
Front End Application Security: Proposal for a New Approach

Renato Carauta Ribeiro1,2, Edna Dias Canedo2 a, Bruno J. G. Praciano3,4 b, Gabriel P. M. Pinheiro3,
Fábio Lúcio Lopes de Mendonça3 and Rafael T. de Sousa Jr.3 c

1Computer Center, University of Brası́lia (UnB), Brası́lia - DF, Brazil
2Computer Science Department, University of Brası́lia (UnB), Brası́lia - DF, Brazil

3Cybersecurity INCT Unit 6, Decision Technologies Laboratory—LATITUDE, Electrical Engineering Department (ENE),
Technology College, University of Brası́lia (UnB), Brası́lia - DF, Brazil

4Department of Mechanical Engineering, University of Brası́lia (UnB), Brası́lia - DF, Brazil

Keywords: OAuth 2, Service Oriented Architecture (SOA), Angular 2, Security, TypeScript, Framework.

Abstract: The data processing center (CPD) of the University of Brası́lia (UnB) has the need of evolution of legacy
systems and the communication between systems in an efficient and safe way. For this reason, it is needed
to implement a centralized control system for authentication and authorization to access services, systems
and information. The technologies used focus on what is most modern in the market. In this paper we will
discuss the security of applications developed as part of the single page application (SPA) concept, focusing on
security using the Oauth 2 framework, Angular front-end language and service-oriented architecture (SOA). It
will show the development of a security module that turns security complexity into programming abstractions
for the new client applications developed in the CPD. The security module developed by the UnB aims to
centralize, modernize, and improve the security of University applications. The advantage of this module is its
flexibility, abstraction concepts, centralization, and use of one of the standard security protocols used today,
OAuth 2, which brings greater security to UnB applications.

1 INTRODUCTION

According to Sommerville (Sommerville, 2010), soft-
ware development does not currently end where it is
delivered, and continues to exist throughout its life
cycle. Modifications in business, technological de-
velopments, or even errors encountered during the
use of software can generate changes. An organiza-
tion’s systems must be easy to maintain and evolve
quickly to keep up with new technologies and fre-
quent changes in the business’ rules of the organiza-
tion. Software modernization is a topic under discus-
sion at the UnB due to the need to modernize corpo-
rate systems developed by the CPD. Today, the sce-
nario evidenced by the university is of diverse sys-
tems developed in VB, VB.Net, C#, PHP, ASP and
Java that do not have proper communication, nor stan-
dardized security. Different architectures, models,
and frameworks were used, which causes difficulty

a https://orcid.org/0000-0002-2159-339X
b https://orcid.org/0000-0002-7423-6695
c https://orcid.org/0000-0003-1101-3029

in maintaining systems, especially in controlling im-
proper access to information (Regateiro. et al., 2017;
Óscar Mortágua Pereira. et al., 2017).

Systems rarely exist alone in a corporate envi-
ronment; they coexist in a friendly manner, and ex-
change information securely. According to Cairns
(Cairns Cade, 2017), security is often overlooked,
and is considered a requirement of little importance
and not given due value. For Cairns (Cairns Cade,
2017), security is an essential part of enterprise appli-
cations. According to Dolphine and Carnis (Dolphine
Tiago; Carnis, 2017), over time, several proprietary
solutions have been developed to solve the problem
of security and information sharing between applica-
tions, such as Google AuthSub, Yahoo BB Auth, AOL
Open Auth, FlickrAuth, among other solutions. Be-
cause of this scenario, the Oauth 2 framework was
developed. This framework aims to standardize com-
munication between applications, centralize server
access control, and protect the organization’s sensi-
tive data and services. This framework emerges as
a definitive solution to the security problem experi-
enced at UnB.

Ribeiro, R., Canedo, E., Praciano, B., Pinheiro, G., Lopes de Mendonça, F. and Sousa Jr., R.
Front End Application Security: Proposal for a New Approach.
DOI: 10.5220/0009393202330241
In Proceedings of the 22nd International Conference on Enterprise Information Systems (ICEIS 2020) - Volume 2, pages 233-241
ISBN: 978-989-758-423-7
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

233



According to Hardt (Hardt, 2012), Oauth 2 is an
authorization framework that enables applications to
have restricted access to Hypertext Transfer Protocol
services (HTTP) and Hypertext Transfer Protocol Se-
cure (HTTPS) through identification of access tokens.
It enables access control to services and resources
safely and reliably. Several frameworks have been
developed to provide communication between client
and server quickly. One of the most famous is Angu-
lar, which is currently in version 4. The problem of a
new technology is that is does not yet provide a stan-
dard solution for sharing information securely nor for
access control.

The use of the Angular language (Fain and Moi-
seev, 2016), (Uluca, 2018), (Agilar et al., 2016) is due
to it being a well-accepted framework community,
with growing investment from Google — the owner
of this framework —, which has been building sev-
eral tools to support this technology. It is a modern
solution that is easy to develop and maintain. It in-
cludes well-defined standards, integrated automated
test control and coding standards in its architecture,
so that you can easily define coding rules.

This work focuses on solving the problem en-
countered for unauthorized access using the Oauth
2 (Hardt, 2012) framework along with the Angular
language. The purpose of this paper is to provide
a solution for securely sharing data between client
and server, when sensitive information passed by the
server to client applications should be stored. This
work does not address the security of server applica-
tions, only the client side. This solution was applied
at UnB as a case study to centralize authorization con-
trol of client applications. The new client applica-
tions, developed in Angular, have a security module,
which makes authentication centrally. This module
aims to centralize security, standardize and control all
communication involving the client and server-side.
This solution also has the provide a centralized login
access to all UnB systems.

2 BACKGROUND

Angular is a framework for client-side application
development. Developed by the company Google,
it is an innovative solution that has recently wholly
changed its architecture. In the first version of An-
gular, currently called Angularjs, the JavaScript pro-
gramming language is used. This language is a na-
tive language that every browser supports. The prob-
lem with using this language, which was solved in the
second version of Angular, is that none of the features
present in object orientation can be used, the commu-

nication between controllers, services and server ap-
plications becomes more verbose and complex (Fain
and Moiseev, 2016).

In the current version of Angular, Google has
changed its use of JavaScript programming for the
TypeScript language. TypeScript is a language that
shares resources with JavaScript. Unlike JavaScript,
”TypeScript takes advantage of your understanding
of other object models in a unique way” without los-
ing the performance of the JavaScript language (Bier-
man et al., 2014). The screen creation language used
is Hypertext Markup Language (HTML). For page
styling, the Cascading Style Sheets (CSS) language
is used (Freeman, 2019). According to Murray et
al. (Murray et al., 2016), the Model View Con-
troller (MVC) architecture has been used for many
years. This architecture separates the application
into the following layers: The template is where it
contains the application domain logic; the view is
where data is available; the controller links the view
to the model. The architectural model of Angular
applications adapts this pattern and is called Model
View Whatever (MV *). In this architecture, the
model, vision classes have the same function as the
MVC model, but the controller is replaced by what
the Google team calls ”whatever works for you”
(Azañón Cáceres, 2015).

According to Angular.io (Angular.IO., 2010), the
Angular framework is a modular development solu-
tion, that is, it is divided into modules. They serve to
group the functionalities of a component or an appli-
cation. An application developed with Angular must
have at least one module, called the root module.
Components are classes that control templates (appli-
cation screens). Components communicate with tem-
plates through event binding and property binding.
Services are any class with a narrow and well-defined
purpose. Components are the largest consumers of
services. The instantiation of services through com-
ponents happens through dependency injection. This
technique consists of providing a new instance of a
class without instantiating this class directly by the
class that uses it, which decreases coupling (Angu-
lar.IO., 2010).

The communication that a service makes between
the client application and the server application to re-
quest data is made by the Hypertext Transfer Protocol
(HTTP) (Belshe et al., 2015), using the basic commu-
nication verbs, which are: GET for data consultation;
POST for data entry; PUT for data update; DELETE
for data deletion. The information transmitted or re-
quested by the Angular application comes via pay-
load. The Angular framework changes the traditional
form of application development, with almost com-

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

234



plete separation between client and server. Unlike its
predecessor Angularjs (Ramos et al., 2018), (Chan-
suwath and Senivongse, 2016), this new framework
facilitates the development of client applications and
improves performance.

2.1 Framework Oauth 2

According to Bihis (Bihis, 2015), the Oauth 2 frame-
work is currently one of the essential service autho-
rization protocols and is being widely used as a so-
lution by various companies such as Google, Face-
book, Spotify, among others. This framework is a
solution to the problem of unauthorized access to in-
formation. The Oauth 2 framework defines four basic
entities (Bihis, 2015) : 1. Resource Owner: is the user
who authorizes an application to access its data; 2.
Client: The application that requests access to the re-
source requested by the user to the server; 3. Resource
Server: Server that hosts protected resources and re-
sponds to requests made by the client with the access
token; 4. Authorization Server: Server that grants
the access token after user identification and client re-
quest to the protected service (de Sousa Ribeiro et al.,
2018).

Hardt (Hardt, 2012) says it is mandatory to store
the token on the client-side, but does not say where
the token should be stored. This framework requires
that HTTPS be used in place of the HTTP proto-
col. Hardt (Hardt, 2012) conceptualizes four differ-
ent streams to obtain user authorization: Authoriza-
tion Code; Implicit; Resource Owner Password Cre-
dentials; Client Credentials.

In Authorization Code, there is an intermediate
server between the client application and the pro-
tected resource, called an authorization server. Once
the user requests the client application to access a
protected resource, the client application redirects the
user to the authorization server. The client receives
the authorization code after the authorization server
authenticates the user’s credentials. By this mecha-
nism of redirection to the authorization server, no user
credential is trafficked across the network, which en-
sures additional security over other models (Denniss
et al., 2019).

Implicit is a simplified authorization code solu-
tion. In this model, instead of using an authorization
code for each client application, a token is issued to
the user, without the need to authenticate the client.
It is a very simplified flow, has the advantage of re-
ducing the number of requests between the client ap-
plication and the authorization server, but it is a less
secure solution that relies on client-side token storage
security (Li et al., 2019).

In Resource Owner Password Credentials, the
user gets the access token from the credentials. This
type of direct authorization can be done when the
client application has high server reliability. Only one
request is made with user credentials passed to the au-
thorization server, which returns the access token to
the protected resources. From there, only the token is
exchanged between the client and the resource server
(de Sousa Ribeiro et al., 2018).

In Client Credentials, the user gets the access to-
ken from the credentials. This type of direct au-
thorization can be done when the client applica-
tion has high server reliability. Only one request is
made with user credentials passed to the authoriza-
tion server, which returns the access token to the pro-
tected resources. From there, only the token is ex-
changed between the client and the resource server
(de Sousa Ribeiro et al., 2018).

2.2 RSA Protocol Public Key
Encryption Concept

According to Stallings (Stallings, 2017), public-key
cryptography provides a radical paradigm shift. This
type of encryption is asymmetric; that is, it uses two
separate keys, one for information encryption and the
other for information decryption. This type of encryp-
tion arose to solve two problems, one of the distribu-
tion of keys and another of the integrity of the infor-
mation. One of the main features of this type of en-
cryption is that it is impossible to discover one of the
keys from the other. This type of encryption serves to
add secrecy to the information that will travel on the
network, or will be stored on the client. A key pair,
one public and one private, are required so that one is
used to encrypt text and the other to decrypt.

The security of this technique lies in the fact that
if the information is encrypted with one of the keys
— for example, the public key —, it can only be de-
crypted by the other key. One of the keys — usually
the private one — must be kept confidential, hence it
should never be shared. The public key can generally
be shared over the network (Stallings, 2017).

In this type of solution, the public key must be
shared on the network. The sender (who is sending
the information) encrypts the clear text with the re-
cipient’s public key (which is the one who receives
the information) producing an encrypted text. Upon
receiving the message, the recipient decrypts the in-
formation and gets the clear text again. This type of
solution ensures that the information is complete and
has not been modified by a hacker.

According to Stallings (Stallings, 2017), RSA is
a public key algorithm that uses the block technique

Front End Application Security: Proposal for a New Approach

235



to encrypt and decrypt clear text. All the security
involved in RSA lies in raising an integer to a high
power. RSA is the most widely accepted and imple-
mented general-purpose public-key encryption tech-
nique for the security of sensitive information. The
reason that RSA is a secure and widely used protocol
is due to its use to generate giant exponential keys,
making it difficult to factor this number, taking years
to discover and decrypt.

3 RELATED WORKS

Korva et al. (Korva et al., 2016) shows you step
by step how to start and develop a simple Angular
application, focusing on new developers in the area.
It shows the basics about Angular, its architecture,
the primary languages used: TypeScript, HTML, and
CSS. It is mentioned that Angular supports authenti-
cation and security, but it does not address the prob-
lem of securely storing sensitive information on the
client, nor the secure communication of information.

Kafle and Lindsey (Kafle and Lindsey, ) show how
important it is to be secure with information transfer
using the REST API. The security framework used to
restrict unauthorized access is Oauth 2. In this paper,
the author focuses on security in two aspects: the first
is the use of authentication and authorization; The
second is the use of HTTPS / SSL protocol for in-
formation exchange. However, storing sensitive data
on the client application side is not the focus of this
work; only security provided for data communication
using the REST protocol. Trnka and Cerny (Trnka
and Cerny, 2018), in they work, talk about the grow-
ing use of the internet and the sharing of information
over the network, the so-called Internet of Things. A
solution for managing shared information securely is
proposed using the Oauth 2.0 framework as an autho-
rization center. This work is used to encrypt the infor-
mation in the JSON Web Token (JWT) client, which
is currently not a secure way to store sensitive infor-
mation of the client.

Based on an internet search, it has been proven
to be insecure and easy to decrypt encryption. There
are several sites 1 that can decrypt encrypted informa-
tion with JWT-generated token. In his doctoral dis-
sertation, Thomas (Fielding and Taylor, 2000), cre-
ator of the REST communication model, talks about
how this new communication protocol works, which
uses a lighter and more straightforward approach. It
is emphasized in the thesis that we need to take care
of security at all levels, from infrastructure to appli-

1http://calebb.net/

cations. It revolutionizes by creating a protocol that
is lighter than its previous one, the SOAP protocol
(Eggen et al., 2004). But his work does not go deep
into the security of an application through the REST
protocol, using JSON.

Chen et al. (Chen et al., 2016) argued about
the thousands of connected devices, which today are
called the Internet of Things (IoT), and how Service
Oriented Architecture (SOA) can provide interoper-
ability between these devices. The article proposes
a reliable, adaptable, and scalable solution to support
SOA-based IoT system service composition applica-
tions. A technique based on distributed collaborative
filtering has been developed for selected feedback us-
ing friendliness similarity rating, social contact, and
filter-related communities of interest. Calculation is
made to verify the best confidence to minimize con-
vergence time and to select the best route by eliminat-
ing malicious nodes.

Krylovskiy et al. (Krylovskiy et al., 2015), re-
ported the difficulty of integrating the various IoT
platforms present in the world today is mentioned.
Systems must be able to scale and evolve, embrac-
ing new technologies and changing business rules.
This work uses the microservices technique to design
an intelligent city IoT platform. The work demon-
strated significant benefits provided by the microser-
vice architectural style compared to the more tra-
ditional service-oriented architecture (SOA). Archi-
tectural standardization and application independence
using microservices allowed the project components
to be developed independently, even of the program-
ming language, connected only through a standard-
ized interface.

Chen et al. (Paillier, 1999) investigated a new
computational problem, called the Composite Resid-
uality Problem, and its applications for public-key
cryptography. A new mechanism is derived from
three encryption techniques: one permutation scheme
and two computationally similar probabilistic encryp-
tion schemes to RSA. The proposed model to solve
the researched problem was proven to be computa-
tionally safe. The article (Somani et al., 2010) ad-
dresses the increased utilization of the cloud com-
puting solution and the problems and security and
proper implementation of the cloud across the net-
work. This research evaluates cloud storage method-
ology and cloud data security by implementing a dig-
ital signature with the RSA algorithm. The feasibility
of cloud data storage using the RSA algorithm to en-
sure data security is proven.

Chen et al. (Chen et al., 2014) mentioned the in-
dustry’s steadfast adherence to the OAuth standard,
which has now been redesigned in version 2. The

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

236



study focuses on using the OAuth protocol for mo-
bile application development. A study of the OAuth
protocol is done, demonstrating its difficulties to be
deployed in mobile applications, and a field study of
over 600 popular mobile applications to verify how
authentication and authorization is done in practice.
The result of this study shows that of the 149 applica-
tions that use OAuth, 89 of them (59.7 %) were im-
plemented incorrectly and therefore vulnerable. So-
mani et al. (Wang et al., 2009) article showed the
need for an SOA system to integrate its data securely,
reliably, and as it is rooted in the system. To solve
this problem, a dynamic SOA-based data integration
model is proposed. The model uses service-oriented
architecture for data integration and sharing between
heterogeneous systems, so integration between vari-
ous systems can be easily facilitated.

These are some works that show how important it
is to have light and secure communication for com-
municating information over the internet (Vijayaku-
mar and Chokkalingam, 2019), (Huang et al., 2019).
Application security is still one of the critical chal-
lenges facing us today. A secure system goes far be-
yond secure software or robust infrastructure. Unlike
all the work presented above, this work focuses on
the creation of a security module, developed in Angu-
lar language, to control access to restricted resources.
It focuses on how to start the authentication and au-
thorization flow, how to centralize request headers,
and how to securely store the user’s authorization to-
ken. This module uses abtractions from the front-end
application for the developer’s concern with security
control in each request.

4 CONTEXTUALIZATION

At the University of Brası́lia (UnB), there are sev-
eral systems developed on numerous platforms and
languages, which makes communication and mainte-
nance of the systems difficult. All of these systems
have a single access control system called an Access
Control System (ACS). This system controls who has
access to UnB applications. Access control is done
through access profiles, where each user has several
profiles. One of the major problems UnB faces is the
difficulty experienced by servers, students, and teach-
ers using systems that are obsolete or do not reflect
UnB’s real business rules. A serious recurring prob-
lem is system slowdowns because all application pro-
cessing is centralized on servers. One solution under
development is the modernization of systems for an
easy-to-maintain platform, the creation of various ser-
vices, and their consumption by client applications.

Client applications take much of the server process-
ing and pass it on to the client.

A problem with this new architecture is the need
for an integrated authentication and authorization
control, which would facilitate user access and main-
tain information integrity. There is also a need to
communicate with systems outside the university,
which need automatic and secure access to UnB infor-
mation. Information is routed through the network in
the clear, which makes it easier for an attacker to mis-
use this information. The cookie which controls the
user’s session can easily be captured by an attacker
and used on another machine.

Current systems do not have a session time con-
trol on the client, that is, the user logging into the sys-
tem has a session time to do all their activities, auto-
matically logs out afterwards, being necessary to log
in again. There is no way for applications to restart
the session after the time has elapsed without the user
having to log in to the system again. The login base,
systems and authentication databases are fragmented
and not well integrated. In addition to systems that
are built on outdated technology, other systems still
maintained by UnB, were developed in the 1980s with
VB and VB.Net technology. There is no separation of
layers, namely, the rules and business are coupled, in
most cases, in the vision of the applications.

Currently, a new application creation paradigm
is being introduced in the University of Brası́lia’s
CPD, using a service creation paradigm rather than
monolithic applications. Server-side REST services
(Barbaglia et al., 2017), controlled by a service bus,
and client applications that call these services, in a
wholly decoupled manner, have begun to be intro-
duced. Both old systems and new services developed
suffer from the problem of not having a single and
centralized authentication. For old services, an inter-
nal LDAP solution for database integration (Wegner
et al., 2009) was developed. However, for new ser-
vices and architecture being developed by CPD, it is
necessary to develop new forms of service authentica-
tion and authorization in a secure and centralized way
in a single authorization server, which in the case of
UnB would the service bus. Services as a means to
authenticate and authorize the user.

5 PROPOSED MODEL

Several issues are mentioned in the current scenario at
UnB. This work aims to address the security and in-
formation storage side of client applications by stor-
ing sensitive information securely by securely ex-
changing client-server information and sharing infor-

Front End Application Security: Proposal for a New Approach

237



mation between client applications securely. New ap-
plications developed in Angular must have a module
that abstracts and controls request header data, stor-
age, and access token sharing.

A security module for Angular applications is un-
der development. This module aims to solve most of
the problems of authentication, storing sensitive in-
formation on the client application side, and sharing
this information securely. Using a separate module to
take care of client application security facilitates de-
velopment and removes from the developer the need
to worry about storing and sharing sensitive data be-
tween client and server. When accessing an applica-
tion, the security module redirects the user to an au-
thentication screen with the client id. If the client id
has already been authenticated over the same IP con-
nection, the server checks and returns the user’s ac-
cess token. If the client has not been authenticated,
the system redirects to a central authentication screen,
where the user enters his login and password, and if
valid, the authorization server authenticates the client
and returns the client access token. The client sends
the client access token and retrieves the user access
token, which will be used to access the restricted con-
tents. Figure 1 shows how this flow is made.

Figure 1: Basic Authentication Flow.

This flow shows a user’s sequence of steps to gain
access to systems. The strong advantage of this ap-
proach is that user credentials do not travel across the
network. Since the authentication screen is on the
server and not on the client, namely, it is a direct call
to the server, it ensures security for user authentica-
tion.

Another important mechanism for authentication
is the use of CAPTCHA, which prevent automated
brute force attacks on the server. Another essential
feature used is the control of communication between
client and server through the user’s IP, which is passed
in the request header when the user authenticates. Af-
ter some unsuccessful user access attempts, the au-
thentication system blocks further access attempts by
this IP for a specified time. After user authentication,

the security module stores the access token sent by the
authentication server.

The access token is sent encrypted by the RSA
public-key encryption algorithm and transformed into
base64. The security module retrieves the token that
came in the authentication server response header and
stores this encrypted token in an instance variable,
which is stored in the Authentication Service class.
This ensures complete token storage security on the
client application side. Figure 2 shows how the re-
stricted services access token storage stream works.

Figure 2: Restricted Services Access Token Storage Flow.

Figure 3: Headers Addition Flow in a Request.

Another essential feature that should be used to
strengthen security between the client application and
the server application is the use of Hypertext Transfer
Protocol Secure (HTTPS). Hardt (Hardt, 2012) says
that using HTTPS is required to implement the OAuth
2 framework. The goal of using HTTPS is to provide
extra security as it encrypts all information with the
public key signing method. This encryption is done
through digital certificate, which ensures that the mes-
sage sent by the client is authentic.

One feature of the security module, which was
mentioned above, is the automatic implementation of
the HTTPS request headers. The importance of this
is beyond the abstraction for the developer, who does
not need to implement the headers required for ser-
vices authorization in each request. It also centralizes
the implementation of the headers of all requests be-
tween client and server, in a single module, making
it easy to include or exclude any header without hav-
ing to modify the code of the application that uses this
module.

Figure 3 shows how the flow from a client appli-
cation using the module and security works, sending

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

238



a request to the server to validate the access control
headers added by the security module. It is essen-
tial that the server can validate access to services re-
quested by the client application and enable access or
return an access denied message. This section intro-
duces the importance of using the security module in
front-end applications to authenticate the user along
with the server, store information securely and en-
crypted, provide secure communication with HTTPS,
abstract and centralize authentication and authoriza-
tion functionality.

6 THREATS AND VALIDITY

During this work, we sought to select the primary ref-
erences related to each of the topics covered in this
research. However, there is no guarantee that all rele-
vant works were selected during the literature review.
Some relevant articles may not have been selected
during the process. To try to minimize this threat, we
researched the RFC on OAuth 2 and the key refer-
ences on Angular language. Another impediment to
the implementation of the new security solution us-
ing the OAuth 2 protocol is the absence of this type
of solution for Angular technology. What has been
done to minimize the potential impediment is to test
and implement the solution in parts and verify its ef-
fectiveness.

Another problem encountered is that there are sev-
eral authentication databases, causing user authenti-
cation to take a long time. An integrated memory
base was developed for direct consultation of the se-
curity system created in this article. Another threat
was found in the sponsorship of this new solution by
UnB managers. To minimize this problem, a pilot
system was developed for managers to validate the
development, demonstrating the effectiveness of the
security system deployed in the new architecture.

There are other systems that UnB wants to deploy
to replace legacy systems. As a result, the need to
develop new systems would be reduced, along with
the importance of the security system specified in this
article. To mitigate this threat, a platform has been
developed to adapt to any technology that uses the
Oauth 2 protocol and is easily integrated with other
external systems. With future evolution and new ver-
sions of Angular technology, and with the advent of
new languages and technologies, the developed sys-
tem may become obsolete. One solution to this threat
is to specify a well-developed architecture for the se-
curity system. It should be focused on implementing
the Oauth 2 protocol so that adaptations, evolution,
and possible technology changes can be natural. The

security system must always be on the latest version
of Angular technology.

7 CONCLUSIONS

This work presents a security model for front end ap-
plications developed in Angular. It was presented the
importance of using security not only on the server,
but also on client applications, which currently meet
most of the rules and business. The proposed model is
being developed by the University of Brası́lia (UnB)
to improve the security of new applications. The ad-
vantage of this model is the flexibility, security, ab-
straction, and centralization of responsibilities that
such a model provides. The proposal presented does
not focus on the security of client applications, but
only mentions some essential steps that a server ap-
plication must take to integrate with the client se-
curely. For future work, it is suggested that a server-
side framework is implemented to integrate with the
proposed model. It would be interesting to implement
other security techniques besides using OAuth 2.

Another factor that was not addressed in this ar-
ticle was the performance of an Angular applica-
tion compared to other frameworks in the market.
A comparative approach to whether Angular is the
fastest, most flexible, or best performing, maintain-
able, among other essential features, would be inter-
esting. With the ever faster advancement of technol-
ogy and the extreme need to modernize UnB systems,
this solution is also a viable proposition for several
other agencies or companies facing security issues,
which is a crucial part of any application.

ACKNOWLEDGMENTS

This work was supported by the Brazilian Coor-
dination for the Improvement of Higher Education
Personnel (CAPES), Grants 23038.007604/2014-69
FORTE and 88887.144009/2017-00 PROBRAL; the
Brazilian National Council for Scientific and Techno-
logical Development (CNPq), Grants 303343/2017-6,
312180/2019-5 PQ-2, BRICS2017-591 LargEWiN,
and 465741/2014-2 INCT on Cybersecurity; The
Brasilian Federal District Research Support Founda-
tion (FAP-DF), Grants 0193.001366/2016 UIoT and
0193.001365/2016 SSDDC; the LATITUDE/UnB
Laboratory (Grant 23106.099441/2016-43 SDN); the
Ministry of Economy (TEDs DIPLA 005/2016 and
ENAP 083/2016); the Institutional Security Office
of the Presidency of the Republic (TED ABIN

Front End Application Security: Proposal for a New Approach

239



002/2017); the Administrative Council for Eco-
nomic Defense (TED CADE 08700.000047/2019-
14); and the Federal Attorney General (TED AGU
697.935/2019).

REFERENCES

Agilar, E., Almeida, R., and Canedo, E. (2016). A sys-
tematic mapping study on legacy system moderniza-
tion. In SEKE, pages 345–350. KSI Research Inc. and
Knowledge Systems Institute Graduate School.

Angular.IO. (2010). Architecture overview. template sintax.
Azañón Cáceres, C. A. (2015). Desarrollo de la apli-

cación móvil multiplataforma ToCook. PhD thesis,
ETSI Sistemas Infor.

Barbaglia, G., Murzilli, S., and Cudini, S. (2017). Defini-
tion of REST web services with JSON schema. Softw.,
Pract. Exper., 47(6):907–920.

Belshe, M., Peon, R., and Thomson, M. (2015). Hypertext
transfer protocol version 2 (HTTP/2). RFC, 7540:1–
96.

Bierman, G. M., Abadi, M., and Torgersen, M. (2014). Un-
derstanding typescript. In ECOOP, volume 8586 of
Lecture Notes in Computer Science, pages 257–281.
Springer.

Bihis, C. (2015). Mastering OAuth 2.0. Packt Publishing
Ltd.

Cairns Cade, S. D. (2017). The basics of web application
security.

Chansuwath, W. and Senivongse, T. (2016). A model-
driven development of web applications using angu-
larjs framework. In ICIS, pages 1–6. IEEE Computer
Society.

Chen, E. Y., Pei, Y., Chen, S., Tian, Y., Kotcher, R., and
Tague, P. (2014). Oauth demystified for mobile appli-
cation developers. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communica-
tions Security, CCS ’14, page 892–903, New York,
NY, USA. Association for Computing Machinery.

Chen, I., Guo, J., and Bao, F. (2016). Trust management
for soa-based iot and its application to service com-
position. IEEE Transactions on Services Computing,
9(3):482–495.

de Sousa Ribeiro, A., Canedo, E. D., and de Freitas, S. A. A.
(2018). An implementation of the oauth 2.0 for an
enterprise service bus. In ICCSA (1), volume 10960 of
Lecture Notes in Computer Science, pages 469–484.
Springer.

Denniss, W., Bradley, J., Jones, M. B., and Tschofenig, H.
(2019). Oauth 2.0 device authorization grant. RFC,
8628:1–21.

Dolphine Tiago; Carnis, C. (2017). The basics of web ap-
plication security.

Eggen, R., Ahuja, S. P., Elliott, P., and Eggen, M. (2004).
Efficiency considerations between common web ap-
plications using the soap protocol. In Communica-
tions, Internet, and Information Technology, pages
461–465. IASTED/ACTA Press.

Fain, Y. and Moiseev, A. (2016). Angular 2 Development
with TypeScript. Manning Publications Co.

Fielding, R. T. and Taylor, R. N. (2000). Architectural
styles and the design of network-based software ar-
chitectures, volume 7. University of California, Irvine
Doctoral dissertation.

Freeman, A. (2019). Understanding typescript. In Essential
TypeScript, pages 35–40. Springer.

Hardt, D. (2012). The oauth 2.0 authorization framework.
Huang, C., Chen, H., Tzeng, Y., and Li, P. (2019). Adap-

tive and service-oriented embedded system for infor-
mation security applications. Computers & Electrical
Engineering, 73:145–154.

Kafle, A. and Lindsey, A. Security in the representational
state transfer api.

Korva, J. et al. (2016). Developing a web application
with angular 2: Graphical editor for happywise’s cove
trainer.

Krylovskiy, A., Jahn, M., and Patti, E. (2015). Designing
a smart city internet of things platform with microser-
vice architecture. In 2015 3rd International Confer-
ence on Future Internet of Things and Cloud, pages
25–30.

Li, W., Mitchell, C. J., and Chen, T. (2019). Oauthguard:
Protecting user security and privacy with oauth 2.0
and openid connect. In SSR, pages 35–44. ACM.

Murray, N., Lerner, A., Coury, F., and Taborda, C. (2016).
ng-book 2: The complete book on angular 2 (volume
2).

Paillier, P. (1999). Public-key cryptosystems based on com-
posite degree residuosity classes. In Stern, J., editor,
Advances in Cryptology — EUROCRYPT ’99, pages
223–238, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Ramos, M., Valente, M. T., and Terra, R. (2018). Angu-
larjs performance: A survey study. IEEE Software,
35(2):72–79.

Regateiro., D. D., Óscar Mortágua Pereira., and Aguiar.,
R. L. (2017). Spdc: Secure proxied database con-
nectivity. In Proceedings of the 6th International
Conference on Data Science, Technology and Appli-
cations - Volume 1: DATA,, pages 56–66. INSTICC,
SciTePress.

Óscar Mortágua Pereira., Semenski., V., Regateiro., D. D.,
and Aguiar., R. L. (2017). The xacml standard - ad-
dressing architectural and security aspects. In Pro-
ceedings of the 2nd International Conference on In-
ternet of Things, Big Data and Security - Volume 1:
IoTBDS,, pages 189–197. INSTICC, SciTePress.

Somani, U., Lakhani, K., and Mundra, M. (2010). Im-
plementing digital signature with rsa encryption algo-
rithm to enhance the data security of cloud in cloud
computing. In 2010 First International Conference
On Parallel, Distributed and Grid Computing (PDGC
2010), pages 211–216.

Sommerville, I. (2010). Software Engineering. Addison-
Wesley, Harlow, England, 9 edition.

Stallings, W. (2017). Cryptography and network security:
principles and practice. Pearson Upper Saddle River.

ICEIS 2020 - 22nd International Conference on Enterprise Information Systems

240



Trnka, M. and Cerny, T. (2018). Authentication and autho-
rization rules sharing for internet of things. Software
Networking, 2018(1):35–52.

Uluca, D. (2018). Angular 6 for Enterprise-Ready Web Ap-
plications: Deliver production-ready and cloud-scale
Angular web apps. Packt Publishing Ltd.

Vijayakumar, K. and Chokkalingam, A. (2019). Continu-
ous security assessment of cloud based applications
using distributed hashing algorithm in SDLC. Cluster
Computing, 22(5):10789–10800.

Wang, J., Yu, A., Zhang, X., and Qu, L. (2009). A dynamic
data integration model based on soa. In 2009 ISECS
International Colloquium on Computing, Communi-
cation, Control, and Management, volume 2, pages
196–199.

Wegner, T., Uptmoor, F., and Kemper, J. (2009). Using
LDAP as a management solution for distributed osgi.
In ICDS, pages 143–148. IEEE Computer Society.

Front End Application Security: Proposal for a New Approach

241


