Fard,  A.  M.,  Mesbah,  A.  (2014b).  saltlab/Testilizer. 
Retrieved  October  27,  2019  from  https://github.com/ 
saltlab/Testilizer 
Garousi, V., Felderer, M., & Mäntylä, M. V.  (2016). The 
need  for  multivocal  literature  reviews  in  software 
engineering:  complementing  systematic  literature 
reviews with grey literature. EASE 2016: 26:1 – 26:6 
Garousi,  V., &  Elberzhager,  F.  (2017). Test  Automation: 
Not Just for Test Execution. IEEE Software 34(2), 90-
96.  
Gu, T., Cao, C., Liu, T., Sun, C., Deng, J., Ma, X., & Lü, J. 
(2017).  AIMDROID:  Activity-insulated  multi-level 
automated  testing  for  android  applications.  ICSME 
2017, 103–114.  
Hewett,  R.,  &  Kijsanayothin,  P.  (2009).  Automated  test 
order  generation  for  software  component  integration 
testing. ASE 2009 , 211–220. 
Hillah, L. M., Maesano, A.-P., Maesano, L., De Rosa, F., 
Kordon,  F.,  &  Wuillemin,  P.-H.  (2016).  Service 
functional  testing  automation  with  intelligent 
scheduling and planning. SAC 2016, 1605–1610.  
Hocke, R., n.d. SikuliX by RaiMan. Retrieved October 27, 
2019, from http://sikulix.com/ 
Hourani, H., Hammad, A., & Lafi, M. (2019). The Impact 
of  Artificial  Intelligence  on  Software  Testing.  JEEIT 
2019, 565–570.  
Hu,  G.,  Zhu,  L.,  &  Yang,  J.  (2018).  AppFlow:  using 
machine  learning  to  synthesize  robust,  reusable  UI 
tests. ESEC/SIGSOFT FSE 2018, 269–282.  
Institute  of  Computer  Software  of  Nanjing  University. 
(2017).  AimDroid: Activity-Insulated Multi-level 
Automated Testing for Android Applications. Retrieved 
October  27,  2019,  from  https://icsnju.github.io/ 
AimDroid-ICSME-2017/ 
Irfan, M.  N.,  Oriat,  C.,  & Groz, R.  (2010).  Angluin  style 
finite  state  machine  inference  with  nonoptimal 
counterexamples. MIIT 2010, 11-19. 
Jin, H., Wang, Y., Chen, N., Gou, Z., & Wang, S. (2008). 
Artificial Neural Network for Automatic Test Oracles 
Generation. CSSE (2) 2008, 727–730. 
King,  T.  M.,  Santiago,  D.,  Phillips,  J.,  &  Clarke,  P.  J. 
(2018).  Towards  a  Bayesian  Network  Model  for 
Predicting  Flaky  Automated  Tests.  QRS Companion 
2018, 100–107.  
Kitchenham,  B.,  &  Charters,  S.  (2007).  Guidelines  for 
performing Systematic Literature Reviews in Software 
Engineering. EBSE-2007-01. 
Last,  M.,  Kandel,  A.,  Bunke,  H.  (2004).  Artificial 
Intelligence Methods in Software Testing  Series in 
Machine Perception and Artificial Intelligence, Volume 
56, 2004. World Scientific Publishing Co. 
Li, H.,  &  Lam,  C.  P. (2005). An  ant  colony  optimization 
approach  to  test  sequence  generation  for  state-based 
software testing. QSIC 2005, 255–262.  
Li, L., Wang, D., Shen, X., & Yang, M. (2009). A method 
for  combinatorial  explosion  avoidance  of  AI  planner 
and the application on test case generation. 
CiSE 2009, 
1–4.  
Li, X., Wang, T., Wang, F., & Wang, M. (2011). A novel 
model  for  automatic  test  data  generation  based  on 
predicate slice. AIMSEC 2011, 1803–1805.  
Liu, P., Zhang, X., Pistoia, M., Zheng, Y., Marques, M., & 
Zeng, L. (2017). Automatic Text Input Generation for 
Mobile Testing. ICSE 2017, 643–653.  
Lu, Y., Yan, D., Nie, S., & Wang, C. (2008). Development 
of an Improved GUI Automation Test System Based on 
Event-Flow Graph. CASE (2) 2008, 712–715. 
Méndez-Porras, A., Nieto Hidalgo, M., García-Chamizo, J. 
M., Jenkins, M., & Porras, A. M. (2015). A top-down 
design  approach  for  an automated testing  framework. 
UCAml 2015, 37–49.  
Moghadam,  M.  H.  (2019).  Machine  Learning-assisted 
Performance  Testing.  ESEC/SIGSOFT FSE 2019, 
1187–1189.  
MIN  Test  Framework.  (2012).  MIN  Test  Framework. 
Retrieved  October  27,  2019,  from  http://min. 
sourceforge.net/. 
Pan, M., Xu, T., Pei, Y., Li, Z., Zhang, T., & Li, X. (2019). 
GUI-guided  Repair  of  Mobile  Test  Scripts.  ICSE 
(Companion Volume) 2019, 326–327.  
Papadopoulos,  P.,  &  Walkinshaw,  N.  (2015).  Black-box 
test  generation  from  inferred  models.  RAISE@ICSE 
2015, 19–24.  
Paradkar, A. M., Sinha, A., Williams, C., Johnson, R. D., 
Outterson,  S.,  Shriver,  C.,  &  Liang,  C.  (2007). 
Automated functional conformance test generation for 
semantic web services. ICWS 2007, 110–117.  
Rafi, D. M., Moses, K. R. K., Petersen, K., & Mäntylä, M. 
V.  (2012).  Benefits  and  limitations  of  automated 
software  testing:  Systematic  literature  review  and 
practitioner survey. AST 2012, 26-42  
Rosenfeld,  A.,  Kardashov,  O.,  &  Zang,  O.  (2018). 
Automation  of  Android  Applications  Functional 
Testing  Using  Machine  Learning  Activities 
Classification. MOBILESoft@ICSE 2018, 122–132.  
Sant,  J.,  Souter,  A.,  &  Greenwald,  L.  (2005).  An 
exploration of statistical models for automated test case 
generation.  ACM SIGSOFT Software Engineering 
Notes 30(4), 1–7.  
Santiago, D., Clarke, P. J., Alt, P., & King, T. M. (2018). 
Abstract  flow  learning  for  web  application  test 
generation. A-TEST@ESEC/SIGSOFT FSE 2018, 49–
55.  
Shahamiri,  S.  R.,  Kadir,  W.  M.  N.  W.,  Ibrahim,  S.,  & 
Hashim, S. Z. M. (2011). An automated framework for 
software test oracle. Inf. Softwa. Technol., 53(7), 774–
788.  
Sharifipour,  H.,  Shakeri,  M.,  &  Haghighi,  H.  (2018). 
Structural  test  data  generation  using  a  memetic  ant 
colony  optimization  based  on  evolution  strategies. 
Swarm Evol. Comput. 40, 76–91.  
Shekhar, S., Murphy-Hill, E., & Oliviero, R., 2016. ICSE-
2011-AutoBlackTest. Retrieved October 27, 2019, from 
https://github.com/SoftwareEngineeringToolDemos/I
CSE-2011-AutoBlackTest. 
Shen,  X.,  Wang,  Q.,  Wang,  P.,  &  Zhou,  B.  (2009). 
Automatic  generation  of  test  case  based  on  GATS 
algorithm. GrC 2009, 496–500.