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Abstract: Patch prioritization means sorting candidate patches based on the probability of correctness. It helps to mini-
mize the bug fixing time and maximize the precision of an automated program repair technique by ranking the
correct solution before incorrect one. Recent program repair approaches have used either syntactic or semantic
similarity between faulty code and fixing ingredient to prioritize patches. However, the impact of combined
approach on patch prioritization has not been analyzed yet. For this purpose, two patch prioritization methods
are proposed in this paper. Genealogical and variable similarity are used to measure semantic similarity since
these are good at differentiating between correct and incorrect patches. Two popular metrics namely normal-
ized longest common subsequence and token similarity are considered individually for capturing syntactic
similarity. To observe the combined impact of similarities, the proposed approaches are compared with patch
prioritization techniques that use either semantic or syntactic similarity. For comparison, 246 replacement
mutation bugs from historical bug fixes dataset are used. Both methods outperform semantic and syntactic
similarity based approaches, in terms of median rank of the correct patch and search space reduction. In
11.79% and 10.16% cases, the combined approaches rank the correct solution at first position.

1 INTRODUCTION

Patch is the modifications applied to a program for
fixing a bug. Automated program repair finds the cor-
rect patch based on a specification, e.g., test cases
(Monperrus, 2018). It works in three steps namely
fault localization, patch generation and patch vali-
dation (Tan and Roychoudhury, 2015), (Liu et al.,
2019a). Fault localization identifies the faulty code
where the bug resides. Patch generation modifies the
faulty code to fix the bug. Finally, patch validation ex-
amines whether the bug has been fixed or not. Since
the solution space is infinite, numerous patches can
be generated (Jiang et al., 2018). In addition, a plau-
sible solution - patch that passes all the test cases, can
be incorrect. It is known as overfitting problem (Wen
et al., 2018). To limit the search space, most of the
program repair techniques such as (Le Goues et al.,
2012), (Kim et al., 2013), (Qi et al., 2014), rely on re-
dundancy assumption (Chen and Monperrus, 2018).

According to the redundancy assumption, the so-
lution of a bug can be found elsewhere in the applica-
tion or other projects (Chen and Monperrus, 2018),
(White et al., 2019). This assumption has already
been validated by existing studies such as (Martinez

et al., 2014), (Barr et al., 2014). Martinez et al.
found that 3-17% of the commits are redundant at the
line level, whereas it is 29-52% at token level (Mar-
tinez et al., 2014). Another study on 15,723 com-
mits reported that approximately 30% fixing ingredi-
ents (code used to fix the bug) exist in the same buggy
file (Barr et al., 2014). Although the redundancy as-
sumption limits the search space, in practice it is too
large for exploring exhaustively (Chen and Monper-
rus, 2018). For example, if a technique collects line
wise fixing ingredients at application level, the num-
ber of patches generated will be total LOC of the ap-
plication. Therefore, potentially correct patches need
to be validated earlier.

Sorting candidate patches, based on its probabil-
ity of correctness, is called patch prioritization (Xiong
et al., 2018). It can help to minimize the bug fixing
time and maximize the precision of a repair technique.
To prioritize patches, some information need to be
considered such as similarity between faulty code and
fixing ingredient or patterns derived from existing
patches (Jiang et al., 2018). The information should
be able to minimize overfitting problem by ranking
the correct patch higher. Furthermore, it should vali-
date the correct solution earlier since patch validation
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is a time-consuming task (Saha et al., 2017), (Chen
and Monperrus, 2018).

To the best of the knowledge, existing approaches
use either syntactic or semantic similarity between
faulty code and fixing ingredient for patch prioritiza-
tion (Saha et al., 2017), (Xin and Reiss, 2017b), (Jiang
et al., 2018), (Wen et al., 2018). Elixir uses contex-
tual and bug report similarities for capturing syntactic
similarity (Saha et al., 2017). To calculate syntax-
similarity score, ssFix uses TF-IDF model (Xin and
Reiss, 2017b). For finding top fixing ingredients,
syntactically similar to the faulty code, SimFix uses
three metrics - structure, variable name and method
name similarity (Jiang et al., 2018). CapGen uses
three models based on genealogical structures (e.g.,
ancestors of an Abstract Syntax Tree (AST) node), ac-
cessed variables and semantic dependencies to mea-
sure semantic similarity (Wen et al., 2018). However,
none of these approaches analyze the impact of inte-
grating the strengths of both similarities to prioritize
patches.

This paper presents an empirical study on patch
prioritization to analyze the impact of combining syn-
tactic and semantic similarities. It extends the au-
thor’s initial work (Asad et al., 2019). Similar to
(Asad et al., 2019), it uses genealogical and vari-
able similarity between faulty node and fixing ingre-
dient for measuring semantic similarity. However, it
is found that syntactic similarity metric named nor-
malized longest common subsequence does not per-
form well when the character level difference between
faulty code and fixing ingredient is high (Asad et al.,
2019). Therefore, to calculate syntactic similarity,
normalized longest common subsequence as well as
a new metric named token similarity are considered
separately. Thus, two patch prioritization approaches
namely Com-L and Com-T are proposed respectively.
Genealogical similarity checks whether faulty node
and fixing ingredient are frequently used with same
type of code elements (e.g., inside if statement) (Wen
et al., 2018). Variable similarity inspects the name
and type of variables accessed by the faulty node and
fixing ingredient. Normalized longest common sub-
sequence calculates maximum similarity at character
level. Token similarity measures to what extent same
tokens (e.g., identifiers) exist in faulty node and fixing
ingredient, regardless of its position.

For analysis, 246 out of 3302 bugs from histori-
cal bug fixes dataset are selected through preprocess-
ing (e.g., removing duplicate bugs) (Le et al., 2016).
These bugs are collected from over 700 large, open-
source, popular Java projects such as Apache Com-
mons Math, Eclipse JDT Core. Each bug is associated
with a buggy and a fixed version file, corresponding

commit hashes and project url. From the difference
between the buggy and fixed version files, the faulty
line is identified. Next, AST nodes of type Expression
are extracted from that line. This work focuses on
expression level since it increases the probability of
including the correct patch in the search space (Wen
et al., 2018). To generate patches, the faulty nodes
are replaced with fixing ingredients. Following other
repair techniques (Le Goues et al., 2012), (Wen et al.,
2018), the fixing ingredients are collected from the
source file where the bug resides. Lastly, patches are
prioritized based on the proposed techniques. Similar
to (Chen and Monperrus, 2018), ASTs of each patch
and the correct solution are matched to assess its cor-
rectness. The correct patches of the bugs are provided
with the dataset.

For evaluation, the combined methods are com-
pared to techniques using only syntactic or semantic
similarity. For comparison, three metrics namely me-
dian rank of the correct patch, average search space
reduction and perfect repair (the percentage of bug
fixes for which the correct solution is ranked at first
position) are inspected as well as Wilcoxon Signed-
Rank test is conducted. Results show that the pro-
posed approaches outperform syntactic or semantic
similarity based techniques in terms of median rank of
the correct patch and average search space reduction.
Using Com-L and Com-T, 96.52% and 96.62% of the
total search space can be avoided to find the correct
patch. These methods can rank the correct patch sig-
nificantly higher than semantic or syntactic similarity
based approaches. The mean rank of the correct patch
is significantly better in Com-T than Com-L. Further-
more, Com-L and Com-T rank the correct patch at first
position in 11.79% and 10.16% cases respectively. It
indicates that these methods are capable of ranking
correct patch prior to incorrect plausible ones.

2 RELATED WORK

Recently, automated program repair has drawn the at-
tention of researchers due to its potentiality of mini-
mizing debugging effort (Gazzola et al., 2017). Most
of the earlier approaches (Le Goues et al., 2011),
(Le Goues et al., 2012), (Kim et al., 2013), (Qi et al.,
2014) rely on redundancy assumption to limit the
number of generated patches. GenProg (Le Goues
et al., 2012) and PAR (Kim et al., 2013) use ge-
netic programming to find the correct patch. Gen-
Prog randomly modifies the faulty code using three
mutation operators (insert, replace, delete) (Le Goues
et al., 2012). On the other hand, PAR uses ten pre-
defined templates (e.g., null pointer checker) to gen-
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erate patches (Kim et al., 2013). These templates are
extracted from manually inspecting 62,656 human-
written patches. Another approach RSRepair ran-
domly searches among the candidate patches to find
the correct one (Qi et al., 2014).

Although the redundancy assumption has limited
the number of generated patches, in practice it is too
large for exploring exhaustively (Chen and Monper-
rus, 2018). All the patches need to be compiled
and validated by executing test cases, which is time
consuming (Saha et al., 2017), (Chen and Monper-
rus, 2018). Therefore, new techniques are prioritizing
patches to validate potentially correct patches earlier
(Le et al., 2016), (Saha et al., 2017), (Xin and Reiss,
2017b), (Jiang et al., 2018), (Wen et al., 2018).

Approaches using patch prioritization can be
broadly divided into two categories based on the in-
formation used. The first category uses historical
bug-fix patterns such as HDRepair (Le et al., 2016).
HDRepair uses patterns obtained from 3000 bugs
fixes over 700 large, popular GitHub projects. To gen-
erate patches, it uses 12 mutation operators such as
replace statement, boolean negation. If a patch passes
all the test cases, it is added to a set of possible solu-
tions. Lastly, a predefined number of patches, ranked
by their frequency in the historical bug-fixes, are pre-
sented to the developer. Although HDRepair solves
more bugs than prior techniques GenProg (Le Goues
et al., 2012), PAR (Kim et al., 2013), it obtains low
precision (56.50%). It indicates that considering only
historical bug fix patterns is not sufficient for elimi-
nating incorrect plausible patches (Wen et al., 2018).

The second category uses similarity between
faulty code and fixing ingredient to prioritize patches.
This category can further be classified into two groups
based on the type of similarity used (syntactic or se-
mantic similarity). ELIXIR (Saha et al., 2017), ssFix
(Xin and Reiss, 2017b), SimFix (Jiang et al., 2018)
use syntactic similarity between faulty code and fix-
ing ingredient. Syntactic similarity focuses on textual
alikeness such as similarity in variable names. On the
other hand, CapGen (Wen et al., 2018) uses semantic
similarity between faulty code and fixing ingredient.
It focuses on code meaning such as data type of vari-
ables (Nguyen et al., 2013).

Elixir, one of the first such approaches, introduces
8 templates for generating patches, e.g., changing Ex-
pression in return statement (Saha et al., 2017). It
uses four features including contextual and bug report
similarities to prioritize patches. Contextual similar-
ity measures the syntactic similarity between fixing
ingredient and surrounding code of the faulty loca-
tion. Bug report similarity calculates the syntactic
similarity between fixing ingredient and bug report.

For assigning different weights to these similarities,
logistic regression model is used. The approach val-
idates only the top 50 patches generated from each
template. It can repair more bugs compared to con-
temporary techniques (Xin and Reiss, 2017b), (Xiong
et al., 2017). However, it yields low precision partic-
ularly 63.41%.

ssFix is the first approach to perform syntactic
code search from a codebase containing the faulty
program and other projects (Xin and Reiss, 2017b).
At first, ssFix extracts the faulty code along with
its context (code surronding the faulty location) us-
ing a LOC based algorithm. It is called target
chunk (tchunk). A similar process is followed to
retrieve fixing ingredients and their contexts from
the codebase. These are called candidate chunks
(cchunks). The tchunk and cchunks are tokenized
after masking project-specific code (e.g., variable
names). Next, cchunks are prioritized based on its
syntax-relatedness to the tchunk, calculated using TF-
IDF. Currently, ssFix uses maximum 100 top cchunks
for generating patches. This approach obtains 33.33%
precision, which indicates it is not good at differenti-
ating between correct and incorrect patches.

SimFix uses three metrics - structure, variable
name and method name similarity to capture syntac-
tic similarity between faulty code and fixing ingredi-
ent (Jiang et al., 2018). Structure similarity extracts
a list of features related to AST nodes (e.g., number
of if statements). Variable name similarity tokenizes
variable names (e.g., splitting studentID into student
and ID) and calculates similarity using Dice coeffi-
cient (Thada and Jaglan, 2013). Method name simi-
larity follows the same process as variable name sim-
ilarity. To generate patches, SimFix selects top 100
fixing ingredients based on the similarity score. To
further limit the search space, only fixing ingredients
found frequently in existing human-written patches
are considered. Similar to Elixir and ssFix, this ap-
proach yields low precision which is 60.70%.

To generate patches, CapGen defines 30 mutation
operators such as insert Expression statement under
if statement (Wen et al., 2018). It uses three models
based on genealogical structures, accessed variables
and semantic dependencies to capture context simi-
larities at AST node level. These models mainly fo-
cus on semantic similarities between faulty code and
fixing element to prioritize patches. The precision of
this approach is higher (84.00%), however, it relies on
program dependency graph to calculate semantic de-
pendency which does not scale to even moderate-size
programs (Gabel et al., 2008).

The above discussion indicates that various ap-
proaches have used either syntactic or semantic sim-
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ilarity as a part of the repairing process. However,
techniques using syntactic similarity such as Elixir,
ssFix, yields low precision. On the other hand, some
semantic similarity metrics such as semantic depen-
dency, suffer from scalability problem. Although both
of these similarities have limitations, these are effec-
tive in program repair. Nevertheless, the impact of
combining the strengths of both similarities to priori-
tize patches has not been explored yet.

3 METHODOLOGY

This study considers finding the correct patch in auto-
mated program repair as a ranking problem. It takes
source code and faulty line as input and outputs a
ranked list of patches. For generating the ranked list,
patches are sorted using a combination of syntactic
and semantic similarity.

3.1 Dataset Preprocessing

In this paper, historical bug fixes dataset is used which
comprises more than 3000 real bug fixes from over
700 large, popular, open-source Java projects such as
Apache Commons Lang, Eclipse JDT Core etc (Le
et al., 2016). This dataset has been adopted by pre-
vious studies as well (Le et al., 2017), (Wen et al.,
2018). Each bug in this dataset is associated with a
buggy and a fixed version file, corresponding commit
hashes and project url.

This study analyzes how combining syntactic and
semantic similarity impacts patch prioritization. Sim-
ilar to state of the art approaches (Le Goues et al.,
2012), (Kim et al., 2013), (Le et al., 2016), (Wen
et al., 2018), it focuses on redundancy based program
repair. It particularly studies replacement mutaion
bugs, as followed in (Chen and Monperrus, 2018).
For this purpose, bugs that fulfill following criteria,
are selected from the dataset.

• Unique: Duplicate bugs will bias the result.
Two bugs are considered as duplicate if their
corresponding buggy and fixed version files are
same. The dataset contains some duplicate bugs
(e.g., bug Lollipop platform frameworks base 18
and AICP frameworks base 24), which are fil-
tered out.

• Satisfy Redundancy Assumption at File Level:
Similar to (Le Goues et al., 2012), (Wen et al.,
2018), (Liu et al., 2019b), this study focuses on
file level redundancy assumption (patches of bugs
are found in the corresponding buggy files). Only
bugs satisfying this requirement are chosen.

• Fixed by Applying Replacement Mutation:
The faulty code is more likely to be syntacti-
cally and semantically similar to the fixing ingre-
dient for replacement mutation bugs (Chen and
Monperrus, 2018). Hence, only bugs that can be
solved by applying replacement mutation are se-
lected.

• Require Fixing at Expression Level: Existing
study found that redundancy is higher at finer
granularity and therefore, increases the probabil-
ity of including the correct patch in the search
space (Wen et al., 2018). Only bugs that require
fix at expression level are selected.

• Having Available Project and Dependency
Files: To measure similarity, variables within a
file need to be identified. For this purpose, the
corresponding project and dependency files of a
bug are needed. However, some project urls (e.g.,
apache james project) do not exist anymore. Ad-
ditionally, some bugs have missing dependency
files (e.g., bug baasbox baasbox 6), which are re-
moved.

After filtering, it results in 246 replacement mutation
bugs.

3.2 Approach

This paper analyzes the impact of combining syntac-
tic and semantic similarities on patch prioritization.
Figure 1 shows overview of the technique. It works
in three steps namely fault localization, patch gen-
eration and patch prioritization. For a given buggy
line, fault localization extracts corresponding Expres-
sion nodes. Patch generation produces patches by re-
placing the faulty node by fixing ingredients. For each
patch, a score is calculated using syntactic and seman-
tic similarity between faulty code and fixing ingredi-
ent. Based on this score, patches are prioritized. The
details of these steps are given below:

1. Fault Localization: It identifies the faulty AST
node of type Expression. Similar to (Chen and
Monperrus, 2018), this study assumes that fault
localization outputs the correct faulty line since
the main focus is on patch prioritization. For each
bug, the faulty line is identified from the differ-
ence between the buggy and fixed version files.
Next, Expression type nodes (both buggy and
non-buggy) residing in that line are extracted from
AST. Figure 2 shows a sample bug fasseg exp4j 4
from project exp4j. Here, line 68 is faulty. All
the expressions from this line such as Character,
Character.isDigit(next), next etc, are extracted.
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Figure 1: Overview of the Technique.

2. Patch Generation: This step modifies the source
code to generate patches. After identifying the
faulty nodes, fixing ingredients are collected. This
study uses nodes from the buggy source file that
have a category of Expression as fixing ingredi-
ents, as followed in (Wen et al., 2018). Next,
faulty nodes are replaced with fixing ingredients
for patch generation. In Figure 2, a sample patch
is replacing Character.isDigit(next) with Charac-
ter.isDigit(next) ‖ next == '.' from line 93.

Figure 2: Buggy Statement, Fixed Statement and Fixing In-
gredient of Bug fasseg exp4j 4.

3. Patch Prioritization: The patch generation step
produces numerous patches due to having large
solution space. To find potentially correct patches
earlier, the generated patches are prioritized. Both
syntactic and semantic similarities between faulty
code and fixing ingredient are used to prioritize

patches (shown in Figure 1). To measure seman-
tic similarity, genealogical and variable similarity
are used since these are effective in differentiating
between correct and incorrect patches (Wen et al.,
2018). For capturing syntactic similarity, two
widely-used metrics namely normalized Longest
Common Subsequence (LCS) and token simi-
larity are considered individually (Ragkhitwet-
sagul et al., 2018). Thus, two patch prioritiza-
tion approaches namely Com-L and Com-T are
proposed. Com-L combines genealogical and
variable similarity with normalized LCS to rank
patches. Com-T uses combination of genealogi-
cal, variable and token similarity for patch priori-
tization.

• Genealogical Similarity: Genealogical struc-
ture indicates the types of code elements, with
which a node is often used collaboratively (Wen
et al., 2018). For example, node Charac-
ter.isDigit(next) is used inside if statement. To
extract the genealogy contexts of a node resid-
ing in a method body, it’s ancestor, as well as,
sibling nodes are inspected. The ancestors of a
node are traversed until a method declaration
is found. For sibling nodes, nodes having a
type Expressions or Statements within the same
block of the specified node are extracted. Next,
the type of each node is checked and the fre-
quency of different types of nodes (e.g., num-
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ber of for statements) are stored. Nodes of type
Block are not considered since these provide
insignificant context information (Wen et al.,
2018). On the other hand, for nodes appearing
outside method body, only its respective type
is stored. The same process is repeated for the
faulty node ( f n) and the fixing ingredient ( f i).
Lastly, the genealogical similarity (gs) is mea-
sured using (1).

gs( f n, f i) =
∑t∈K min(φ f n(t),φ f i(t))

∑t∈K φ f n(t)
(1)

where, φ f n and φ f i denote the frequencies of
different node types for faulty node and fixing
ingredient respectively. K represents a set of all
distinct AST node types captured by φ f n.

• Variable Similarity: Variables (local vari-
ables, method parameters and class attributes)
accessed by a node provide useful information
as these are the primary components of a code
element (Wen et al., 2018). In Figure 2, both
the faulty node Character.isDigit(next) and the
fixing ingredient Character.isDigit(next) ‖ next
== '.' access the same variable next. To mea-
sure variable similarity, two lists containing
names and types of variables used by the faulty
node (θ f n) and the fixing ingredient (θ f i) are
generated. Next, variable similarity (vs) is cal-
culated using (2).

vs( f n, f i) =
|θ f n∩θ f i|
|θ f n∪θ f i|

(2)

Two variables are considered same if their
names and types are exact match. To measure
variable similarity of nodes that do not contain
any variable, e.g., Boolean Literal type nodes,
only their respective data types are matched
(Wen et al., 2018).

• Normalized LCS: LCS finds the common sub-
sequence of maximum length by working at
character-level (Chen and Monperrus, 2018).
This study computes normalized LCS (nl) be-
tween faulty code ( f n) and fixing ingredient
( f i) at AST node level using (3).

nl( f n, f i) =
LCS( f n, f i)

max(| f n|, | f i|)
(3)

where, max(| f n|, | f i|) represents the maximum
length between f n and f i.

• Token Similarity: Unlike normalized LCS, to-
ken similarity ignores the order of text (Chen
and Monperrus, 2018). It only checks whether
a token (e.g., identifiers) exists regardless of its

position. For example, both faulty node Char-
acter.isDigit(next) and fixing ingredient Char-
acter.isDigit(next) ‖ next == '.' have isDigit to-
ken in common. To calculate token similarity,
at first, the faulty node and fixing ingredient are
tokenized. Similar to (Saha et al., 2017), camel
case identifiers are further split and converted
into lower-case format. For example, isDigit is
converted into is and digit. Next, token similar-
ity (ts) is computed using (4).

ts( f n, f i) =
|θ f n∩θ f i|
|θ f n∪θ f i|

(4)

where, θ f n and θ f i represent the token list of
faulty node and fixing ingredient respectively.

Each of the above mentioned metrics outputs a
score between 0 and 1. The final similarity score
is calculated by adding these scores (sum of gs, vs
and nl or ts), as followed in (Jiang et al., 2018).
For example, if gs, vs and ts are 0.92, 0.66 and
0.57 respectively, the final score will be 2.15.
Next, all the patches are sorted in descending or-
der based on this final score (shown in Figure 1).

4 EXPERIMENT AND RESULT
ANALYSIS

This section presents the implementation details,
evaluation criteria and result analysis of the study. At
first, the language and tools used for implementing
the proposed approaches are discussed. Next, eval-
uation metrics are described. Finally, results of the
proposed approaches based on the evaluation metrics
are reported.

4.1 Implementation

This study proposes two approaches to examine the
impact of combining syntactic and semantic similar-
ities on patch prioritization. The devised approaches
are implemented in Java since it is one of the most
popular programming languages (Saha et al., 2018).
It uses Eclipse JDT parser1 for manipulating AST.
It uses javalang tool2 for tokenizing code. Javalang
takes Java source code as input and provides a list of
tokens as output.

To understand combined impact of similarities,
the proposed approaches need to be compared with

1https://github.com/eclipse/eclipse.jdt.core/blob/
master/org.eclipse.jdt.core/dom/org/eclipse/jdt/core/dom/
ASTParser.java

2https://github.com/c2nes/javalang
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patch prioritization techniques that use semantic and
syntantic similarity individually. Therefore, this study
further implements semantic or syntantic similarity
based patch prioritization approaches using metrics
discussed in Section 3.2 (genealogical similarity, vari-
able similarity, normalized LCS and token similarity).
The techniques are described below:

1. Semantic Similarity based Approach (SSBA):
It uses only semantic similarity metrics namely
genealogical and variable similarity to prioritize
patches.

2. LCS based Approach (LBA): It is a syntactic
similarity based approach that prioritizes patches
using only normalized LCS score.

3. Token based Approach (TBA): It is another syn-
tactic similarity based approach that uses only to-
ken similarity to prioritize patches.

All of these three patch prioritization approaches
follow the same repairing process as the combined
ones. It ensures that the observed effects occurred
due to varied similarities used in patch prioritization.
The implementations of these approaches are publicly
available at GitHub3.

4.2 Evaluation

In this study, following evaluation metrics are in-
spected:

1. Median Rank of the Correct Patch: The lower
the median rank, the better the approach is (Le
et al., 2016).

2. Average Space Reduction: It indicates how
much search space can be avoided for finding the
correct patch (Chen and Monperrus, 2018). It is
calculated using (5).

avg space reduction = (1− mean correct
mean total

)∗100
(5)

where, mean correct and mean total denote mean
of the correct patch rank and total patches gener-
ated respectively.

3. Perfect Repair: It denotes the percentage of bug
fixes for which the correct solution is ranked at
first position (Chen and Monperrus, 2018).

Similar to (Chen and Monperrus, 2018), this study
considers a patch identical to human patch as correct,
which is provided with the dataset.

Figure 3 shows the rank distributions of correct
patches for SSBA, Com-L, Com-T, LBA and TBA.

3https://github.com/mou23/Impact-of-Combining-
Sytactic-and-Semantic-Similarity-on-Patch-Prioritization

Figure 3: Comparison of Correct Patch Rank among SSBA,
Com-L, Com-T, LBA and TBA.

Since the data range is high (1-15005), log transfor-
mation is used in this figure. It can be seen that Com-L
and Com-T outperform SSBA, LBA and TBA in terms
of median rank of the correct patch. The ranks are 20,
19.5, 42, 34 and 31.5 respectively. The reason is Com-
L and Com-T incorporate information from multiple
domains (both textual similarity and code meaning).
A sample patch is shown in Figure 4. Here, the lines
of code started with “+” and “-” indicate the added
and deleted lines respectively. For this bug, SSBA,
LBA and TBA rank the correct solution at 3, 4 and
9 respectively. On the other hand, both Com-L and
Com-T rank the correct solution at 1.

Figure 4: Sample Patch for Bug hornetq hornetq 70.

Figure 5 demonstrates that Com-L and Com-T are
effective in reducing the search space compared to
SSBA, LBA and TBA. When random search is used, on
average 50% of the search space needs to be covered
before finding the correct solution (Chen and Mon-
perrus, 2018). Using Com-L and Com-T, 96.52% and
96.62% of the total search space can be ignored to
find the correct patch, whereas it is 95.38%, 84.07%
and 79.49% for SSBA, LBA and TBA correspondingly.
By using Com-L or Com-T, future automated program
repair tools can consider a larger search space to fix
more bugs (Wen et al., 2018).

In terms of perfect repair, Com-L and Com-T out-
perform SSBA, as shown in Figure 6. The values are
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Figure 5: Comparison of Average Space Reduction among
SSBA, Com-L, Com-T, LBA and TBA.

Figure 6: Comparison of Perfect Repair among SSBA, Com-
L, Com-T, LBA and TBA.

11.79%, 10.16% and 2.44% respectively. Regarding
syntactic similarity based approach, Com-L performs
better than TBA and as good as LBA. However, Com-T
obtains lower result than Com-L and LBA. For exam-
ple, for the bug in Figure 7, Com-T ranks the correct
solution at 8. On the other hand, both Com-L and
LBA rank the correct patch at 1 due to high charac-
ter level similarity. Nevertheless, the values obtained
by Com-L and Com-T indicate that these approaches
contribute to solving the overfitting problem. Since
the first patch is the correct one in 11.79% and 10.16%
cases, there is no chance of generating plausible patch
before the correct one.

Table I reports the statistical significance of
the obtained result using significance level = 0.05.
Wilcoxon Signed-Rank test is used for this purpose

Figure 7: Sample Patch for Bug Cervator Terasology 2.

since no assumption regarding the distribution of
samples has been made (Walpole et al., 1993). Re-
sults show that the mean rank of Com-L and Com-T
are significantly better than SSBA, LBA and TBA. The
p-value is 0.00 in all of these cases. Although the
mean rank of SSBA is significantly better than TBA,
it is not significantly different from LBA. For some
bugs such as Figure 8, the fixing ingredients are very
different from the faulty code. To fix the bug, null is
replaced with paramType. In this case, syntactic simi-
larity based approaches LBA and TBA cannot rank the
correct patch higher since there is no textual similarity
between faulty code and fixing ingredient.

Figure 8: Sample Patch for Bug spring-projects spring-
roo 10.

Results further reveal that the mean rank of Com-T
is significantly better than Com-L (p-value = 0.00).
The reason is when the character level difference be-
tween faulty code and fixing ingredient is high, Com-
L can not perform well (Asad et al., 2019). How-
ever, Com-T has no such drawback. An example is
shown in Figure 9. Here, a larger expression is re-
placed with a smaller one that has low character level
similarity. Therefore, Com-L ranks the correct patch
at 256, whereas Com-T ranks it at 87.

Figure 9: Sample Patch for Bug broadgsa gatk 2.

5 THREATS TO VALIDITY

This section presents potential aspects which may
threat the validity of the study:
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Table 1: Difference between Mean Ranking of Correct Patch.

Compared Groups Mean P-value Decision

Com-L and SSBA Com-L SSBA 0.00 Significant125.98 166.99

Com-T and SSBA Com-T SSBA 0.00 Significant122.31 166.99

Com-L and LBA Com-L LBA 0.00 Significant125.98 576.46

Com-T and LBA Com-T LBA 0.00 Significant122.31 576.46

Com-L and TBA Com-L TBA 0.00 Significant125.98 742.17

Com-T and TBA Com-T TBA 0.00 Significant122.31 742.17

Com-L and Com-T Com-L Com-T 0.00 Significant125.98 122.31

SSBA and LBA SSBA LBA 0.13 Insignificant166.99 576.46

SSBA and TBA SSBA TBA 0.00 Significant166.99 742.17

LBA and TBA LBA TBA 0.29 Insignificant576.46 742.17

• Threats to External Validity: External threat
deals with the generalizability of the obtained re-
sult (Le et al., 2016). The analysis is conducted
on 246 out of 3302 bugs from historical bug
fix dataset (Le et al., 2016), which are selected
through preprocessing (details are mentioned in
Section 3.1). To mitigate the threat of generaliz-
ability, bugs belonging to popular, large and di-
verse projects are used. This dataset has been
adopted by existing approaches (Le et al., 2017),
(Wen et al., 2018) as well.

• Threats to Internal Validity: Threats to inter-
nal validity include errors in the implementation
and experimentation (Le et al., 2016). This study
assumes that fault localization outputs the correct
faulty line, as followed in (Chen and Monperrus,
2018). This assumption may not be always true
(Liu et al., 2019a). However, the focus of this
work is patch prioritization and thereby studying
fault localization is out of the scope. Similarly,
analyzing the patch correctness is itself a research,
which is explored by (Xin and Reiss, 2017a), (Yu
et al., 2019). Following the research presented in
(Chen and Monperrus, 2018), this study considers
a patch identical to the patch developed by human
as correct.
To generate patches, fixing ingredients are col-
lected from the corresponding buggy file. This
process is widely followed by existing approaches
(Le Goues et al., 2012), (Wen et al., 2018), (Liu

et al., 2019b). For manipulating AST and to-
kenizing code, this study relies on Eclipse JDT
parser and javalang tool respectively. These tools
are widely used in automated program repair (Le
et al., 2016), (Chen et al., 2017), (Chen and Mon-
perrus, 2018), (Jiang et al., 2018).

6 CONCLUSION AND FUTURE
WORK

This paper proposes two patch prioritization algo-
rithms combining syntactic and semantic similarity
metrics. Genealogical and variable similarity are used
to measure semantic similarity. For capturing syn-
tactic similarity, normalized longest common subse-
quence and token similarity are used individually.
The approaches take source code and faulty line as
input and outputs a sorted list of patches. The patches
are sorted using similarity score, obtained by integrat-
ing genealogical, variable similarity with normalized
longest common subsequence or token similarity.

To understand the combined impact of similari-
ties, proposed approaches are compared with tech-
niques that use either semantic or syntactic similar-
ity. For comparison, 246 replacement mutation bugs
out of 3302 bugs from historical bug fixes dataset are
used (Le et al., 2016). The median ranks of the correct
patch are 20 and 19.5 for these approaches, which out-
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perform both semantic or syntactic similarity based
techniques. Using combined methods, 96.52% and
96.62% of the total search space can be eliminated
to find the correct patch. Results further show that
these approaches are significantly better in ranking
the correct patch earlier than semantic or syntactic
based approaches. Moreover, these two techniques
rank the correct solution at the top in 11.79% and
10.16% cases. It indicates that combined approaches
have the potential to rank correct patch before incor-
rect plausible ones.

The combined methods obtain promising result in
terms of median rank of the correct patch, average
space reduction and perfect repair. Therefore, these
approaches can be further explored using other bench-
mark datasets such as Defects4J (Just et al., 2014),
QuixBugs (Lin et al., 2017). In addition, existing ap-
proaches such as (Le Goues et al., 2012), (Qi et al.,
2014), (Le et al., 2016) can be modified to incorporate
the combination of syntactic and semantic similarities
for complementing their techniques.
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