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Abstract: Big data applications must process increasingly large amounts of data within ever shorter time. Often a
stream processing engine (SPE) is used to process incoming data with minimal latency. While these engines
are designed to process data quickly, they are not made to persist and manage it. Thus, databases are still
integrated into streaming architectures, which often becomes a performance bottleneck. To overcome this
issue and achieve maximum performance, all system components used must be examined in terms of their
throughput and latency, and how well they interact with each other. Several authors have already analyzed the
performance of popular distributed database systems. While doing so, we focus on the interaction between
the SPEs and the databases, as we assume that stream processing leads to changes in the access patterns to
the databases. Moreover, our main focus is on the efficient storing and loading of binary data objects rather
than typed data, since in our use cases the actual data analysis is not to be performed by the database, but by
the SPE. We’ve benchmarked common databases within streaming environments to determine which software
combination is best suited for these requirements. Our results show that the database performance differs
significantly depending on the access pattern used and that different software combinations lead to substantial
performance differences. Depending on the access pattern, Cassandra, MongoDB and PostgreSQL achieved
the best throughputs, which were mostly the highest when Apache Flink was used.

1 INTRODUCTION

The ongoing digitalization of all sectors of the econ-
omy as well as the rapid development of the Internet
of Things are leading to an ever increasing number of
Big Data applications. This includes the analysis of
sensor data to control automated workflows as well
as crowdsensing-based measurements and online in-
teractions with millions of users. The goal of provid-
ing results in ever shorter time has led to the gradual
disappearance of classic batch processing approaches
such as Map Reduce and their replacement by real-
time technologies like Stream Processing.

Despite the fact that the integration of databases
into stream processing pipelines contradicts the idea
of keeping the data flowing all the time, this cannot al-
ways be avoided in practical scenarios. In particular,
when access to historical data is needed to calculate
new results, the use of a database is necessary (Stone-
braker et al., 2005). This is especially the case when
data accesses are random or hard to predict and thus,
historical and constantly arriving data sets become too
big for buffers and volatile memory. Using persistent
data storage will however usually lead to a significant

performance decrease, as the underlying storage hard-
ware has high access times in relation to the actual
processing operations. For our use cases, earlier re-
search has shown that the reading throughput doubles
when a pure in-memory database is used (Weißbach,
2018). With respect to the overall performance of the
system, it is therefore extremely important to select
software components which offer the highest possible
performance for the particular use case and which can
be efficiently combined with each other.

One example of such an use case is the live anal-
ysis of crowdsensed traffic data, which we are inves-
tigating as part of our research. Both historical data
sets and large amounts of permanently incoming sen-
sor data are processed using stream processing. The
individual data to be processed is only a few bytes in
size, but belongs to long tracks and big datasets form-
ing a whole. It is collected using GPS, gyroscopes,
magnetometers and acceleration sensors. The amount
of data is large and unbounded, so that our research
interest is focused on the question which streaming
architectures and databases are suitable for process-
ing countless tiny records that are related to histor-
ical data. In this context, we consider the database
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as a pure storage system that should not perform any
analysis tasks. Instead, analyses are performed in
the stream processing applications using the manifold
advantages of the SPEs for distributed data analysis.
Therefore entire GPS tracks and other sensor data (bi-
nary data) should be stored and accessed quickly. So,
CRUD operations, (especially read, insert, and up-
date) are the only operations of importance to us.

The software development within our project has
shown that database performance is the key to the
overall performance of our processing. Unexpectedly,
we discovered the effect that the performance charac-
teristics of the databases change when they are ac-
cessed from streaming applications. Our resulting as-
sumption is that stream processing changes the access
patterns used to query the databases. This could re-
sult from the fact that the engines use windowing or
micro-batching mechanisms, which lead to short in-
terruptions between the individual processing steps.
In addition to this presumed unusual access behav-
ior, the direct stream handling confronts the databases
with countless small queries, whose amount can con-
stantly change and which usually would be bundled
into larger transactions in a batch processing world.
This results in a relatively uncommon and quite spe-
cial access behavior for which the databases may not
have been optimized.

To further analyze this behavior, we have per-
formed extensive studies on the performance of dis-
tributed databases integrated in streaming applica-
tions. We assumed that a pure analysis of the
databases, independent of the stream processing,
would have possibly led to unreliable results for our
use case, since the presumed access patterns, result-
ing from the stream processing, would not have been
considered. Consequently, we have analyzed the in-
teraction of common databases and SPEs on the basis
of database queries typical for our use cases, in which
we mainly work on binary data rather than typed data.
Our study is focused on three research questions:

1) Which distributed databases are best suited for
high-performance processing of binary data?

2) Is there a SPE that offers performance advantages
regarding the integration of distributed databases?

3) Are there specific combinations of SPEs and
databases that work more efficiently than others?

In this paper we present the results of this study, in
which we have namely benchmarked the databases
Cassandra, HBase, MariaDB, MongoDB and Post-
greSQL across the SPEs Apex, Flink and Spark.

Within the scope of several measurement series,
we have identified the weaknesses and strengths of
the storage systems in distributed streaming environ-

ments when processing binary data in order to achieve
a well tuned and balanced data processing with low
latency and high throughput.

In the following, we will discuss the related work
and introduce the examined software systems before
our test setup is explained in detail. The results of
these tests are presented and discussed afterwards. Fi-
nally, the results will be summarized and an outlook
on our further research will be given.

2 RELATED WORK

The performance of SQL and NoSQL databases for
Big Data processing has already been examined from
several perspectives. The Yahoo! Cloud Serving
Benchmark (YCSB) (Cooper et al., 2010) is widely
used to test storage solutions based on a set of prede-
fined workloads. It is further extensible with respect
to workloads and connectors to storage solutions and
can thus, serve as a base for comparative benchmarks.

In (Cooper et al., 2010) the YCSB was used to
benchmark Cassandra, HBase, PNUTS and sharded
MySQL as representatives of database systems with
different architectural concepts. Hypothetical com-
promises derived from architecture decisions were
confirmed in practice. For example, Cassandra and
HBase showed higher read latencies for high-read
workloads than PNUTS and MySQL, and lower up-
date latencies for high-write workloads. While YCSB
is designed to be extensible, the YCSB client directly
accesses a database interface layer which does not
support an easy integration in a benchmark for stream
processing. Thus, we adopted several workloads for
our benchmark but implemented it by ourselves.

(Abramova and Bernardino, 2013) analyzed Mon-
goDB and Cassandra regarding the influence of data
size on the query performance in non-cluster setups.
They used a modified version of YCSB with six work-
loads. Their results showed that as data size in-
creased, MongoDB’s performance decreased, while
Cassandra’s performance increased. Cassandra per-
formed better than MongoDB in most experiments.

In (Nelubin and Engber, 2013) the authors exam-
ined the performance of Aerospike, Cassandra, Mon-
goDB and Couchbase in terms of differences between
using SSDs as persistent storage and a purely in-
memory data management. They also used the YCSB
benchmark, with a cluster of 4 nodes. They found
that Aerospike had the best write performance in dis-
tributed use with SSDs, while still offering ACID
guarantees. However, the authors themselves state
that this result is partly caused by the test condi-
tions, which matched closely the conditions for which
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Aerospike was optimized.
(Klein et al., 2015) examined the performance

of distributed NoSQL databases, namely Cassandra,
MongoDB and Riak. The focus was on a setup of 9
database servers, which were optimized for produc-
tive use to process medical data with a high number
of reads and updates to individual health records. Us-
ing YCSB, different workloads were tested to collect
results for both strong and eventual consistency. For
Cassandra and Riak, they were able to verify that they
achieve a slightly lower throughput when using strong
consistency (for MongoDB not all experiments could
be performed). Cassandra delivered the best over-
all performance in terms of throughput in all exper-
iments, but had the highest average access latencies.

In (Fiannaca, 2015) it was investigated which
database system achieves the best throughput when
querying events from a robot execution log. The au-
thors examined SQLite, MongoDB and PostgreSQL
and finally recommended MongoDB because it pro-
vides good throughput and usability for robot setups
with a small number of nodes or a single node only.

In (Ahamed, 2016) Cassandra, HBase and Mon-
goDB were investigated with different cluster sizes
for different workloads. Cassandra always delivered
the lowest access latency and the highest throughput,
followed by HBase and MongoDB.

In (Niyizamwiyitira and Lundberg, 2017) the per-
formance of processing queries on trajectory data of
mobile users with three data sets from a telecom com-
pany was investigated. The study included Cassandra,
CouchDB, MongoDB, PostgreSQL and RethinkDB
and was performed on a cluster of four nodes with
four location-related queries and three data sets of
different sizes. During testing, Cassandra achieved
the highest write throughput when multiple nodes
were used, while PostgreSQL achieved the lowest la-
tency and the highest throughput in single node setup.
MongoDB had the lowest read latency for all query
types, but did not achieve such a high throughput
as Cassandra. In addition, they found that reading
throughput decreased with increasing record sizes, es-
pecially for random accesses.

While all studies examined the performance of
databases in specific scenarios and domains, none of
them addressed the questions of how efficient binary
data can be accessed and how well databases perform
in conjunction with SPEs. To the best of our knowl-
edge, currently no studies are available that focus on
databases used as persistent storage in stream process-
ing. Thus, our study is conducted to fill this gap.

3 SOFTWARE

In the following, the considered SPEs and database
systems are introduced.

3.1 Stream Processing

SPEs are software frameworks designed to process
and analyze incoming unbounded data streams in-
stantly. In this context we focus on Apache Apex,
Apache Flink and Apache Spark Streaming, which we
consider to be the most appropriate based on our re-
quirements and which we have been examining in our
research for a long time now. All three systems are
widely used and have a large community.

3.1.1 Apache Apex

Apache Apex is a YARN-native platform for both
stream and batch processing, developed under the
Apache License 2.0. Apex consists of two main
parts, the Apex Core, which is a platform for build-
ing distributed Hadoop applications, and Apex Mal-
har, which is a library of logic functions and con-
nectors for third party software including databases
like Cassandra, MongoDB, Redis and HBase. Apex
is intended to enable the rapid development of high-
performance, fault-tolerant applications that are typ-
ically built using Maven. Algorithms are modeled
in Apex as directed acyclic graphs, whose nodes
are called operators that represent the different data
processing steps. The software provides end-to-end
exactly-once processing based on checkpointing and
an incremental recovery process.

DataTorrent, the company that played a major role
in developing Apex, shut down in May 2018. Al-
though the software continues to exist as an Apache
project, there has been no new release since then. De-
spite this, our previous research has shown that Apex
delivers good results in terms of latency and through-
put for the use cases we are investigating, which is
why we continue to examine the engine.

3.1.2 Apache Flink

Apache Flink is a framework provided under the
Apache license 2.0 that supports batch and stream
processing in a hybrid fashion. As a native stream-
ing platform, Flink is a direct competitor to Apex and
provides similar functionalities. A main difference to
Apex is that Flink does not rely on YARN, although
it can be used with it. While Flink doesn’t depend on
any Hadoop feature, it integrates well with many of
the Hadoop components including HDFS and HBase.
Flink can also be used on top of the Apache Mesos
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cluster manager. The data processing workflows in
Flink are also modeled in operators on the basis of an
directed acyclic graph and are generally comparable
with those of Apex. By default, Flink provides at-
least-once processing. As Apex, Flink offers exactly-
once processing on the basis of checkpointing.

3.1.3 Apache Spark Streaming

Apache Spark Streaming, released under the Apache
License 2.0, allows streaming analysis based on a
micro-batching approach. Thus the data processing
model of Spark Streaming differs fundamentally from
the native streaming solutions outlined before. In-
coming data is not processed immediately, but col-
lected in small “micro batches”, which are then pro-
cessed together. The basic idea of Spark is that data
is stored and processed in so-called “resilient dis-
tributed datasets” (RDDs). A RDD is a read-only
multiset of data items, which is distributed over a
cluster of machines and thereby maintained in a fault-
tolerant way. The Spark cluster consists of driver
nodes that control the processing and tell the worker
nodes what transformations they should perform on
the data. Unlike Apex and Flink, Spark doesn’t have
operators that process the incoming stream continu-
ously and store states. Instead, data processing takes
place on the execution of various transformations on
the RDDs. In comparison to native streaming solu-
tions, micro batching approaches are usually associ-
ated with higher throughput during processing phase
of the system, but also with higher latency. Like
Flink, Spark can operate without Hadoop or using
Hadoop YARN and provides exactly-once processing.

3.2 Databases

Our focus is on persistent data storage systems that
are suitable for use in distributed systems. In our
investigations we’ve examined Cassandra, HBase,
MariaDB, MongoDB and PostgeSQL, as these are the
systems that, after analysis of the related work, appear
to be most suitable for our use cases while also having
a large support and distribution in the community.

3.2.1 Cassandra

Apache Cassandra is a NoSQL wide column store, re-
leased under the Apache 2.0 license. Cassandra is
designed for high scalability and reliability. It pro-
cesses data as key-value pairs and distributes them
evenly across the nodes by hashing the keys. The
data can be managed using the Cassandra Query Lan-
guage (CQL). Fault tolerance is provided through au-
tomatic data replication. In terms of the CAP theo-

rem, Cassandra can be seen as an AP system, con-
sidering availability and partition tolerance as more
important as consistency. To prevent the existence of
a single point of failure, each Cassandra node has the
same tasks and abilities. The nodes form a peer-to-
peer network in which each node can be queried for
data. If the data is not stored locally, the queried node
routes the query to the responsible node.

3.2.2 HBase

HBase is a non-relational distributed database, mod-
eled after Google’s Bigtable (Chang et al., 2008)
and released under the Apache 2.0 license. It is
part of the Hadoop infrastructure, runs on top of the
Hadoop Distributed File System (HDFS) and depends
on Zookeeper. It can be seen as an abstraction layer
on top of HDFS that provides several performance
advantages for certain access patterns. HDFS itself
operates on larger block sizes and is not well suited
for managing lots of small files. HBase, on the other
hand, is optimized to quickly manage small datasets
within very large amounts of data and to quickly up-
date frequently changed data. A HBase cluster con-
sists of master and region servers. The master servers
coordinate the data and job distribution in the clus-
ter with the help of Zookeeper. The region servers
store the actual data. Therefore tables are divided into
sequences of rows, by key range, called “regions”.
These regions are then assigned to the region servers,
which are spread across the cluster to increase the
read and write capacities. To access data, clients com-
municate with region servers directly. With regard to
the CAP theorem, HBase is a CP type system.

3.2.3 MariaDB

MariaDB is a relational database system that origi-
nated as a fork of MySQL and was published un-
der the GPL. Many commonly used Linux distribu-
tions (f.e. Debian, Ubuntu, Arch, Fedora, CentOS,
openSUSE and Red Hat) have replaced MySQL as
their default database system with MariaDB, which is
why MariaDB is nowadays considered more impor-
tant than MySQL in the open source community. For
a distributed use of MariaDB, the extension “Galera”
has to be used, which replicates all databases to all
servers of the cluster. Hereby a synchronous multi-
master server setup is established in which each node
can be contacted by clients for both read and write
queries. MariaDB guarantees fail-safe operation by
majority decisions between the servers. As long as
more than the half of the servers of a cluster can inter-
act with each other, the cluster is functional. If more
servers fail or split off, the cluster stops operating un-
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til enough servers are online again to achieve a quo-
rum. In order to avoid so-called “split brain” states, it
is therefore important that the total number of servers
in a cluster is always odd. MariaDB is to be classified
as a CA system with regard to the CAP theorem.

3.2.4 MongoDB

MongoDB is a document-oriented NoSQL database,
that uses JSON-like documents with schema. It’s li-
censed under the Server Side Public License (SSPL).
The JSON-like data storage allows the creation of
complex data hierarchies while maintaining the pos-
sibility of indexing and quering the data. MongoDB
provides replication and sharding functionalities to
ensure high reliability and availability. Data is stored
in collections and distributed to the data nodes called
“shards”. For this purpose the data distribution can be
freely configured using a config server (based on hash
functions). Clients do not directly send their queries
to the data nodes but to a router (“mongos”), which
forwards the query to a responsible node according to
its knowledge about data distribution. MongoDB is a
CP system according to the CAP theorem.

3.2.5 PostgreSQL

PostgreSQL is a relational database published under
the PostgreSQL license (similar to the MIT or BSD
license). PostgreSQL supports transactions accord-
ing to the ACID properties and is designed to be ex-
tensible. Thus, there are various extensions for the
database, such as PostGIS, a software variant that al-
lows the management of geographical objects. For
distributed use, PostgreSQL can be used with multi-
ple nodes configured as a master-slave setup. This
means that write requests can only be sent to the mas-
ter server, while read queries can be placed to all
nodes. A multi-master replication is not natively sup-
ported, but there are third-party (open- and closed-
sourced) tools for this purpose, which we have not
investigated. As MariaDB, PostgreSQL can be clas-
sified as a CA system according to the CAP theorem.

4 BENCHMARKING DATABASES
IN STREAMING PLATFORMS

Our research is initially motivated by a real-world
scenario in which traffic data is to be processed live
with the lowest possible latency. Since the related
use cases are computer-intensive and the amount of
data to be processed is big and unbounded, the use

of stream processing and a distributed database is ap-
propriate. However, realisation has shown that data
access quickly becomes the biggest bottleneck in the
streaming pipeline due to the necessary disk I/O. Due
to this issue, we decided to investigate the perfor-
mance of databases embedded in streaming architec-
tures especially with regard to their processing capac-
ities for small binary data sets. Our benchmark there-
fore addresses the specific problems of our use cases
and uses data and file sizes as they are typical for
them. Since the algorithms of the use cases should not
influence the performance analysis, we have replaced
them with simple mathematical operations, which do
not require any significant CPU time for processing.

 Stream Processing Engine

Data Generator Processing

DB
 Monitoring

Prometheus, 
Grafana, 
Graphite 

Figure 1: Benchmark Setup.

4.1 Benchmark Setup

The setup is depicted in Figure 1 and consists of the
following components:

• The stream processing engine under review
(Apex, Flink or Spark) runs the streaming appli-
cation from which the database is accessed. The
application logic is the same for all engines.

• The data generator generates pseudo-
acceleration-sensor-signals, as they are typical
for our use cases. Thereby, a single data record
consists of a twelve character string, which is
used as identifier, three integer values and three
double values. For the individual test runs the
number of records that the generator emits per
second can be specified. The generator is an
independently developed Java library that is
integrated in the stream processing application
during compilation. It is embedded in a different
operator (task) than the data processing in order
to obtain an access pattern typical for stream
processing when querying the database. The
use of a message queue such as Apache Kafka
is purposely omitted as this could influence the
measurements.

• The processing operator is also part of the stream
processing application. It calculates results us-
ing data it receives from the generator, which are
then stored in the database. If there already exists
an older database entry for the given index, this
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entry is loaded and taken into account for the re-
sult calculation. In addition, a binary large object
(BLOB) must be stored with the data set, which
can vary in size depending on the use case under
consideration. Since we focus on the performance
measurement of databases, we do not use the ac-
tual calculations from our use cases. Instead, the
calculation of new values to be stored is limited to
simple additions1 of the new values and the pos-
sibly already existing previous values given in the
respective field. We examine BLOBs of differ-
ent sizes (1 Byte, 10,000 Byte, 100,000 Byte), as
we are particularly interested in the performance
of the databases with regard to the processing of
binary data. These BLOB sizes well reflect var-
ious use cases in which we sometimes just want
to store individual measurement values and some-
times entire measurement series in a data set. To
keep the overhead low, we use prepared objects
that are not recalculated for every write operation.

• The distributed database is tested in terms of
achievable throughput for different access pat-
terns and for read latencies when querying exist-
ing data records. We consider four access types
for each of the previously specified BLOB sizes:
Querying (reading) existing entries, inserting new
entries, updating existing entries and a mixed-
access pattern in which 50% of the entries are new
inserts and 50% are updates of existing values.

• The monitoring is responsible for watching the
application and logging the measurements. The
necessary timestamps are collected in the stream-
ing application, to capture the database access
times. Counters are used to record the through-
put, which are read and logged every second by
the monitoring system.

Based on different access patterns, our research pro-
vides information about the suitability of several tech-
nology combinations for different use cases, as they
are typical for our work, but also for other application
areas. The read-only access pattern can be used to
evaluate the performance of applications that access
a database (almost) only for read operations, while it
is not possible to predict what data will be requested
next (random access). This is a common problem
when dealing with IoT- or crowdsensing-data. The
insert-only access pattern reflects applications that
need to store data quickly without querying it again.

1Since we assume that the specific access pattern is pri-
marily caused by the processing techniques of stream pro-
cessing (windowing, micro-batching), the actual operator
logic does not matter, as long as the data changes, which
forces the database to rewrite it.

For example, this can be the case if logging pro-
cesses are to be implemented in a stream-processing
pipeline. In the update-only pattern, data is read and
then updated. This is typical for periodically running
algorithms, such as logging or monitoring processes,
in which new values for certain events have to be up-
dated cyclically. The mixed access pattern combines
reading stored information with inserting new values
and updating existing values. Such an access pattern
is typical for almost all software systems that interact
with customers or employees.

The benchmark was performed on a cluster of six
physical servers connected via 10GbE, each equipped
with a 12 core Intel Xeon Gold 6136 processor
(24 threads, 3.0 GHz normal clock speed, 3.7 GHz
turbo clock speed), 360 GB RAM (DDR4) and 360
GB NVME-SSD memory. The deployment is illus-
trated in Figure 2. Ubuntu 18.04.2 LTS was used
to operate the machines. Containerization based on
Docker 18.09.7 was used to distribute the software
within containers, orchestrated by Docker Swarm. As
Apache Apex depends on Hadoop, we decided to
use Flink and Spark on top of Hadoop as well, for
reasons of comparability. Swarm was configured to
use 24 threads per node, giving a total of 144 avail-
able threads. On one server, Zookeeper and the re-
quired monitoring tools (Grafana, Graphite Exporter,
Prometheus) were installed. The monitoring was lim-
ited to use a maximum of two threads. An upper limit
of 17 threads per available server was set for stream
processing environments. The unused resources were
available to the database application under review.
The software systems were adjusted to the hardware
setup and configured as recommended by the manu-
facturer tutorials. Further performance tweaks were
not made to allow a fair comparison of the systems.

4.2 Benchmark Results

In the following we present the results of our mea-
surements. Each experiment was performed with a
runtime of 10 minutes. All system components were
reset to their initial state between test runs. The results
were calculated by averaging the measured values.

4.2.1 Preliminary Remarks

To avoid wrong conclusions being drawn from the re-
sults, two aspects should be noted before introducing
them:
As pointed out before, we focused on analyzing the
performance of databases concerning the manage-
ment of binary data. Therefore all experiments were
performed for different sizes of binary data attach-
ments, even for the smallest possible ones with only a
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6 physical servers (12 core Intel Xeon Gold 6136, 360 GB RAM (DDR4), 360 GB NVME-SSD memory, 10GbE, Ubuntu 18.04.2 LTS)

Container

Monitoring:
Prometheus, Grafana, 

Graphite 

Docker Swarm

Container Container

…
DB DB

Container Container

Hadoop Hadoop …
SPE SPE

Figure 2: Benchmark Deployment.

single byte in size. It could be assumed that process-
ing a database entry containing such a small amount
of binary data hardly differs in performance from pro-
cessing an entry containing no binary data at all, but
this assumption is not always correct. Some database
architectures generally manage and store binary data
independently of typed data. Pointers to the binary
parts are then stored with the corresponding database
record. Consequently, querying data demands addi-
tional disk I/O, which increases the access latency
even if only one byte has to be read. Thus, the re-
sults cannot provide reliable information on the per-
formance of databases in managing exclusively typed
data.

It should also be noted once again that we have ex-
clusively examined CRUD operations. Neither joins
nor complex queries or analysis functions have been
investigated, so the following results don’t say any-
thing about how well the databases can handle them.

4.2.2 Read Performance

Figure 3 shows the throughputs achieved for reading
previously stored data sets with different BLOB sizes
(1 Byte, 10,000 Byte, 100,000 Byte). The first thing
that stands out in comparing the three diagrams is that
the difference in performance among the individual
databases is more significant than that caused by us-
ing different SPEs. This finding is consistent for the
majority of our experiments, although the following
results show that there are also measurable differences
in performance resulting from the choice of the SPE.

When reading small records with 1 byte or
10,000 byte BLOBs, Cassandra delivered the highest
throughput with all the SPEs, followed by HBase and
PostgreSQL. As expected, throughputs of all systems
decrease with increasing BLOB size. HBase’s read
performance is by far the best for larger BLOBs of
100,000 bytes. A look at the corresponding access la-
tencies in figure 7 shows that MongoDB, MariaDB
and Cassandra can access small data sets (1 byte
BLOB) very quickly and that the access times diverge
more with increasing BLOB size, whereby Cassandra
delivers the best results for 10,000 and 100,000 Bytes
sized BLOBs.

4.2.3 Insert Performance

Figure 4 shows the results of the throughput measure-
ments when inserting new database entries. It was en-
sured that the keys of the data records to be inserted
did not previously exist in the database.

Cassandra achieved a significantly higher
throughput for smaller BLOBs (1 byte, 10,000 bytes)
than the other databases. The insert throughput for
10,000-byte BLOBs was noticeably higher when
using Cassandra with the Apex compared to Flink
and Spark. When inserting slightly larger data sets
(100,000 byte BLOBs) PostgreSQL clearly per-
formed best. Furthermore a performance advantage
of the native streaming engines over Spark was
evident for this database system. A comparison with
figure 3 shows an inversed performance behavior
of HBase and PostgreSQL. HBase achieves a high
read throughput for larger data sets but a lower
when inserting data, PostgreSQL reads data with a
low throughput but inserts it with a high one. This
underlines the need to make the choice of database
system dependent on which access patterns are most
relevant for the particular use case.

4.2.4 Update Performance

Figure 5 shows the results of the throughput measure-
ments when updating existing data records, figure 8
shows the corresponding read latencies. Only records
with keys for which older entries already existed in
the database were used in the experiment.The gener-
ator used a fixed set of 1,000,000 records, which also
caused repeated updates of the same records, offering
advantages for databases with proper caching.

Again, Cassandra showed by far the best through-
put for small data sets (1 byte and 10,000 byte
BLOBs), followed by PostgreSQL and MongoDB.
When it came to processing the larger 100,000-byte
BLOB, Cassandra was also ahead with Apex and
Flink, while MongoDB performed better than Cas-
sandra on Spark. For records with a 1 byte BLOB,
PostgreSQL and Cassandra provided the lowest laten-
cies very close to each other. Interestingly, this was
also the case for BLOB sizes of 100,000 bytes, but
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for entries with 10,000 bytes, Cassandra was faster
than PostgreSQL on all engines.

4.2.5 Mixed Access Performance

In the last experiment (see figure 6 for the throughputs
and figure 9 for the latencies) a mixed access was sim-
ulated as it is typical for a lot of our actual use cases.
Thereby data records were submitted, of which 50%
had to be newly inserted into the databases, since no
entry existed for the respective key and 50% were up-
dates of existing values.

For the smallest BLOBs, Cassandra achieved
a slightly higher throughput than PostgreSQL, for
which performance drops significantly with the in-
creasing BLOB size, evident when looking at the
10,000 byte BLOB processing. MongoDB takes
second place behind Cassandra here, PostgreSQL
comes third, but with a substantially lower through-
put. When it comes to the largest BLOBs, MongoDB
achieves by far the highest throughput. Consider-
ing the fact that Cassandra ranked second place in
the insert-only test and first place in the update-only
test, it is remarkable that it achieves such signifi-
cantly lower throughput than MongoDB here, while
ranking third behind PostgreSQL. On the other hand,
Cassandra achieved the best reading latencies for all
BLOB sizes, while the throughput winner MongoDB
had very high latencies. This can be partly explained
by the architecture of MongoDB, in which requests
have to be forwarded from the routers (“mongos”) to
the data nodes first, resulting in additional network
latencies.

4.3 Stream Processing Engine
Performance

Although the results show that the selection of the
database has greater influence on the performance,
there are also significant performance differences de-
pending on the SPE used.

Each SPE has been tested 60 times regarding
throughput, covering five databases, each with four
access patterns and three BLOB sizes. In order to
quantify the real differences in the performance re-
sulting from the selection of the SPE, we have intro-
duced a scoring scheme in which, for each of these
60 test variants, one point was given to the SPE that
achieved the best result. Table 1 shows the scoring.
In terms of throughput, 64 points were given as there
were four experiments with two equal winners. Flink
scored best with 46 points, followed by Apex (14
points) and Spark (4 points). Flink also got the most
points for each individual database system, so that a

Table 1: Number of Experiments in Which a Stream Pro-
cessing Engine Achieved the Highest Throughput.

Cassandra MongoDB PostgreSQL MariaDB HBase Total
Apex 3 3 3 4 1 14
Flink 9 10 8 8 11 46
Spark 0 0 2 1 1 4

recommendation can be made for this engine with
regard to its interoperability with different databases.

The scoring scheme was also applied to the latencies,
which were investigated in 45 experiments per engine.
A corresponding number of points was awarded, as
can be seen in Table 2.

Table 2: Number of Experiments in Which a Stream Pro-
cessing Engine Achieved the Lowest Latency.

Cassandra MongoDB PostgreSQL MariaDB HBase Total
Apex 3 1 2 4 6 16
Flink 5 3 4 1 3 16
Spark 1 5 3 4 0 13

For read latencies, there is an almost equal distri-
bution of the points given to the SPEs, albeit Spark
scored marginally lower. Obviously the latencies de-
pend mainly on the database system used. Conse-
quently, we do not recommend a particular SPE here.

4.4 Database Performance

Table 3 shows the best databases in terms of through-
put achieved for each of the twelve experiments, to-
gether with the SPE used in the particular experiment.
In some of the experiments, the measurement results
of the first-placed technologies were very close to
each other, hence we also show the second bests in
the table.

Table 3: Software Combinations That Achieved the Highest
Throughput for the Specific Access Patterns.

Workload Best Throughput Second Best throughput
Read 1B Cassandra / Flink: 97,300 Cassandra / Apex: 94,500

Read 10,000B Cassandra / Apex: 49,300 Cassandra / Flink: 48,500
Read 100,000B HBase / Flink: 19,900 HBase / Apex: 17,500

Insert 1B Cassandra / Flink: 227,100 Cassandra / Apex: 222,900
Insert 10,000B Cassandra / Apex: 38,500 Cassandra / Spark: 31,300

Insert 100,000B PostgreSQL / Apex: 4,700 PostgreSQL / Flink: 4,600

Update 1B Cassandra / Flink: 86,200 Cassandra / Apex: 85,400
Update 10,000B Cassandra / Flink: 30,400 Cassandra / Apex: 30,200

Update 100,000B Cassandra / Flink: 3,000 Cassandra / Apex: 2,900

Mixed 1B Cassandra / Flink: 77,200 Cassandra / Apex: 76,900
Mixed 10,000B Cassandra / Apex: 27,400 Cassandra / Spark: 27,200

Mixed 100,000B MongoDB / Flink: 3,900 MongoDB / Flink: 3,500

There are some observations resulting from the
throughput analysis:
• Inserts are processed faster than updates, but a

mixed access pattern that includes inserts and up-
dates is even slower than update only access.

• As was to be expected, the achievable through-
put is indirectly proportional to the data set size.
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Figure 3: Throughputs Achieved during the Read-Only Test Runs (BLOB Sizes: 1 Byte, 10.000 Byte, 100.000 Byte).
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Figure 4: Throughputs Achieved during the Insert-Only Test Runs (BLOB Sizes: 1 Byte, 10.000 Byte, 100.000 Byte).
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Figure 5: Throughputs Achieved during the Update-Only Test Runs (BLOB Sizes: 1 Byte, 10.000 Byte, 100.000 Byte).
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Figure 6: Throughputs Achieved during the Mixed-Access Test Runs (50% Inserts / 50% Updates, BLOB Sizes: 1 Byte,
10.000 Byte, 100.000 Byte).
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Figure 7: Read Latencies during the Read-Only Test Runs (BLOB Sizes: 1 Byte, 10.000 Byte, 100.000 Byte).
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Figure 8: Read Latencies during the Update-Only Test Runs (BLOB Sizes: 1 Byte, 10.000 Byte, 100.000 Byte).
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Figure 9: Read Latencies during the Mixed-Access Test Runs (50% Inserts / 50% Updates, BLOB Sizes: 1 Byte, 10.000 Byte,
100.000 Byte).

In some cases, it can even be more efficient to
split up large BLOBs into smaller chunks and to
manage them with more queries (and a higher
query overhead). For example, Cassandra pro-
cessed 4,000,000 bytes more per second in the
update-only workload with 10,000-byte BLOBs
than when processing the 100,000-byte ones.
• Cassandra is a good choice for managing records

with small binary data. If larger BLOBs are to be
handled, the choice of the appropriate technology
depends more on the access pattern used.
• Native SPEs (Apex and Flink) are better suited for

the problems considered in our experiments than
Spark’s microbatching approach, as they achieved
higher througputs in almost all experiments.
• MariaDB only achieves a comparatively low

throughput for all write access patterns, but is in
the mid-range for read accesses. The cause of
this could be the fact that the Galera-based multi-
master system was primarily designed for data in-
tegrity (replication) and not for the fastest possible
accesses. While no other nodes need to be queried
to perform read operations, a successful write op-
eration does.

For the latencies, the best databases are shown in ta-
ble 4 without mentioning the SPE used in the ex-
periments, since it has been shown that the latencies
hardly differ with regard to them.
The analysis of the standard deviations that can be
seen in figures 7-9 shows that the latencies are quite
stable for almost all databases. MongoDB has more
variance in the read-only workload than the other
databases, whereby it also increases with increasing
BLOB size for HBase, PostgreSQL and MariaDB.
In the update-only workload, PostgreSQL and HBase

Table 4: Databases That Achieved the Lowest Read Latency
for the Specific Access Patterns.

Workload Best Latency Second Best Latency
Read 1B PostgreSQL: 261 µs MariaDB: 342 µs

Read 10,000B Cassandra: 437 µs MariaDB: 841 µs
Read 100,000B Cassandra: 1551 µs HBase: 1891 µs

Update 1B PostgreSQL: 295 µs Cassandra: 364 µs
Update 10,000B Cassandra: 645 µs PostgreSQL: 1035 µs

Update 100,000B Cassandra: 1652 µs PostgreSQL: 1718 µs

Mixed 1B Cassandra: 342 µs PostgreSQL: 364 µs
Mixed 10,000B Cassandra: 741 µs PostgreSQL: 902 µs

Mixed 100,000B Cassandra: 1229 µs PostgreSQL: 1832 µs

have the highest variances, but they are slightly less
significant with increasing BLOB size for HBase,
while they increase for MariaDB. In mixed access,
PostgreSQL, HBase and MariaDB have the highest
variations again, but the effect decreases significantly
with increasing BLOB size, at least for MariaDB.

Cassandra delivered the best read latencies in most
of the experiments, remaining very stable across all
workloads, which supports its recommendation.

5 CONCLUSIONS

We investigated the interaction of three SPEs with
five databases in twelve different experiments each,
and thus performed a total of 180 different experi-
ments. As expected, the selected database system
has a greater influence on the achievable throughput
than the SPE. However, there were measurable differ-
ences resulting from the choice of the SPE, which can
be clearly seen from the fact that Apache Flink per-
formed slightly better in almost all experiments than
Apache Apex and Apache Spark. This confirms our
assumption that the SPE affects the access pattern to
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the database.
The analysis of the reading latencies showed a

different result, which is that the choice of the SPE
has no significant influence on them. Both results
make sense, as the overall throughput highly de-
pends on the interaction between the SPE and the
database system, in which the access pattern is in-
fluenced by the streaming-typical (window-/micro-
batching-based) data processing, while the latency
of the individual database queries is not directly af-
fected by these effects. For most use cases, espe-
cially those using data sets with small BLOBs up to
10,000 bytes in size, the combination of Flink and
Cassandra is recommendable, although this finding,
like all others, only refers to CRUD operations, since
we have not conducted any further data analysis with
the databases.

When managing larger binary data entries
(100,000 bytes), the type of access is more rele-
vant for the choice of database system. For read-
ing intensive applications the use of HBase (with
Flink) is recommendable here, which however re-
quires HDFS (and therefore Hadoop) when used
distributed.2 An Hadoop-free alternative is to use
MariaDB with Galera and Flink for this. In use cases
where a lot of data is to be inserted but does not need
to be accessed frequently, PostgreSQL used together
with Apex or Flink achieves high throughputs. If
data is to be updated frequently, Cassandra also scores
with the larger BLOBs and achieves the best perfor-
mance on Flink and Apex. In case of a mixed access
from insert and update operations (which include the
prior reading of the data), the use of MongoDB and
Flink can be recommended.

6 FUTURE WORK

We plan to expand our investigations in this area. It is
considered to further analyze the influence of stream
processing on the query patterns and to derive opti-
mization recommendations from these analyses. In
addition, we intend to investigate the performance of
more complex queries (analyses of geodata, typical
for our use cases) and thereby consider in-memory
grids in addition to the existing databases.

2HBase also provides a standalone mode that doesn’t
rely on HDFS, but cannot be used distributed.
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