitatively evaluated for their fidelity to the 
original trichrome (understain, equivalent, overstain) 
and then a pathologist scored the synthetic and real 
trichromes for the presence or absence of advanced 
fibrosis (bridging fibrosis or cirrhosis). 

Pix2Pix was used to predict nucleus and 
cytoplasm segmentation masks for cells contained in 
urine cytology specimens. The Pix2Pix model was 
trained for 200 epochs using the default settings of a 
publicly available repository and then evaluated on a 
ground truth, hand-annotated test set. Pixel-level 
accuracy, sensitivity and specificity of each 
segmentation assignment (nucleus, cytoplasm, 
background) to the original ground truth was 
calculated and then the nucleus to cytoplasmic ratio 
(NC) was compared using the R2 correspondence.  
We utilized 1000-sample nonparametric bootstrap 
estimates to derive 95% confidence intervals for each 
of these estimates. 

For the SOX10 dataset, both CycleGAN and 
Pix2Pix models were fit to the synthetic IHC dataset 
and each model was trained for approximately 150 
epochs. These models were then utilized to convert 
H&E images into SOX10 IHC stained images. Color 
deconvolution algorithms were able to decompose 
both the real and generated IHC stained images into 
SOX10-positive (via 3,3 ′ -Diaminobenzidine 
(DAB) color deconvolution) and SOX10-negative 
(via hematoxylin color deconvolution) binary masks 
using color thresholding. Since there was imperfect 
registration between the H&E and IHC images, the 
resultant binary masks for each of the stains could not 
be directly compared. Instead, the area of the SOX10 
positive and SOX10 negative stains were compared 
between the real and generated images across the test 
set via 1000-sample nonparametric bootstrap 
estimates of the 95% confidence intervals of the 
correlation coefficient between the area of real and 
generated positive and negatively stained tissue. 

The architectures for the generators for both the 
CycleGAN and Pix2Pix models utilized residual 
neural network blocks (He et al., 2015). 

3 PRELIMINARY RESULTS 

Herein, we present our initial results from the 
application of the aforementioned tasks: 
 
 
 
 

3.1 Cytology Segmentation 

 

Figure 2: Examples of original cell images (left), ground 
truth segmentation masks (middle), and predicted 
segmentation masks (right) for: (A) poor segmentation and 
(B) excellent segmentation.  

Table 1: Performance of Pix2Pix Urine Cell Nuclear and 
Cytoplasm Segmentation. 

Annotation 
Type

Accuracy ± 
SE

Sensitivity ± 
SE 

Specificity ± 
SE 

Background 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 

Cytoplasm 0.93 ± 0.05 0.91 ± 0.07 0.95 ± 0.05 

Nucleus 0.94 ± 0.05 0.85 ± 0.16 0.96 ± 0.05 

The NC ratio of urothelial cells is a metric that is 
estimated by pathologists and considered in 
combination with subjective measures of atypia to 
screen urine cytology specimens for urothelial 
carcinoma (bladder cancer) according to the gold 
standard Paris System for Urine Cytology (Barkan et 
al., 2016). The authors recently published a hybrid 
morphometric and deep learning approach to 
automating the Paris System utilizing a series of 
specialists semantic segmentation networks for NC 
ratio calculation requiring thousands of hand 
annotated images (Vaickus et al., 2019). Improving 
the quality and automation of cell compartment 
segmentation could provide significant performance 
gains to this and other automated techniques for the 
performance of cytological cancer screening tests 
(Layfield et al., 2017; Wang et al., 2019). Pix2Pix, 
utilizing a rather small training set, achieved 
remarkable segmentation performance, yielding an 
macro-accuracy of 0.95 and an R2 value of 
0.74±0.019 between the ground truth and predicted 
NC ratios across the test set (Table 1; Figure 2). 
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3.2 Synthetic IHC 

 

Figure 3: Examples of Synthetic IHC Staining Technique 
on: (A-B) Select image patches, organized by original H&E 
(left), Pix2Pix generated IHC (left-center), True Registered 
IHC (right-center), and CycleGAN generated IHC (right); 
(C) Pix2Pix (center) and CycleGAN (right) IHC images 
generated from large section of H&E stained tissue (left). 

SOX10 is a nuclear transcription factor that is used in 
IHC for the identification of cells with melanocytic/ 
Immunohistochemical stains generate a distinctive 
brown color (DAB) on counterstained (hematoxylin) 
tissue sections allowing for relatively simple color 
deconvolution. Previous deep learning approaches 
have been able to utilize mappings between H&E and 
IHC tissue to learn antibody driven features in the 
H&E that may be correspondent to the separation of 
tumorous/non-tumorous tissue (Bulten & Litjens, 
2018; Mohamed et al., 2013, p. 10; Willis et al., 
2015). The ability of a deep learning model to predict 
the expression of DAB immunohistochemistry for a 
nuclear transcription factor (SOX10) from an HE 
stained image was first demonstrated by a resident 
pathologist in our research program (Christopher 
Jackson, MD) and presented at the 2019 meeting of 
the American Society of Dermatopathology (full 
manuscript currently in review) (Jackson, 2019). 

Table 2: Comparison of CycleGAN versus Pix2Pix 
performance on synthetic SOX10 IHC staining.  

Method Positive SOX10 Stained 
Area Predicted vs True 
PearsonR ± SE 

Negative SOX10 Stained 
Area Predicted vs True 
PearsonR ± SE

CycleGAN 0.66±0.021 0.39±0.065 

Pix2Pix 0.93±0.0061 0.90±0.013 

Utilizing CycleGAN, we found that the area of 
SOX10 positive and negative staining was weakly 
associated between the predicted and true IHC stains  

 

Figure 4: Breakdown of true versus predicted SOX10 
stained area for: (A, B) CycleGAN; (C, D) Pix2Pix; (A, C) 
SOX10 Negative Staining; (B, D) SOX10 Positive 
Staining. 

(Table 2; Figures 3-4). However, when we trained on 
pairs of imperfectly registered images using Pix2Pix, 
we found much stronger correlations in the area of 
SOX10 staining between predicted and true IHC 
stains (Table 2; Figure 4). We also investigated each 
algorithm’s ability to identify melanocytic tissue for 
subjective analysis by pathologists and residents, in 
which the superior performance of the Pix2Pix model 
was consistently noted (Table 2; Figure 3-4). 

3.3 Synthetic Trichrome Staining of 
Liver Tissue 

Non-alcoholic steatohepatitis (NASH) is 
characterized by steatosis and chronic inflammation 
causing progressive liver injury and fibrosis in 
patients where no alcoholic, genetic, metabolic, or 
medication-based causes for hepatitis have been 
identified (Masugi et al., 2017). Progressive NASH 
can lead to cirrhosis with morbidities including 
ascites, sepsis, coagulopathies, and nutritional 
deficiencies, and a markedly increased risk of 
hepatocellular carcinoma (HCC). End stage cirrhosis 
requires transplantation which has a tremendous 
financial impact on the healthcare system and is 
associated with substantial patient morbidity and 
mortality. Fibrosis progression is typically assessed 
via liver biopsy. After core needle or wedge biopsies 
of the liver are obtained, pathologists score the tissue 
for features of NASH (percentage steatosis, presence 
of inflammatory cells and ballooning hepatocytes) 
using an H&E stain, then stage the degree of fibrosis 
with a trichrome stain, on which collagen (fibrous 
tissue) is highlighted blue. Here, we used CycleGAN 
to convert an H&E stain to a synthetic trichrome stain 
on small image patches and combined these patches 
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to recapitulate the entire WSI (Figure 5). In visual 
assessment of gross trichrome stained area by a 
pathologist, the model showed a propensity for 
overcalling fibrosis with 58% deemed subjectively 
overstained, 37.5% deemed subjectively equivalent 
to the real trichrome, and 4.1% deemed subjectively 
understained. When a pathologist staged each 
synthetic and real trichrome stain for the presence or 
absence of advanced fibrosis (bridging fibrosis, 
cirrhosis), the accuracy of the synthetic trichromes 
was 79%, the sensitivity was 100% and the specificity 
was 67% (n=24, Table 3).  

Table 3: Confusion matrix for synthetic trichrome in 
pathologist scoring of advanced fibrosis (bridging fibrosis, 
cirrhosis) versus non-advanced fibrosis.  

N = 24 Real + Real - Accuracy 0.79 
Synth + 11 6 Sensitivity 1.00 
Synth - 0 12 Specificity 0.67 

 

Figure 5: Examples of liver tissue specimen.(A) Original 
H&E stained tissue; (B) generated trichrome stain; (C) 
original matched trichrome stain. 

4 DISCUSSION 

In this study, we illustrated a few potentially useful 
applications of CycleGANs and Pix2Pix in the 
clinical workflow of a pathology department at a mid-
sized NCI Cancer Center. We found these synthetic 
staining and segmentation techniques to yield 
satisfactory performance in some situations, which 
we will continue to evaluate with larger datasets in 
the future. GANs are relatively difficult to train, 
partially in light of the non-convergence of the 
model’s objective function after training for a long 
period of time. The oscillation of the model loss 
during training reflects the dynamic min-max 

objective function between the generator and 
discriminator. For incorporation into the clinical 
workflow, these technologies will have to be 
packaged in ways that are accessible to the clinical 
researcher and clinician through simple GUIs and 
common workflow specifications (Amstutz et al., 
2016) as well as provide for robust model validation. 

We noted that Pix2Pix was able to accurately 
differentiate nuclei from cytoplasm in cells from 
urine cytology specimens. However, we noticed 
instances where the model both over and under-called 
nuclear area. This may be remedied by training the 
model on larger datasets with a more diverse 
sampling of nuclear and cytoplasmic morphologies. 

Automated conversion of H&E to IHC presents an 
exciting opportunity to directly train models off of 
objective molecular targets which may decrease the 
bias present in physician annotations. Our 
preliminary results highlight the importance of using 
registration to assist with the accurate conversion of 
H&E to IHC. Regardless, we plan to investigate more 
robust measures of tissue similarity between ground 
truth and predicted stains (e.g. correspondence in 
circular objects detected using SURF and SIFT 
features) (Bay et al., 2006; Lowe, 2004). Current 
image registration techniques are also 
computationally intensive and imperfect (in this study 
it took 5 days to register 12 HE WSI to their 
respective IHC WSI). Further improvements in 
registration accuracy are likely to improve the 
synthetic IHC staining accuracy and we intend to 
invest significant research time in this area.  

Our initial attempt at training a liver H&E to a 
synthetic trichrome staining model led to the gross 
under-prediction of liver fibrosis. We remedied this 
deficiency by supplying more images of highly 
fibrous tissue areas in the training set and by 
weighting to emphasise the reconstruction of fibrotic 
tissue. As a result of this, the overall accuracy of 
synthetic trichromes increased, but, perhaps 
predictably, led to a moderate degree of 
overestimation of fibrous tissue. Accordingly the 
sensitivity of the model for advanced fibrosis was 
high but the specificity was subpar. This result would 
likely be acceptable for a screening test, but given that 
the consequences of both over and under-calling liver 
fibrosis level are severe, synthetic trichromes for liver 
fibrosis staging would require very high sensitivity 
and specificity to be clinically usable. Further tuning 
of the model hyperparameters, architectures and/or 
the application of other generative techniques will be 
necessary to achieve better accuracy (Xu et al., 2019). 
Given the superiority of the Pix2Pix in the synthetic 
IHC task, we intend to attempt to register the H&E 
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and trichrome training images (however imperfectly). 
Considering that in every case the HE section is only 
stereotactically separated from the trichrome section 
by a 5 µM, this approach may prove successful, 
however, it is largely reliant on expert sectioning and 
placement of tissue slices by our histotechnologists. 
Regardless, our results provide a framework to 
improve upon these synthetic staining techniques for 
incorporation into the clinical workflow. 

In light of these investigations, we find that 
generative models (CycleGAN, Pix2Pix) are well-
positioned to supplement engineering solutions that 
are being developed to improve the efficiency and 
accuracy of histopathological diagnosis. Generally, 
clinicians at our institution are most interested in 
digital aids that either cut-down on cost and time to 
render a diagnosis or that automate tedious, error-
prone tasks (such as IHC quantitation). These 
concerns are well met by our initial investigations. In 
the future, we will consider applications of generative 
models for the detection of cells for our clinical 
workflow, for standardizing stains from a collection 
of different institutions by translating to a common 
synthetic stain, and for superresolution techniques 
that may enable high-precision digital pathology from 
low fidelity source material. 

5 CONCLUSIONS 

In this study, we assessed the ability of deep learning 
image-to-image translation models to perform 
nucleus/cytoplasm segmentation in cells from urine 
cytology specimens, and synthetic trichrome and IHC 
staining on liver and skin WSI respectively. These 
initial investigations provide further evidence in favor 
of the incorporation of generative models into the 
core clinical workflow of a hospital pathology 
service. These methods may reduce the costs and time 
associated with chemical staining and manual image 
annotations while providing unbiased means for the 
molecular assessment of tissue. We will continue to 
assess additional applications of these technologies 
on new use cases with more robust measures of 
concordance and larger repositories of data. 

ACKNOWLEDGEMENTS 

This work was supported by NIH grant 
R01CA216265 and a grant from the DHMC Norris 
Cotton Cancer Center, Cancer Fellows Program. JL is 
supported through the Burroughs Wellcome Fund Big 
Data in the Life Sciences at Dartmouth. 

REFERENCES 

Amstutz, P., Crusoe, M. R., Tijanić, N., Chapman, B., 
Chilton, J., Heuer, M., Kartashov, A., Leehr, D., 
Ménager, H., Nedeljkovich, M., Scales, M., Soiland-
Reyes, S., & Stojanovic, L. (2016). Common Workflow 
Language, v1.0. https://doi.org/10.6084/m9.figshare. 
3115156.v2 

Barkan, G. A., Wojcik, E. M., Nayar, R., Savic-Prince, S., 
Quek, M. L., Kurtycz, D. F. I., & Rosenthal, D. L. 
(2016). The Paris System for Reporting Urinary 
Cytology: The Quest to Develop a Standardized 
Terminology. Acta Cytologica, 60(3), 185–197. 
https://doi.org/10.1159/000446270 

Bay, H., Tuytelaars, T., & Van Gool, L. (2006). SURF: 
Speeded Up Robust Features. In A. Leonardis, H. 
Bischof, & A. Pinz (Eds.), Computer Vision – ECCV 
2006 (pp. 404–417). Springer. https://doi.org/10.1007/ 
11744023_32 

Bayramoglu, N., Kaakinen, M., Eklund, L., & Heikkila, J. 
(2017). Towards Virtual H&E Staining of 
Hyperspectral Lung Histology Images Using 
Conditional Generative Adversarial Networks. 64–71. 
https://doi.org/10.1109/ICCVW.2017.15 

Bentaieb, A., & Hamarneh, G. (2018). Adversarial Stain 
Transfer for Histopathology Image Analysis. IEEE 
Transactions on Medical Imaging, 37(3), 792–802. 
https://doi.org/10.1109/TMI.2017.2781228 

Borhani, N., Bower, A. J., Boppart, S. A., & Psaltis, D. 
(2019). Digital staining through the application of deep 
neural networks to multi-modal multi-photon 
microscopy. Biomedical Optics Express, 10(3), 1339–
1350. https://doi.org/10.1364/BOE.10.001339 

Borovec, J., Kybic, J., & Muñoz-Barrutia, A. (2019, April 
11). Automatic Non-rigid Histological Image 
Registration challenge. https://doi.org/10.13140/ 
RG.2.2.12974.77126/2 

Bug, D., Gräbel, P., Feuerhake, F., Oswald, E., Schüler, J., 
& Merhof, D. (2019). Supervised and Unsupervised 
Cell-Nuclei Detection in Immunohistology. 

Bulten, W., & Litjens, G. (2018). Unsupervised Prostate 
Cancer Detection on H&E using Convolutional 
Adversarial Autoencoders. https://openreview.net/ 
forum?id=Syoj0k2iG 

De Biase, A. (2019). Generative Adversarial Networks to 
enhance decision support in digital pathology. 
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-
158486 

Gadermayr, M., Gupta, L., Klinkhammer, B. M., Boor, P., 
& Merhof, D. (2019). Unsupervisedly Training GANs 
for Segmenting Digital Pathology with Automatically 
Generated Annotations. International Conference on 
Medical Imaging with Deep Learning, 175–184. 
http://proceedings.mlr.press/v102/gadermayr19a.html 

Ghazvinian Zanjani, F., Zinger, S., Ehteshami Bejnordi, B., 
van der Laak, J., & With, P. (2018). Stain normalization 
of histopathology images using generative adversarial 
networks. 573–577. https://doi.org/10.1109/ 
ISBI.2018.8363641 

C2C 2020 - Workshop on COMP2CLINIC: Biomedical Researchers Clinicians Closing The Gap Between Translational Research And
Healthcare Practice

308



He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual 
Learning for Image Recognition. ArXiv:1512.03385 
[Cs]. http://arxiv.org/abs/1512.03385 

Hollandi, R., Szkalisity, A., Toth, T., Tasnadi, E., Molnar, 
C., Mathe, B., Grexa, I., Molnar, J., Balind, A., Gorbe, 
M., Kovacs, M., Migh, E., Goodman, A., Balassa, T., 
Koos, K., Wang, W., Bara, N., Kovacs, F., Paavolainen, 
L., … Horvath, P. (2019). A deep learning framework 
for nucleus segmentation using image style transfer. 
BioRxiv, 580605. https://doi.org/10.1101/580605 

Isola, P., Zhu, J.-Y., Zhou, T., & Efros, A. A. (2018). 
Image-to-Image Translation with Conditional 
Adversarial Networks. ArXiv:1611.07004 [Cs]. 
http://arxiv.org/abs/1611.07004 

Jackson, C. (2019, October 17). Sox-10 Virtual 
Immunohistochemistry: An Application of Artificial 
Intelligence Using a Convolutional Neural Network. 
ADSP 56th annual meeting. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). 
ImageNet Classification with Deep Convolutional 
Neural Networks. In F. Pereira, C. J. C. Burges, L. 
Bottou, & K. Q. Weinberger (Eds.), Advances in Neural 
Information Processing Systems 25 (pp. 1097–1105). 
Curran Associates, Inc. http://papers.nips.cc/paper/ 
4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf 

Lahiani, A., Gildenblat, J., Klaman, I., Albarqouni, S., 
Navab, N., & Klaiman, E. (2018). Virtualization of 
tissue staining in digital pathology using an 
unsupervised deep learning approach. 
ArXiv:1810.06415 [Cs]. http://arxiv.org/abs/ 
1810.06415 

Layfield, L. J., Esebua, M., Frazier, S. R., Hammer, R. D., 
Bivin, W. W., Nguyen, V., Ersoy, I., & Schmidt, R. L. 
(2017). Accuracy and Reproducibility of 
Nuclear/Cytoplasmic Ratio Assessments in Urinary 
Cytology Specimens. Diagnostic Cytopathology, 45(2), 
107–112. https://doi.org/10.1002/dc.23639 

Levy, J., Salas, L. A., Christensen, B. C., Sriharan, A., & 
Vaickus, L. J. (2020). PathFlowAI: A High-Throughput 
Workflow for Preprocessing, Deep Learning and 
Interpretation in Digital Pathology. Pacific Symposium 
on Biocomputing, 25, 403–414. https://doi.org/ 
10.1101/19003897 

Lotfollahi, M., Wolf, F. A., & Theis, F. J. (2019). ScGen 
predicts single-cell perturbation responses. Nature 
Methods, 16(8), 715–721. https://doi.org/10.1038/ 
s41592-019-0494-8 

Lowe, D. G. (2004). Distinctive Image Features from Scale-
Invariant Keypoints. International Journal of 
Computer Vision, 60(2), 91–110. https://doi.org/ 
10.1023/B:VISI.0000029664.99615.94 

Mahmood, F., Borders, D., Chen, R., McKay, G. N., 
Salimian, K. J., Baras, A., & Durr, N. J. (2018). Deep 
Adversarial Training for Multi-Organ Nuclei 
Segmentation in Histopathology Images. 
ArXiv:1810.00236 [Cs]. http://arxiv.org/abs/ 
1810.00236 

Masugi, Y., Abe, T., Tsujikawa, H., Effendi, K., 
Hashiguchi, A., Abe, M., Imai, Y., Hino, K., Hige, S., 

Kawanaka, M., Yamada, G., Kage, M., Korenaga, M., 
Hiasa, Y., Mizokami, M., & Sakamoto, M. (2017). 
Quantitative assessment of liver fibrosis reveals a 
nonlinear association with fibrosis stage in 
nonalcoholic fatty liver disease: Masugi, Abe, et al. 
Hepatology Communications, 2. https://doi.org/ 
10.1002/hep4.1121 

Miller, D. D., & Brown, E. W. (2018). Artificial 
Intelligence in Medical Practice: The Question to the 
Answer? The American Journal of Medicine, 131(2), 
129–133. https://doi.org/10.1016/ 
j.amjmed.2017.10.035 

Mohamed, A., Gonzalez, R. S., Lawson, D., Wang, J., & 
Cohen, C. (2013). SOX10 Expression in Malignant 
Melanoma, Carcinoma, and Normal Tissues. Applied 
Immunohistochemistry & Molecular Morphology, 
21(6), 506. https://doi.org/10.1097/ 
PAI.0b013e318279bc0a 

O’Malley, A. J. (2013). The analysis of social network data: 
An exciting frontier for statisticians. Statistics in 
Medicine, 32(4), 539–555. https://doi.org/10.1002/ 
sim.5630 

Pontalba, J. T., Gwynne-Timothy, T., David, E., Jakate, K., 
Androutsos, D., & Khademi, A. (2019). Assessing the 
Impact of Color Normalization in Convolutional Neural 
Network-Based Nuclei Segmentation Frameworks. 
Frontiers in Bioengineering and Biotechnology, 7, 300. 
https://doi.org/10.3389/fbioe.2019.00300 

Quiros, A. C., Murray-Smith, R., & Yuan, K. (2019). 
Pathology GAN: Learning deep representations of 
cancer tissue. ArXiv:1907.02644 [Cs, Eess, Stat]. 
http://arxiv.org/abs/1907.02644 

Raab, S. S. (2000). The Cost-Effectiveness of 
Immunohistochemistry. Archives of Pathology & 
Laboratory Medicine, 124(8), 1185–1191. 
https://doi.org/10.1043/0003-
9985(2000)124<1185:TCEOI>2.0.CO;2 

Rana, A., Yauney, G., Lowe, A., & Shah, P. (2018). 
Computational Histological Staining and Destaining of 
Prostate Core Biopsy RGB Images with Generative 
Adversarial Neural Networks. 2018 17th IEEE 
International Conference on Machine Learning and 
Applications (ICMLA), 828–834. https://doi.org/ 
10.1109/ICMLA.2018.00133 

Rivenson, Y., Liu, T., Wei, Z., Zhang, Y., Haan, K. de, & 
Ozcan, A. (2019). PhaseStain: The digital staining of 
label-free quantitative phase microscopy images using 
deep learning. Light: Science & Applications, 8(1), 1–
11. https://doi.org/10.1038/s41377-019-0129-y 

Rivenson, Y., Wang, H., Wei, Z., Haan, K., Zhang, Y., Wu, 
Y., Gunaydin, H., Zuckerman, J., Chong, T., Sisk, A., 
Westbrook, L., Wallace, W., & Ozcan, A. (2019). 
Virtual histological staining of unlabelled tissue-
autofluorescence images via deep learning. Nature 
Biomedical Engineering, 3. https://doi.org/10.1038/ 
s41551-019-0362-y 

Vaickus, L. J., Suriawinata, A. A., Wei, J. W., & Liu, X. 
(2019). Automating the Paris System for urine 
cytopathology—A hybrid deep-learning and 

Preliminary Evaluation of the Utility of Deep Generative Histopathology Image Translation at a Mid-sized NCI Cancer Center

309



morphometric approach. Cancer Cytopathology, 
127(2), 98–115. https://doi.org/10.1002/cncy.22099 

Wang, S., Yang, D. M., Rong, R., Zhan, X., & Xiao, G. 
(2019). Pathology Image Analysis Using Segmentation 
Deep Learning Algorithms. The American Journal of 
Pathology, 189(9), 1686–1698. https://doi.org/10.1016/ 
j.ajpath.2019.05.007 

Wei, J., Suriawinata, A. A., Vaickus, L., Ren, B., Liu, X., 
Wei, J., & Hassanpour, S. (2019). Generative Image 
Translation for Data Augmentation in Colorectal 
Histopathology Images. ArXiv, abs/1910.05827. 

Willis, B. C., Johnson, G., Wang, J., & Cohen, C. (2015). 
SOX10: A Useful Marker for Identifying Metastatic 
Melanoma in Sentinel Lymph Nodes. Applied 
Immunohistochemistry & Molecular Morphology, 
23(2), 109. https://doi.org/10.1097/ 
PAI.0000000000000097 

Xu, Z., Fernández Moro, C., Bozóky, B., & Zhang, Q. 
(2019). GAN-based Virtual Re-Staining: A Promising 
Solution for Whole Slide Image Analysis. 

Yi, X., Walia, E., & Babyn, P. (2019). Generative 
adversarial network in medical imaging: A review. 
Medical Image Analysis, 58, 101552. https://doi.org/ 
10.1016/j.media.2019.101552 

Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). 
Recent Trends in Deep Learning Based Natural 
Language Processing [Review Article]. IEEE 
Computational Intelligence Magazine, 13(3), 55–75. 
https://doi.org/10.1109/MCI.2018.2840738 

Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. (2018). 
Unpaired Image-to-Image Translation using Cycle-
Consistent Adversarial Networks. ArXiv:1703.10593 
[Cs]. http://arxiv.org/abs/1703.10593 

APPENDIX 

Mathematical Description of CycleGAN 
and Pix2Pix Objective Functions 

GANs are tasked with learning a source/target 
domain Y from latent noise vector Z via mapping G. 
The loss function for a GAN is specified by: 

,ܩேሺீܮ ሻܦ ൌ ሻ൯൧ݔሺܦ൫݃௫ൣ݈ܧ

 ௫ܧ ቂ݈݃ ቀ1

െ  ሻ൯ቁቃݖሺܩ൫ܦ

(1)

The ideal generator is acquired through 
alternating updates to the generator and discriminator 
parameters: 

G∗ ൌ argminୋmaxୈீܮேሺܩ, ሻ (2)ܦ

The objective is minimized with respect to the 
generator parameters to maximize the discriminator’s 
output for generated data D(G(z)) to attempt to fool 
the discriminator, which aims to maximize the 

separation between the real and generated data, as 
parameterized by the discriminator. The loss is 
maximized with respect to the discriminator’s 
parameters. GANs can be difficult to train, thus 
alterations to the objective such as the Wasserstein 
distance and gradient penalties have been introduced. 

The goal of Image-to-Image translation is to learn 
a mapping from source domain/observed image X to 
a target domain Y via a generator G: X →Y. 

The generator for both of the Pix2Pix and 
CycleGAN models compress input data X into a latent 
subspace Z by subsequent applications of 
convolutional and pooling/aggregation operators, 
then decompress the latent information Z into the 
target Y via upsampling and deconvolution operators. 

Pix2Pix accomplishes the mapping G through 
generation of Y from X and Z. The original image X 
and target image Y are concatenated together, and 
original image X and generated image G(x,z) are 
concatenated. Both of these images are passed 
through the discriminator via the objective: 

,ܩீேሺܮ ሻܦ ൌ ,ݔሺܦ൫݃௫,௬ൣ݈ܧ ሻ൯൧ݕ

 ௫,௭ܧ ቂ݈݃ ቀ1

െ ,ݔ൫ܦ ,ݔሺܩ  ሻ൯ቁቃݖ
(3)

This loss function is supplemented by an L1-Loss 
that compares the generated image with the target 
image: 

ሻܩଵሺܮ ൌ ௫,௬,௭ܧ ቂห|ݕ െ ,ݔሺܩ ሻ|หݖ
ଵ
ቃ (4)

The optimization process is identical to the GAN 
training process and is performed on a weighted 
combination of the conditional GAN (cGAN) and L1 
objectives. 

The CycleGAN model trains two generators, G: X 
→ Y and F: Y	→X, and utilizes discriminators, ܦ and 
 .  for the source and target domains respectivelyܦ
The CycleGAN objective utilizes a cycle-consistent 
loss, which assumes that original data X, mapped to Y 
via G, then mapped back via F, should resemble the 
original data source. This is expressed as: 

,ܩ௬ሺܮ ሻܨ ൌ λܧ௫ ቂቚหܨ൫ܩሺݔሻ൯ െ หቚݔ
ଵ
ቃ

 λܧ௬ ቂቚหܩ൫ܨሺݕሻ൯

െ หቚݕ
ଵ
ቃ 

(5)

There two weighting terms control the importance 
of generating from one domain versus the other. The 
final objective adds the cycle-consistent loss to 
adversarial losses for the source and target domains: 
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,ܩሺܮ ,ܨ ,ܦ ሻܦ ൌ λܮ௬ሺܩ, ሻܨ
 ,ܩேሺீܮ ሻܦ
 ,ܨேሺீܮ  ሻܦ

(6)

A similar minmax optimization of the objective is 
used to obtain the ideal parameterization of G and F 
to realize the translation from X to Y when images are 
unpaired. 

Code and Data Availability 

The CycleGAN and Pix2Pix models that were 
utilized in this study were trained using PyTorch 
1.3.0, code was adopted from GitHub repository 
https://github.com/junyanz/pytorch-CycleGAN-and-
pix2pix. Additionally, we provide helper scripts and 
small test datasets, which will undergo continuous 
updating, in our GitHub repository: 
https://github.com/jlevy44/PreliminaryGenerativeHi
stoPath. PathFlowAI, which was utilized to prepare 
the data for the H&E to Trichrome analysis is 
available at: https://github.com/jlevy44/PathFlowAI. 
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