
State Management and Software Architecture Approaches in
Cross-platform Flutter Applications

Michał Szczepanik a and Michał Kędziora b
Faculty of Computer Science and Management,

Wroclaw University of Science and Technology, Wroclaw, Poland

Keywords: Mobile, Flutter, Software Architecture, State Management.

Abstract: Flutter is an open-source cross-platform development framework. It is used to develop applications for
Android, iOS, Windows, Mac, Linux, and web. This technology was released on December 4, 2018, and it is
quite young technology with a lack of good architectural patterns and concepts. In this paper authors compared
state management approaches used for Flutter applications development and architecture. They also proposed
a combination of two approaches that solve the main problem of existing approaches related to global and
local state management. The proposed solution can be used for development even complex and big Flutter
applications.

1 INTRODUCTION

Nowadays, almost all type of business needs a mobile
application to existing. The cost of its development
depends on complexity and requirements according
to market coverage. To reduce it usually hybrid or
multiplatform (cross-platform) solutions are used.
Unfortunately, this kind of solution usually uses
totally different patterns and architectural concepts
compared to native Android or iOS applications.
There is typically a blocker, or the main reason of
project delays or even fail. There were a lot of hybrid
(cross-platform) technologies like PhoneGap,
Sencha, Cordova, Ionic, Xamarin and many more.
Most of them are not in use or it is their endgame now,
mostly because they were limited and needed
knowledge from many areas including framework
itself and platforms natively. Currently, only React
Native and Flutter are in the game for most of the new
hybrid projects.

1.1 React Native vs Flutter

The way how these two frameworks work is totally
different: React Native uses the same fundamental UI
building blocks as regular iOS or Android apps and

a https://orcid.org/0000-0001-9801-992X
b https://orcid.org/0000-0002-7764-1303

the Java Script code runs in a separate thread and
communicates with native modules through a bridge.

Flutter, on the other hand, is ahead of time
compiled to a machine code (arm/x86) and provides
better performance and even security related to
difficulties of reverse engineering (Kedziora, 2019).
Not only the UI components are compiled, but the
whole logic also. Sometimes Flutter apps are even
faster than native Android application, but it depends
mostly on device type and operating system version.

Figure 1: Flutter and React Native search trend during last
3 years, based on https://trends.google.com/.

A developer can use JavaScript for React Native
and Dart for Flutter. The biggest mistake done by
many companies is to ask JS/React developers to
design and develop a big and complex mobile app.

Szczepanik, M. and Kędziora, M.
State Management and Software Architecture Approaches in Cross-platform Flutter Applications.
DOI: 10.5220/0009411604070414
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 407-414
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

407

Web and mobile are different worlds and
understanding of iOS and Android ecosystem is much
more difficult to learn than React Native.
Additionally, for most of the hybrid applications there
is a risk that some parts of functionalities will need
separate native implementation and developer who
knows it is a big value. For React Native application
the knowledge about the mobile operating system and
even its edge cases is mandatory. For Flutter
applications, components code is system
independent, which does not require that deep level
of platform knowledge. That why the popularity of
this platform and its community growing that fast, see
figure 1.

1.2 Why Flutter

Flutter as a framework is very promising and right
now has a big dev community. Even currently we can
find complex apps in the market which are based on
Flutter, like Alibaba, Google Ads, Reflectly, Birch
Finance, Hamilton Musical, Hookle (Skuza, 2019).
In the Authors opinion, this technology is a good
choice for small and medium-size applications or
when content and basic features require constant
iteration.
The technology potential is also big as during Flutter
interact conference Google introduces support for
web applications (Sneath, 2019). Dart language is
also the fastest-growing programming language
nowadays. Its list features added during the last two
years is also big and includes extension functions,
null safety support.

2 SOFTWARE ARCHITECTURE

There are many definitions of software architecture.
According to The Institute of Electrical and
Electronics Engineers Standards Board definition
(IEEE std 1471-2000, 2007) it is the basic structure
of the system which includes its components,
interrelationships, way of work and rules establishing
the way of its construction and development. Other
definitions from literature (Knodel, 2017) (Abboud,
2017) (Martin, 2017) are similar to general one:
software architecture is the defining and structuring
of a solution that meets technical and operational
requirements. Software architecture optimizes
attributes involving a series of decisions, such as
security, performance, and manageability. These
decisions ultimately impact application quality,
maintenance, performance, and overall success. For
current research Authors define it as a structure of

structures of the system which comprise the software
elements, the externally visible properties of those
elements and relationships among them.

3 EXISTING STATE
MANAGEMENT APPROACHES

In Flutter everything is a widget and additionally, user
interface (UI) depends on the state (Zammetti, 2019).
Most of the samples and first Flutter applications
were designed in a way where logic and UI are mixed,
this caused that code was really difficult to manage
and maintain (Fayzullaev, 2018). That why managing
state in an application is one of the most important
and necessary processes in the life cycle of a Flutter
application. Unfortunately, this technology is very
young and there are no general patterns and good
practices defined. During the last two years only, few
patterns mostly form React world (Paul, 2016) was
ported to Flutter:
 ScopedModel,
 Redux (Paul, 2019),
 BLoC,
 MocX.

They mostly use data flow and reactive programming.
Each of them supports global or local state. Global
state is the main state which can be accessed in the
whole app for example a user is logged in. Local state
is related to only one component of the application for
example screen or widget.

3.1 ScopedModel

ScopedModel is a set of utilities that allow passing a
data Model from a parent Widget down to its
descendants. It is one of the most basic concepts for
Flutter application and was designed by the Fuchsia
OS development team. ScopedModel concept uses 3
classes:
 Model,
 ScopedModel,
 ScopedModelDescendant.

A Model is a class that holds the data and business
logic related to the data. It is implemented as an
observable (listenable) interface and can notify others
who might be interested in knowing when a change
was applied.

ScopedModel is a main component, similar to a
Provider, which holds the Model and allows:
 the retrieval of the Model,

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

408

 the registration of the context as a dependency
of the underlying InheritedWidget, when it is
requested.

The ScopedModel is based on an
AnimatedBuilder which listens to notifications sent
by the Model and then rebuilds an InheritedWidget
which, will be requested all the dependencies needed
to rebuild.

ScopedModelDescendant is used to find the
appropriate ScopedModel in the Widget tree. It will
automatically rebuild it whenever the Model notifies
that change has taken place.

This concept is good for small applications when
only a few shared (global) states are used.

3.2 Redux

Redux is an Application State Management
framework and its main objective is to manage a
global state in the application (Paul, 2019). Mainly
used in React applications, but it also ported to the
Flutter framework.

Redux architecture uee the following principles:
 Unidirectional data flow,
 one Store,
 Actions,
 MiddleWare,
 Reducers.

A Store acts like the orchestrator of Redux. The
Store mainly:
 stores only one State,
 exposes one entry point, called dispatch which

only accepts Actions in arguments,
 exposes one getter to fetch the current State,
 allows to register or unregister to be notified

via StreamSubscription of any changes applied
to the State,

 dispatches the actions and the store to the first
MiddleWare

 dispatches the actions and the current state to a
Reducer (which might be a façade for several
reducers)

Actions are the only types of input accepted by the
Store access point. Actions, combined with the
current State are used by the Middleware and Reducer
to process some function, which could lead to
amending the State. Actions only describe what
happened and do not store any data.

A Middleware is a function which is usually
running asynchronously, based on an Action or state.
A Middleware simply uses a State or an Action as a
trigger but does not change the State itself.

A Reducer is a synchronous function which does
some processing based on the Action and the State.

The outcome of the process might lead to set a new
State. The Reducer is the only component allowed to
change the State.

It is important to note that, according to Redux
recommendations and good practices, there can be
only one single state store per application. To split the
data handling logic, it is advised to use reducer
composition instead of many stores. It is also not
recommended for application which required
integration with cloud base storage like Firebase
according to limited state management and usually
complex data storage which need to be managed.

3.3 BLoC

The Business Logic Component pattern or as it is
widely known the BLoC pattern is a state
management system for Flutter. It is recommended by
Google developers to be used in the applications. It
helps in managing state and make access to data from
a central place in your project.

The BLoC pattern does not require any external
library or package as it simply relies on the use of the
Streams. The concept is very similar to MVVM
(Model – View – ViewModel) but required usage of
streams. However, for more friendly features (e.g.
Subject), it is very often used with the RxDart
(ReactiveX extension for Dart) package. In this
pattern data are flowed from the BLoC to the UI or
from UI to the BLoC in the form of streams.

Figure 2: BLoC architecture schema.

State Management and Software Architecture Approaches in Cross-platform Flutter Applications

409

The Flutter version of BLoC pattern relies on:
 StreamController
 StreamBuilder
 StreamSubscription
 BlocProvider

A StreamController exposes a StreamSink to
inject data into the Stream and allow Stream to listen
to data which are inside the Stream.

A StreamBuilder is a Widget which listens to a
stream and rebuilds when new data is emitted by the
it.

A StreamSubscription is a interface that allows to
listen to the data being emitted by a stream and react.

A BlocProvider is a convenient Widget, used to
hold a business logic and rules. It makes them
available to descendant Widgets.

3.4 MobX

MobX is a state management solution that helps in
managing the local state within Flutter application.

Some of the core principles of MobX are:
 it can have multiple stores to handle the state of

the application,
 anything that can be derived from the state

without any further interaction is a derivation,
 action is any piece of code that can change the

state,
 all derivations are updated automatically and

atomically when the state changes.
Unlike other state management patterns in Flutter

such as BLoC, which was built on the principle of
using streams to propagate changes, and Redux,
which was built on the philosophy that an application
possesses a single source of truth from which widgets
inherit, MobX was built on the simple philosophy that
anything that can be derived from the application
state, should be derived. It uses transparent functional
reactive programming, MobX provides coverage for
all properties in an application state that are defined
with the likelihood to change and rebuilds the UI only
when properties change. Unfortunately,
implementation of this pattern without any external
library is very difficult, which provide some
limitations and additional dependencies

4 BLoC WITH REDUX LIKE
STORE

Both most popular state management concepts, which
are BLoC and Redux, have some disadvantages.

BLoC should not be responsible to keep the
application’s state. It was designed to control many
more local states. Pure BLoC should delegate this
responsibility to some other component which is
dedicated to state management in way which Redux
concept is better.

The BLoC pattern is a great way to encapsulate
business logic and Redux is a great state management
paradigm. Combining the two of them can create a
clean logic layer in the application, see figure 3.
Combination of BLoC which use many state stores in
Redux design way should allow developers to design
clean and easy to maintain code (Martin, 2008).

Figure 3: BLoC with multi state stores (own work).

5 ARCHITECTURES
COMPARISON

The comparisons of the architecture approaches is
done on two samples Flutter project. Each project is
written in four versions:
 ScopedModel,
 Redux
 BLoC,
 BloC with store (proposed).

The MobX solutions required specific library
which hide most of the complexity, so it cannot be
correctly compared with other solutions. Each
architecture will be compared based on: code
complexity, code execution, architecture and flow

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

410

complexity, number of rebuilds (UI performance) and
code isolation.

5.1 Case 1: User Login Screen

This common use-case for many applications is very
interesting since it involves some type of application
State. In this example the page to act as follows:
before login
 two text areas to provide username and

password with error handling,
 login button which start process,
 progress indicator which simulated

authentication process is on-going,
 the username of the authenticated user together

with a button to log out.

5.1.1 Code Complexity

There is no big difference in code complexity because
this sample is basic. It handles only few states like
password and username are incorrect, user is logged
in or not. There are only two logic points which are
changing the state login button and logout which can
be done from any scree in the application. For both
ScopedModel and BLoC solutions there were need to
inject their respective model and bloc on top of the
MaterialApp, to be available to logout from anywhere
later on.

In Redux, the solution needs to use to many more
files compered to otherers even when all actions are
stored in one place. The ScopedModel solution
requires fewer files as the model control and store
both the data and the logic. The BLoC solution
requires one additional file, compared to the
ScopedModel, because it requires to split model and
logic. Proposed solution which is BLoC with store
works in similar way as standard BLoC, but depends
on components in the app the number of file can be
increased, additionally sharing of user login state can
provide some complexity in the application.

5.1.2 Code Execution

The number of lines of code which is executed is the
biggest in Redux. It is mostly caused by the way how
a reducer is written which based on condition
evaluations such as: “if action is … then”, and the
same applies to the MiddleWares.

Because of the implementation made by the
flutter_redux package, a StoreConnector requires a
converter, which sometimes is not necessary. This
converter is meant to provide a way of producing a
ViewModel.

Other solutions like ScopedModel and both BLoC
based solutions seem to be the ones which require less
code execution.

5.1.3 Architecture and Flow Complexity

In case of Redux the code is relatively simple and
easy to follow because there is only an Action that
triggers all MiddleWares to be run in sequence and
then the Reducer which needs to do things based on a
comparison on an Action type. Unfortunately, when
additional logic and use cases will be added to the
application, it will require refactoring and usage of
reducer composition.

The ScopedModel solution is the one which leads
to the simplest code: there is only call a method which
updates the model that notifies the listeners.
However, it is not obvious for the listeners to know
the reason why they are being notified since any
modification to the model generates notifications,
even when it is not required by current listener.

The BLoC solutions are a bit more complex as it
involves the notion of Streams.

5.1.4 Number of Widgets Rebuilds

The number and part of Widgets tree which is
affected by rebuilds is one of the mandatory
parameters for the architecture. Flutter was designed
to provide 60 and more frame per seconds, that why
it is important to reduce number of Widgets which are
rebuild after any state change in the application. Each
rebuild may affected performance of the application
an reduce number of frames.

The ScopedModel solution is the one that
produces the more builds since each time a Model
notifies its listeners, it rebuilds the whole tree under
the ScopedModel.

The flutter_redux library internally uses the
notion of Streams to react on changes applied to the
State, so for basic implementation without context
only the StoreConnector will be rebuilt. This makes
the flutter_redux implementation the most optimal for
that case from a rebuild perspective.

In the BLoC solutions which based on
StreamBuilder there is similar situation as for Redux
– only related to current state part of widget tree will
be rebuilt.

5.1.5 Code Isolation

In Redux Reducers and MiddleWares are mostly top-
level functions and methods and not part of a class.
As a consequence, nothing would prevent calling

State Management and Software Architecture Approaches in Cross-platform Flutter Applications

411

them outside of the Redux Store scope and it can
difficult to manage in big, complex applications.

ScopedModel and BLoC tend to prone code
isolation: one specific class for the model or the
BLoC.

5.1.6 Conclusions

For this specific case in which there was mostly
global state the Redux solution can be used, but the
advantage of it is only little. It was the best in case of
performance and number of rebuilds, but the code
isolation can be problematic for maintenance.

For ScopedModel and BLoC some additional
effort is required for implementation to handle logout
functionality in proper way. Proposed solution which
is BLoC with storage do not provide any benefits and
works in similar way as standard known form
literature BLoC patter.

5.2 Case 2: Dashboard Application

This case is application in which user can
dynamically add some panels to the dashboard which
presents different source of data. In the sample
application user can see currency exchange rate.
Additionally, the user may turn on or off the real-time
data fetching for each of panels, individually.

5.2.1 Code Complexity

Pure Redux principle required to use one Store per
application which caused that this application is really
difficult to implement in pure Redux.
ApplicationState required to remember and handle
each individual panel. When multiple Storage will be
used (break Redux principle) the implementation is
simpler, and the code is cleaner.

The ScopedModel and BLoC versions are very
similar. Proposed solution (BLoC with storages)
additionally provides isolations between panels and
their states which allow to reduce complexity of data
synchronization.

5.2.2 Code Execution

This is similar to case 1 (chapter5.1.2).
Redux executes much more code than

ScopedModel and both BLoC solutions as the reducer
is based on condition evaluations. In addition, three
instances of StoreConnector are needed: to add new
panel, to fetch currency data and to control
synchronization status.

ScopedModel requires additional code execution
than BLoC, because it relies on listenable widget to

rebuild each time the Model changes. This requires,
additionally injector (ScopedModel) and two
ScopedModelDescendant (for history and
synchronisation status) per Panel.

BLoC is the solution which executes the less code.
Per Panel, it requires: StreamBuilder to display the
stats and additional StreamBuilder to handle the
synchronization status.

For proposed solution compered to bloc
additional store is needed per panel, but it allows to
reduce data synchronisation complexity and call
update of the UI only when data are really changed.

5.2.3 Architecture and Flow Complexity

The Redux solution is the most complex as it requires
the dispatching of Actions at 3 different levels: to add
new panel, to fetch currency data and to control
synchronization status.

The complexity of ScopedModel and BLoC
solutions is only located at the Model and BLoC
levels. Each panel has its own Model or BLoC and
the code is much less complex end easier to maintain
compared to Redux. In proposed solution
architectural complexity is similar.

5.2.4 Number of Widgets Rebuilds

Pure Redux solution is the one that causes the most of
rebuilds. As the implementation, based on one Store
per Application, each time a change applies to the
ApplicationState and everything need to be rebuilt.
No meter which action user do add new panel or turn
off/on synchronization for one of them or there will
be an update of data for one of currency the widgets
tree will get information about changed state.

In non-standard implementation of Redux with
multi stores the number of rebuild will be reduced and
separated per panels.

As regards the ScopedModel solution, the number
of rebuilds is more limited than in Redux and it is
done only per panel.

The standard BLoC block is the one that requires
rebuilds only for specific widgets not whole panel as
for ScopedModel.

The proposed solution additionally can reduce
number of rebuilds which are additionally limited to
cases when data related to state is really change.

5.2.5 Code Isolation

The problem of code isolation occurs only for Redux
as data (state) can be changed from each part of the
code. For other solutions they are isolated by Model
or BLoC.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

412

5.2.6 Conclusions

For this specific case, from both code complexity and
rebuilds perspectives the BLoC and proposed BloC
with storages are the best.

The Redux architecture is not optimal for this
solution, but it is still possible to use it, mostly with
multiple storages.

6 TESTABILITY

Automated testing falls into a few categories:
 A unit test tests a single function, method, or

class.
 A widget test (in other UI frameworks referred

to as component test) tests a single widget.
 An integration test tests a complete app or a

large part of an app.
A well-tested app has many unit and widget tests,

tracked by code coverage, plus enough integration
tests to cover all the important use cases. This advice
is based on the fact that there are trade-offs between
different kinds of testing, seen below.

Table 1: Tests levels comparison.

Unit Unit Widget Integration
Confidence low higher highest
Maintenance
cost

low higher highest

Dependencies low more most
Execution speed quick quick slow

For all architectures testability is on similar level.
The only difference is between unit and widgets type
of tests. For ScopeModel and Redux the logic
isolation is minimal and most of test cases requires
Widget level or on unit level with mocking. For
BLoC and proposed solution logic is separated and
implemented on pure Dart level which allow to easily
implement unit level test even without mock.

7 COMPARISON SUMMARY

7.1 ScopedModel

Pros:
 ScopedModel allows to easily regroup the

Model and its logic in a single location.
 ScopedModel does not require any knowledge

of Streams, which is good entry point for
beginners.

 ScopedModel can control global and local
states.

Cons:
 ScopedModel does not provide any logic which

allow to provide knowledge which parts of the
Model were changed.

 Cause too many rebuilds – each time when a
Model notifies its listeners.

 It can be used only for small not complex
application.

 Requires the use of an external package with
the risks that the package evolves with breaking
changes.

7.2 Redux

Pros:
 Redux allows to centralize the management of

state.
 Makes the state transition perfectly predictable

and thoroughly testable.
 Support for MiddleWares in the flow to track

logs or statistics.
 It forces the developer to structure the

application and use Event, Action and MVVM.
Cons:
 One single Store (pure version).
 Use of top-level functions/methods.
 Too many “if then” comparisons at Reducers

and MiddleWares levels.
 Too many rebuilds related to changes in stare.
 Lack of logic isolation.
 It can be used mostly for global state

management.

7.3 BLoC

Pros:
 It allows easy to regroup the business logic in a

single location.
 BLoC allows to determine with precision the

nature of any changes.
 It allows to reduce the number of rebuilds.
 It uses streams which allows to add

middlewares like logging or statistic collectors.
 It could be used for global and local state and

logic control
 It does not require the use of any external

package, as it can be easily implemented.
 It can be used for complex.

Cons:
 Required knowledge of streams
 Control of global state can be problematic

State Management and Software Architecture Approaches in Cross-platform Flutter Applications

413

7.4 BLoC with Storage

Pros:
 It allows easy to regroup the business logic in a

single location.
 It allows to separate storage per application

component
 It allows to determine with precision the nature

of any changes.
 It allows to determine real changes of data

(according to store changes).
 It allows to provide store to control global state.
 It allows to reduce the number of rebuilds.
 It uses streams which allows to add

middlewares like logging or statistic collectors.
 It could be used for global and local state and

logic control.
 It does not require the use of any external

package, as it can be easily implemented.
 It can be used for complex.

Cons:
 Required knowledge of streams.

8 CONCLUSIONS

The main goal of this research was a comparison of
architectures and state management approaches,
which can be used in Flutter applications. The
proposed solution additionally reduces the number of
rebuilds in a similar way as Redux for the global state,
but it allows to work with both global and local state-
oriented applications.

REFERENCES

Abboud M. 2017. Software Architecture Extraction: Meta-
model, model and tool. Génie logiciel [cs.SE].
Université de Nantes.

Fayzullaev, J., 2018. Native-like cross-platform mobile
development: Multi-os engine & kotlin native vs flutter.

IEEE std 1471-2000, 2007. The Institute of Electrical and
Electronics Engineers Standards Board: Recommended
Practice for Architectural Description of Software-
Intensive Systems, ISO/IEC 42010:2007(E) IEEE Std
1471-2000, 2007

Kedziora, M., Gawin, P., Szczepanik, M., & Jozwiak, I.,
2019. Malware Detection Using Machine Learning
Algorithms and Reverse Engineering of Android Java
Code. International Journal of Network Security & Its
Applications (IJNSA) Vol, 11.

Knodel J. and Naab M., 2017. How to Evaluate Software
Architectures: Tutorial on Practical Insights on
Architecture Evaluation Projects with Industrial

Customers. In IEEE International Conference on
Software Architecture Workshops (ICSAW),
Gothenburg, 2017, pp. 183-184.

Martin, R. C., 2017. Clean architecture. Prentice Hall
Martin, R. C., 2008. Clean code. Prentice Hall
Paul A., Nalwaya A. (2016) React Native Supplements. In:

React Native for iOS Development. Apress, Berkeley,
CA

Paul A., Nalwaya A. (2019) Solving Problems Differently
with Flux and Redux. In: React Native for Mobile
Development. Apress, Berkeley, CA

Skuza B., Mroczkowska A., Włodarczyk D., 2019. Flutter
vs React Native – what to choose in 2020?,
https://www.thedroidsonroids.com/blog/flutter-vs-
react-native-what-to-choose-in-2020 (last accessed
12/30/19).

Sneath T., Scaramuzzi R., Fabbro A., 2019, Product
Keynote (Flutter Interact '19), https://
www.youtube.com/watch?v=ukLBCRBlIkk (last
accessed 12/30/19).

Zammetti F., 2019. Practical Flutter: Improve your Mobile
Development with Google’s Latest Open-Source SDK,
Apress.

APPENDIX

Code of tested applications in all variants is available
on github https://github.com/pwr-mszczepanik/
flutterarch.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

414

