
Towards Web Application Security by Automated Code Correction

Ricardo Morgado, Ibéria Medeiros and Nuno Neves
LASIGE, Faculty of Sciences, University of Lisboa, Portugal

Keywords: Web Application Vulnerabilities, Static Analysis, Code Correction, Software Security.

Abstract: Web applications are commonly used to provide access to the services and resources offered by companies.
However, they are known to contain vulnerabilities in their source code, which, when exploited, can cause se-
rious damage to organizations, such as the theft of millions of user credentials. For this reason, it is crucial to
protect critical services, such as health care and financial services, with safe web applications. Often, vulnera-
bilities are left in the source code unintentionally by programmers because they have insufficient knowledge on
how to write secure code. For example, developers many times employ sanitization functions of the program-
ming language, believing that they will defend their applications. However, some of those functions do not
invalidate all attacks, leaving applications still vulnerable. This paper presents an approach and a tool capable
of automatically correcting web applications from relevant classes of vulnerabilities (XSS and SQL Injection).
The tool was evaluated with both benchmark test cases and real code, and the results are very encouraging.
They show that the tool can insert safe and right corrections while maintaining the original behavior of the
web applications in the vast majority of the cases.

1 INTRODUCTION

In recent years, web applications have become in-
creasingly popular and an essential part of our lives.
Often, web applications require users to provide per-
sonal details, such as our home address and credit
card number. This data is stored on the application’s
database and may be exposed if someone with mali-
cious intentions can successfully perform an attack.
Therefore, web applications are an appealing target
for attackers because, if they succeed, they can poten-
tially compromise the personal details of up to mil-
lions of users. Injection vulnerabilities, such as SQL
Injection (SQLi) and Cross-Site Scripting (XSS), rank
high in the list of web application security risks ac-
cording to the OWASP Top 10 (van der Stock et al.,
2017) and are the most prevalent and preferred of at-
tackers.

Vulnerabilities are usually caused by misinformed
developers who make mistakes when writing the code
and do not possess sufficient knowledge on software
security. Simultaneously, there are also the limi-
tations of time and budget for testing within orga-
nizations, which contribute to exacerbate the prob-
lem. Lastly, the sources for programming information
available to developers can sometimes have confus-
ing recommendations, which can also influence the
security of the code (Acar et al., 2016) (Fischer et al.,

2017). The consequence is a growing number of vul-
nerabilities being reported every year, with a particu-
lar incidence on web applications.

In our context, PHP is particularly relevant, as it
is the most used server-side language of web appli-
cations, powering around 79% of the websites1. The
fact that PHP is a ”weakly-typed” language makes it
easier to introduce mistakes in some situations, es-
pecially when dealing with badly-documented code.
All programming languages, including PHP, contain a
wide range of functions (and other methods) that can
be used to invalidate attacks. However, most develop-
ers do not master when and how to use them, conse-
quently leaving applications with vulnerabilities.

There are several tools available to analyze PHP
source code and to find potential bugs. Such tools are
often hard to use, do not provide the information de-
velopers need, and report vulnerabilities that do not
exist (i.e., false positives). Some tools are based on
taint analysis, while others employ techniques like
dynamic analysis (Schwartz et al., 2010) and sym-
bolic execution (Zheng et al., 2013) (Huang et al.,
2019). They provide reports in various formats and al-
most all of them leave the burden of fixing the bugs to
developers. Given that most developers are unaware
of the right way to remove a bug, this process many

1https://w3techs.com/technologies/details/pl-php/all/all

86
Morgado, R., Medeiros, I. and Neves, N.
Towards Web Application Security by Automated Code Correction.
DOI: 10.5220/0009369900860096
In Proceedings of the 15th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2020), pages 86-96
ISBN: 978-989-758-421-3
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

times does not completely eliminate the vulnerability.
To alleviate this problem, tools could detect and

correct such bugs. However, the small number of
tools that perform automatic correction of the source
code, often have limitations in the sense that they
insert unsound fixes, producing syntactically invalid
new programs that can not be executed (Medeiros
et al., 2014).

This work presents an approach to automatically
repair web applications by employing a mixture of
taint tracking and instruction simulation of PHP pro-
grams. The solution focuses on two prevalent types
of web application vulnerabilities, namely XSS and
SQLi. Our tool called PHPCORRECTOR, determines
where and what correction is most appropriate for a
particular bug, and is able to deal with existing forms
of sanitization. An experimental evaluation was per-
formed with benchmark test cases from the NIST
SARD dataset and six large web applications. The
results demonstrate that PHPCORRECTOR can repair
appropriately the great majority of the identified bugs,
leaving a few cases where the applications became
only partially protected. We believe that these results
are highly encouraging, giving evidence that our ap-
proach is an useful step towards automatic correction
of web applications.

The main contributions of the paper are: 1) a study
of the different sanitization methods of PHP and their
pitfalls; 2) an approach to automatically develop a fix
for XSS and SQLi in web applications; 3) a tool capa-
ble of correcting automatically PHP web applications
while maintaining their original functionality; and 4)
an evaluation with both benchmark test cases and real
web applications, demonstrating benefits of our ap-
proach.

2 BACKGROUND

This section gives a brief overview of injection vul-
nerabilities – SQLi and XSS – and afterwards it ex-
plains the most relevant PHP sanitization methods for
these bugs and their pitfalls.

2.1 Injection Vulnerabilities

SQL Injection vulnerabilities (SQLi) occur when a
crafted input of an attacker can reach a SQL inter-
preter as part of a query, tricking the database into
executing unintended commands. This often allows
the bypass of authentication mechanisms, the access
to confidential information, or the shut down of the
database server. SQLi flaws are usually introduced

in web applications who fail to properly validate in-
put data before inserting it into a query. Listing
1 shows a classic example of a SQLi vulnerability,
where the user input, received through $ GET [′id′],
is placed in the SQL statement that is forwarded by
mysqli query to the database. This type of vulner-
ability can be prevented, for example, by applying
proper sanitization to the input and by using param-
eterized queries to interact with the database.

1 $query = "SELECT * FROM Employee WHERE id = " .

$_GET["id"];

2 $result = mysqli_query($conn , $query);

Listing 1: Example of a SQLi vulnerability.

Cross-Site Scripting Vlnerabilities (XSS) occur when
an application includes untrusted user data as part
of a web page without proper validation or encod-
ing (van der Stock et al., 2017). XSS lets an attacker
trick the victim’s web browser into executing his ma-
licious code. For instance, a traditional PHP XSS flaw
exists when a user input is inserted in a web page
with the echo function. There are several forms of
XSS, with new variants continuing to appear period-
ically (Steffens et al., 2019), and therefore, they are
one of the most prevalent vulnerabilities in the web
today (WhiteHat Security, 2019). XSS can be averted
by properly encoding potentially malicious input be-
fore adding it to a web page.

2.2 PHP Sanitization Methods

2.2.1 Generic

There are few sanitization methods that can help with
both kinds of vulnerabilities. For numeric inputs,
PHP contains the intval and floatval functions
that preclude many of the SQLi and XSS attacks.
Both functions receive a string as argument and re-
turn the result of converting that string to an integer
or a float, respectively. If they are unable to do the
transformation, they return zero, thus making any ma-
licious input innocuous while leaving benign string
inputs untouched (i.e., containing just numbers). Al-
ternatively, the conversion can be achieved with casts
to numeric types. The casts will execute in a similar
way as the previously described functions, thus mak-
ing inputs harmless.

For string inputs that have a well-known format,
such as a date or zip code, there is the possibility of
using the preg match function to compare them with
a regular expression. In order for this technique to be
safe, the developer has to use a correct regular expres-
sion.

Towards Web Application Security by Automated Code Correction

87

Lastly, if the input can only assume one of a lim-
ited number of values, developers can use white lists
for these values. To do so, it is created an array of
valid values and used the in array function to verify
if the input is part of the array.

2.2.2 Cross-Site Scripting

Sanitization. Protection from XSS can be attained
with functions that encode special characters like <
or >, making them inoffensive when rendered in the
browser.

HTML-encoding functions convert all HTML’s
special characters to their respective representation as
HTML entities, thus preventing attacks that abuse un-
intended utilization of these values. For example, the
< character is converted to <, thus being properly
displayed on the browser. There are two functions in
this group: htmlspecialchars and htmlentities.
They receive the same arguments (a string to be san-
itized and a set of flags), but differ in the number of
characters they convert. The former converts the fol-
lowing characters: &, ", ’, <, >, whereas the latter
converts not only these characters but also more than
two hundred additional ones, such as Á and Ç. The
flags influence safety because they specify the way
the function encodes quotes and the way it deals with
the HTML itself (whether it considers the HTML as
HTML 4.01 or HTML 5, for example).

URL-encoding functions encode all non-
alphanumeric characters to make them harmless
when rendered in the browser. As an example, the <
character is converted to %3C, thus being shown on the
screen as %3C and not being mistakenly understood
as the beginning of a tag. There are three functions
in this group: http build query, urlencode, and
rawurlencode. The first one receives an array
and returns a URL-encoded query string with all
key-value pairs contained in the array. The other two
functions get a single string as an argument and differ
only in the way they encode spaces. urlencode
substitutes spaces by + while rawurlencode encodes
spaces as %20. All these functions will make their
inputs safe, but they may cause usability problems
because an URL is shown on the screen in it’s
URL-encoded form. For this reason, they should only
be used in some special situations.

Pitfalls. HTML-encoding functions can stop some
variants of XSS when the result is included inside the
content of any HTML tag, except the <script> and
<style>2 tags. However, they will allow attacks to go

2Note that the execution of Javascript inside this tag is only
possible in older versions of browsers.

through when the result is placed in an unquoted part
of any HTML tag’s definition. They will also fail if
they are called without the ENT QUOTES flag and their
result is included inside of a string quoted with single
quotes. The most widely recommended way to call
these functions safely is to use solely the ENT QUOTES
flag.

The URL-encoding functions can prevent XSS
in all situations because they encode all non-
alphanumeric characters. This means that an attacker
is unable to write meaningful Javascript if the input
goes through one of these functions. However, the use
of HTML-encoding is usually preferred by developers
in most situations, as the output of URL-encoding is
less appealing when exhibited to the users.

2.2.3 SQL Injection Sanitization

Sanitization. SQLi attacks can be addressed with
functions of the family * escape string. These
functions escape SQL’s metacharacters to make
them safe to be included inside a SQL state-
ment. For the MySQL database, the appropri-
ate functions are mysql real escape string and
mysqli real escape string. Both functions es-
cape the same characters in a similar manner. The
difference lies in the PHP extension they use — the
former uses the MySQL extension3 while the latter
resorts to the MySQL Improved extension.

Often, the recommended way to block SQLi is
to employ prepared statements. Prepared statements
consist of two phases: (i) in the preparation phase, the
statement is sent to the database, which then performs
a syntax check and initializes resources for later use;
(ii) in the execution phase, the client binds parameter
values and sends them to the database. Afterwards,
the database executes the statement with the bound
values using the previously initialized resources. This
ensures that user-supplied values are never treated as
SQL commands. For the first task, PHP has func-
tion mysqli prepare while for the second phase
there are functions mysqli stmt bind param and
mysqli stmt execute.

Pitfalls. Functions of the * escape string family
can only prevent SQLi if their output is placed in a
SQL string. This happens because they only sanitize
characters that can influence a string’s limits, such as
quotes and line breaks. If their result is, for example,
included in a comparison with an integer, the attack
will be able to proceed.

3MySQL extension was deprecated in PHP 5.5 and removed
in PHP 7.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

88

It is also important to note that prepared state-
ments do not work in all situations. They do not allow
the binding of parameters to table or column identi-
fiers or SQL keywords, meaning that, in this situa-
tion, developers should resort to white lists to check
the inputs against a set of valid values (however, the
study in (Anderson and Hills, 2017) suggests that this
situation is uncommon, which means that bugs may
remain). Also, prepared statements can be utilized
unsafely, which is likely to occur given that they are
more complex than simple sanitization functions.

2.2.4 Filters

PHP filters can be employed as a sanitization method
by calling the filter var function, and by provid-
ing as constant that identifies the filter to be used.
This sanitization method can operate both as a generic
approach or as a XSS specific solution, depending
on the selected filter. Default sanitization filters
are all named FILTER SANITIZE *, and they range
from number sanitization (like intval) to HTML-
encoding (similar to htmlspecialchars).

3 AUTOMATED CODE
CORRECTION

This section describes our approach in detail, includ-
ing a discussion of the main challenges and the deci-
sions that we took to deal with them.

3.1 Code Correction Challenges

A Static Analysis Tool (SAT) must solve three main
challenges to be able to correct a web application au-
tomatically:

Where to Insert the Correction? As stated in Sec-
tion 2.2, some variants of XSS and SQLi bugs can be
fixed by inserting a properly configured sanitization
function. However, there are usually various locations
where to place the call, but some of them might end
up breaking the application logic. For example, ap-
plying the correction always on the entry point is in-
appropriate if the application uses that (attacker) input
in multiple sensitive sinks, which suffer from differ-
ent classes of vulnerability (e.g., this would result in
multiple amendments put in for the same entry point).
However, adding the correction closer to the sensitive
sink may also be difficult because there are no guaran-
tees that the code that receives the input will be easy
to analyze by the tool (e.g., a SQL query can be quite
complex and span over multiple lines).

In order to resolve this challenge, we decided that
all corrections should consist solely of adding new
lines of code, instead of modifying existing ones. This
will help to minimize the chances of causing a pro-
gram to become syntactically invalid. In addition, if
possible, the sanitization of a variable is to be located
in a line of code immediately before the sensitive sink
where the variable is used. When a tainted variable
var can not be rectified in this manner, we will sani-
tize the variable(s) that caused var to become tainted,
in the line(s) of code immediately before that hap-
pened. To do so, we simulate statically the execution
of operations that act on the variable. This allows us
to know the approximate value of a variable when it
reaches a sensitive sink, thus revealing whether the
variable can be entirely amended.

What Correction to Insert? The kind of correction
to build is very closely related to the class of vulnera-
bility and the context in which the input is used. Car-
rying this task thus requires the tool to be capable of
reasoning about where the input data is inserted and
what is it’s expected type. This asks for an under-
standing on how a SQL query is setup or the HTML
is constructed.

To solve this challenge, we select the patch to ap-
ply based firstly on the class of vulnerability that was
identified. If it is SQLi, the tool inserts a string es-
caping function accordingly with the sensitive sink.
If it is XSS, the tool adds URL-encoding functions
whenever possible and HTML-encoding functions in
all other cases.

How to Deal with Existing Sanitization? Existing
sanitizations in the code pose another challenge be-
cause they might be insufficient to prevent all attacks.
In such cases an automated tool has to decide between
making some modifications to the existing sanitiza-
tion or adding it’s own fix to the program.

To tackle this difficulty, we decided that our ap-
proach would need to have the capability of reason-
ing about diverse sanitization methods. If the saniti-
zation method in use is safe, the variable is marked as
untainted, meaning that no correction is introduced.
Otherwise, the remedy will be applied following the
ideas presented for the first challenge. Note how-
ever that the problem we are tackling is undecidable
in general. Therefore, in some cases, the application
might contain a safe sanitization method that is re-
garded as unsafe by our solution. Here, the repair
principles explained for the first challenge should help
us prevent our correction from breaking the applica-
tion’s logic.

Towards Web Application Security by Automated Code Correction

89

PHP slice
Type of

Vulnerability

Corrected
code

Path
Processor

Sensitive
Sink

Identifier

Correction
Processor

Knowledge
Base

Figure 1: Automated Code Correction Approach Architec-
ture.

3.2 Overview of the Solution

Our approach aims to correct PHP web applications
by inserting new lines of code that sanitize or validate
inputs arriving at the entry points, which are later used
in sensitive sinks in an unsafe manner. It is our inten-
tion to avoid possible syntactic errors or breaking the
application logic, but it is out of scope to patch the
functional behaviour of the application.

The tool starts by receiving as input a slice of
code, containing a data flow beginning at an (or more)
entry point and ending at a sensitive sink, and infor-
mation about the class of vulnerability that the slice
may suffer. The slice is then analysed by a solution
inspired on taint tracking to discover which variables
have to be sanitized or validated, and where rectify
the slice. The outcome of the tool is a safe slice. No-
tice, however, that the analysis may deem a slice as
non-vulnerable, and in this case no changes are made.
Figure 1 provides an overview of the architecture of
the tool. Next, we detail each component.

PHP Slice. It is a PHP file containing a potentially
vulnerable slice of code (typically produced by a vul-
nerability detection tool). The slice contains the in-
structions of a program corresponding to a data flow
path that takes some input from an entry point and
carries it to a sensitive sink. The slice can include
more instructions than the strictly relevant for the vul-
nerability exploitation as long as it contains a single
control flow path. Also, it can have multiple vulnera-
bilities if they are all of the same class.

Vulnerability Type. It is a file with information
about the class of vulnerability that the slice may
have. Currently, only XSS and SQLi are supported.
Our solution requires this as input because it allows
the taint analysis to be more efficient and narrows
down the sanitization functions that should be con-
sidered.

Knowledge Base. Contains the names of all PHP
entry points, sensitive sinks and sanitization methods
to be considered by our approach for each class of
vulnerability. It is used by the Path Processor to get
the entry points and sanitization methods, and by the
Sensitive Sink Identifier to collect the sensitive sinks.

Sensitive Sink Identifier. Discovers the sensitive
sinks in the PHP slice for all classes of vulnerability
supported by our approach. Its output is used by the
Path Processor and the Correction Processor to check
whether a given slice instruction is a sensitive sink.

Path Processor. Performs the taint analysis and
simulates the execution of operations with the vari-
able. It tracks the slice’s input as it is processed and
passed along the instructions, from the entry points
to the sensitive sinks, and maintains the taint status
of the program’s variables. To perform these tasks, it
consumes information from the Knowledge Base and
the Sensitive Sink Identifier.

Correction Processor. Determines which vari-
able(s) need to be sanitized, what corrections they re-
quire and the line(s) of code where those fixes should
be applied. This is done using the information pro-
duced by the Sensitive Sink Identifier and Path Pro-
cessor. The component is also responsible for gener-
ating the actual instructions to be inserted in the out-
put file, including the appropriate parameters.

Corrected Code. Consists of a PHP file containing
the patched version of the slice of code provided as
input. No file is returned if no repair is necessary, as
the original slice was not changed.

Algorithm 1: Approach Algorithm.
Input: PHP slice; Type of vulnerability
Output: Corrected PHP slice

1 Function Main(slice, vulnerability):
2 ast← GenerateAST (slice);
3 state← ProcessPath (ast, vulnerability);
4 corrections← ProcessCorrections (ast, state,

vulnerability);
5 for cor in corrections do
6 InsertLine (slice, cor.code, cor.line);

7 End Function

Algorithm 1 presents the high level steps of our ap-
proach. It starts by generating an Abstract Syntax
Tree (AST) of the PHP slice. Then, it calls the Path
Processor to perform the taint analysis and simulate
the variable operations. This is done to confirm the

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

90

vulnerabilities in the code and to compute the state
of the program’s variables. Next, it calls the Correc-
tion Processor to analyze the sensitive sinks, deter-
mine the required corrections and where they should
be applied. Lastly, it inserts all corrections in the slice
to generate the output file.

3.3 Variable Operation Simulation

Our approach simulates statically the operations in-
volving PHP variables. This is done while the taint
analysis is being performed and consists of simulating
the execution instructions, like string concatenations
and arithmetic operations with numbers. When an in-
put value is involved in one of these operations, a spe-
cial marker is put in it’s place, thus indicating that part
of the result might be influence by an attacker. Such
approach allows for example to keep track where a
user input might be inside of a string. This is useful
to ascertain if a string might contain HTML tags, in
the case of XSS, or to determine if the input is being
included in a query, in the case of SQLi. However,
it is important to note that this simulation might not
always obtain the exact value of a variable, such as
with function calls and arrays. In any case, the result
is still useful for the majority of situations, as an ap-
proximate value for a variable is normally sufficient
to make the right selection of the remedy.

1 $in = $_GET["a"];

2 $html = "Input user data -" . $in;

3 $i = 10;

4 $j = $i + 1;

5 echo $html;

Listing 2: PHP program vulnerable to XSS.

Listing 2 shows an example of a simple program with
operations involving strings and integers. The simula-
tion of variable operations assigns the ::input spe-
cial marker to $in in line 1, to state that it contains
some external value. Next, in line 2, it concatenates
the string "Input user data -" with the value of
variable $in to form the simulated value of $html. In
line 3, the integer 10 is assigned to $i, and then, in
line 4, the value of $i is summed with the integer 1
to obtain the simulated value of $j. Lastly, in line 5,
the value of $html is used in the sensitive sink echo.
Note that the simulation takes place statically, without
ever executing the code. The result of the simulation
is a list of < key : value > pairs, in which the keys
are the names of the variables and the values are their
respective simulated values. An example of such list
is shown in Listing 3, taking the code of Listing 2. In
this list, the string ::input corresponds to the spe-
cial marker inserted in the place where the input was

added.

1 $in : ’::input’

2 $html : ’Input user data -::input’

3 $i : 10

4 $j : 11

Listing 3: Result of simulating the variable operations for
the program in Listing 2.

3.4 Code Correction

The Correction Processor uses the results from the
simulations and taint tracking, plus the line num-
bers of relevant sensitive sinks for the specific class
of vulnerability, to prescribe a correction and where
it should be applied. Taking as example the pro-
gram in Listing 2 and the simulation of Listing 3,
the Correction Processor is activated when the Path
Processor identifies that the tainted variable $html
reaches the echo function. It observes that the vari-
able contains the special marker ::input and back-
tracks the variable until its last assignment. Next,
it uses the data provided by taint analysis to get the
name of the variable that carries the special marker.
In addition, based on the sensitive sink, it decides on
the most appropriate sanitization function that should
be added. This way, the Correction Processor gen-
erates the instruction $in = htmlentities($in,
ENT QUOTES); and places it right before the line
where the assignment to $html was done, i.e., before
line 2 on Listing 2.

4 EXPERIMENTAL EVALUATION

The approach was implemented in a tool that we
call PHPCORRECTOR4. The tool was developed in
Python and uses as parser a modified version of the
PHPly5, which supports both PHP 5 and PHP 7. The
taint analysis, simulations, and corrections were im-
plemented from scratch.

PHPCORRECTOR is evaluated by correcting
SQLi and XSS vulnerabilities in two sets of web ap-
plications. The first set is based on the programs of
the NIST benchmark SARD - Software Assurance
Reference Dataset6 (Section 4.1), and the other test
set utilizes real vulnerable applications that were se-
lected from Exploit-DB7 (Section 4.2). The research
questions that are answered by the experiments are:

4PHPCorrector is available at: https://phpcorrector.
sourceforge.io

5https://github.com/viraptor/phply
6https://samate.nist.gov/SRD/
7https://www.exploit-db.com/

Towards Web Application Security by Automated Code Correction

91

(1) Is PHPCORRECTOR able to validate the vulner-
abilities in SARD and real web applications? (2) Is
PHPCORRECTOR able to fix XSS / SQLi vulnerabil-
ities? (3) Are the corrections done appropriately?

4.1 SARD Test Cases

4.1.1 Dataset Characterization

We gathered a total of 1864 test cases from SARD,
namely 1764 XSS and 100 SQLi. All of these test
cases contain a single data flow path, meaning that
they fit our definition of a slice of code. They have
different types of entry points (e.g., $ GET, $ POST),
vary from no sanitization, type casts or distinct forms
of sanitization, and hold a single kind of sensitive
sink, either mysql query (for SQLi) or echo (for
XSS).

While analyzing slices manually, we discovered
that some of SARD’s test cases are mislabelled. There
are safe (not-vulnerable) test cases that are considered
as unsafe (vulnerable) and vice-versa. For this reason,
we ran a more thorough analysis to determine the ac-
tual label that the test cases should have. Our dataset
contains 1494 test cases that kept their original SARD
labels and 370 test cases whose labels had to be ad-
justed. Summarizing, the dataset is composed of 420
unsafe XSS, 1344 safe XSS, 13 unsafe SQLi, and 87
safe SQLi.

4.1.2 XSS and SQLi Evaluation

PHPCORRECTOR was able to process all test cases.
It is important to note that each unsafe test case con-
tains a single vulnerability that requires one correc-
tion. This means that the number of vulnerabilities
detected by our tool is equal to the number of patches
it applied. For XSS, the tool always chose one of
two sanitizations: i) a call to the htmlentities func-
tion with the ENT QUOTES flag, or ii) a call to the
rawurlencode function. For SQLi, the tool also
always applied the same correction: a call to the
mysql real escape string function.

Table 1: Summary of Results for XSS.
Observed XSS

Total
Vul N-Vul

Tool XSS
Vul 308 172 480

N-Vul 112 1172 1284

Total 420 1344 1764

A summary of the results is presented in Tables 1 and
2, respectively for XSS and SQLi. Out of the 1764
XSS test cases, 1480 were correctly identified by

the tool as being vulnerable (308) and not-vulnerable
(1172). The remaining 284 test cases, there were
cases where unnecessarily amendments were made
(172 false positives, FP) and where no fix was done
because the slice was deemed secure (112 false neg-
atives, FN). For SQLi, out of the 100 test cases, the
tool only undetected 3 vulnerabilities and generated
13 FP, while the remaining 74 cases were correctly
processed. We investigated the key reasons that could
explain the FN and FP. The main conclusions are dis-
cussed next and presented in Tables 3 and 4. Although
we think our results are very promising, we intend
in the future propose complementary solutions to ad-
dress the mislabeling causes.

XSS FN and FP. XSS FN were always observed in
test cases that resort to improper sanitization methods
while encoding HTML’s special characters, which
were regarded as safe by our tool. Their detailed
causes are described in lines 2–6 of Table 3 (identified
as XSS-FNRex) and the number instances is showed
in column 3. We believe that FNs related with XSS-
FNRe2 and XSS-FNRe3 could be avoided if the tool’s
taint analysis was able to track the type of sanitization
function that was being applied to a variable. This
would allow the tool to reason that, for example, a
variable is unsafe to be include in a <script> tag if
it was sanitized by a HTML-encoding function. As
for the remaining XSS-FNRes, averting them would
require a detailed analysis of the context in which a
tainted variable is added to the output. The XSS FP
appeared in test cases that employ unsafe sanitization
methods but that fortunately are used in a secure con-
text, and in test cases that utilize a sanitization method
involving a regular expression. Lines 7–8 elaborate
on these reasons (identified by XSS-FPRex).

SQLi FN and FP. Regarding the SQLi FN, all 3
cases are explained by the same reason – sanitization
of numeric data (line 2 of Table 4). The test cases
had an unsafe usage of this operation, as explained in
Section 2.2. Avoiding these FN would require knowl-
edge about the data types of the database tables and
a more detailed analysis of the query’s structure. We
believe that the FP associated to reasons SQLi-FPRe1
and SQLi-FPRe2 can not be avoided because these
two methods of sanitization should not be considered

Table 2: Summary of Results for SQLi.
Observed SQLi

Total
Vul N-Vul

Tool SQLi
Vul 10 13 23

N-Vul 3 74 77

Total 13 87 100

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

92

Table 3: FN and FP Explanations and Numbers for XSS.

Reason
Test

Total
Cases

XSS-FNRe1

Inclusion of input inside unquoted attributes: These false negatives occurred for
test cases that include the input inside of an unquoted HTML attribute. This makes
the test cases vulnerable because it is possible to write nonexistent Javascript event
handlers without using HTML’s special characters.

16

XSS-FNRe2

Inclusion of input inside CSS: These false negatives occurred for test cases that
include their input inside of a <style> tag. This makes them vulnerable because
certain versions of some browsers allow the execution of some Javascript statements
inside of CSS.

32

XSS-FNRe3

Inclusion of input inside of a script tag: False negatives also occurred for test
cases that include their input inside of a <script> tag. This makes them vulnerable
because it is possible to write meaningful Javascript without using HTML’s special
characters.

32 112

XSS-FNRe4

Inclusion of input in a HTML tag name: These false negatives occurred for test
cases that include their input in the place of a HTML tag name. Similarly to the first
reason, an attacker can craft a malicious input that adds nonexistent Javascript event
handlers without using HTML’s special characters.

16

XSS-FNRe5
Inclusion of input in a HTML attribute name: This reason is very similar to
the previous one, except that the test case’s input is included in the place of a
HTML attribute name.

16

XSS-FPRe1

Unsafe sanitization used in a context that makes it safe: These false positives
occurred for test cases that sanitize quotes. The inclusion of input inside of a
Javascript string or a quoted CSS property value is safe in these cases because any
quotes present in the input are sanitized by preceding them with backslashes. This
means that an attacker can not execute meaningful code.

72
172

XSS-FPRe2

Use of a sanitization method involving a regular expression: All the false
positives that occurred for this reason were caused by calls to preg replace with a safe
regular expression. Our tool does not currently handle regular expressions, meaning
that any calls to preg replace are considered to return tainted data, regardless of
the regular expression used.

100

safe for SQLi. As for the remaining FP, stopping them
would require a better analysis of regular expressions
or the simulation of calls to sprintf.

4.1.3 Applied Corrections

We manually analyzed all corrections that were ap-
plied by PHPCORRECTOR to assess how many of
them actually prevent attacks. It is important to note
that none of the repaired programs became syntacti-
cally or semantically invalid. In total there were 503
test cases amended (480 XSS and 23 SQLi). To com-
plete this task, we looked at the location where the
potentially malicious input was included in the pro-
gram’s output to verify the safety of the fix. Correc-
tions were organized in the following three groups: (i)
Safe: all attacks are prevented, making the programs
safe; (ii) Unsafe: some forms of attack remain active,
leaving the programs still vulnerable; (iii) Unneeded:
changes were applied to non-vulnerable test cases in-
dicating that they were unnecessary.

Table 5 shows the number of test cases in each
group. Most of the cases correspond to the Safe class
(237), and so the tool performed well. With regard
to the 185 Unneeded, the repair did not spoil the pro-

gram and therefore it is innocuous. These cases cor-
respond to the FP discussed in the previous section.
The remaining 81 Unsafe cases are part of the 318
test cases (see Tables 1 and 2) that the tool properly
detected as being vulnerable but that the correction is
not sufficient to completely prevent the attacks.

4.2 Real Web Applications

We used six web applications that were vulnerable to
XSS from Exploit-DB to validate our tool with real
programs. Table 6, on the first 5 columns, character-
izes the applications that were assessed. Each appli-
cation has a type, a vulnerable version, the number of
PHP files and the number of PHP lines of code (LoC).
Considering XSS, these applications contain a mix-
ture of sensitive sinks, such as echo, print, die and
exit. This shows that our tool is capable of detect-
ing sensitive sinks other than echo, which is the only
XSS sensitive sink in the test cases of SARD.

Among the six applications, the tool found 38
PHP files to be vulnerable with a total of 79 vari-
ables needing protection. All the identified bugs were
automatically corrected, and the resulting repaired

Towards Web Application Security by Automated Code Correction

93

Table 4: FN and FP Reasons and Numbers for SQLi.

Reason
Test

Total
Cases

SQLi-FPNe1
Use of a sanitization method to sanitize numeric data: These FN were caused
by the use of the mysql real escape string function to sanitize data that is later included
in a comparison with an integer.

3 3

SQLi-FPRe1

Use of a sanitization method that escapes quotes: The FP occurred due to the
use of addslashes (or an equivalent filter) to sanitize the input before it is included in
the query. This type of sanitization is regarded as unsafe by our tool but it is safe in
these test cases because any quotes present in the input are sanitized by preceding them
with backslashes.

2

SQLi-FPRe2

Use of a XSS sanitization method: Occured due to the use of a XSS sanitization
method to sanitize the input. This is safe in these test cases. However, it is not
considered safe by our tool because XSS sanitization functions should never be used
to prevent SQLi.

7 13

SQLi-FPRe3
Use of a sanitization method involving a regular expression: These FP occurred
due to a call to preg replace with a safe regular expression. As mentioned before, our
tool considers calls to preg replace to return tainted data.

2

SQLi-FPRe4
Use of a numeric format specifier: The FP occurred due to the use of a numeric
format specifier in a call to sprintf. This effectively consists of casting the input to a
numeric type, which was described in Section 2.2.1.

2

Table 5: Number of XSS and SQLi Corrections Applied by
PHPCORRECTOR.

Group XSS SQLi Total

Unneeded 172 13 185
Safe 228 9 237

Unsafe 80 1 81

Total 480 23 503

programs were all syntactically valid (see columns
6 – 8 of the table). There were 72 amendments
using HTML-encoding functions and 7 using URL-
encoding functions. On 77 occasions, the correction
was applied to the tainted variable itself and, on 2
situations, on a variable’s taint causes because the
variable itself contained HTML tags in it’s simulated
value.

As shown in the table, 75 of the 79 patches are
safe, preventing all attacks. Four fixes performed on
Electricks eCommerce reduce the attack surface, par-
tially protecting the application, but leave a few at-
tacks vectors active. Therefore, they were consid-
ered unsafe. To better understand these cases, List-
ing 4 provides an example. The inserted sanitization
is the call to htmlentities in line 2. Notice that
the input is then used in the value attribute in line
3, without being surrounded by any quotes. Thus,
it allows the addition of new HTML attributes, such
as onmouseover. Therefore, an example input for
$ GET[’prod id’] that could still trigger the vulner-
ability is 1 onmouseover=alert(1).

1 <div class="form group">

2 <?php $_GET[’prod_id’] = htmlentities($_GET[’

prod_id’], ENT_QUOTES); ?>

3 <input type="hidden" class="form -control" id="

prod_id" name="prod_id" value=<?php echo

$_GET[’prod_id’];?>>

Listing 4: Correction applied to Electricks eCommerce
(simplified for readability).

5 RELATED WORK

Static analysis has the objective of analyzing the
source code of an application to find vulnerabilities
but without executing it. SATs compare the code to
a set of patterns that indicate a vulnerability. If the
tool’s knowledge base does not contain a pattern for
a given type of vulnerability, the tool will not report
it, leading to a false negative. On the other hand, they
may report false positives, which they are a concern
to developers since they spend time looking for un-
existent problems. Most SATs still require human in-
tervention to verify that the bugs reported are in fact
vulnerabilities, and fix them.

One of the forms of static analysis is taint analy-
sis. It consists in track input variables (entry points),
stating them as tainted, and verify if they are used
as arguments of functions that expect to receive un-
tainted data (sensitive sinks). Taintedness is propa-
gate along the program analysis, but if a tainted vari-
able is passed through a sanitization function, it is
stated as untainted.

Halfond et al. (Halfond et al., 2008) developed a
novel form of taint analysis that they referred to as

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

94

Table 6: Characterization of the Real Applications and Results of Our Evaluation over Them.

Application
Vuln. PHP PHP

Type of Application
Vuln. Correction

Version Files LoC Files Applied Safe Unsafe

Site@School 2.4.10 567 64 k
Content Management System
for Primary Schools

13 16 16 0

Integria IMS 5.0.83 974 198 k
IT Service Support
Management Tool

5 5 5 0

Electricks
eCommerce

1.0 45 7 k E-Commerce Website 5 27 23 4

userSpice 4.3 474 114 k User Management Application 1 1 1 0
AShop

Shopping Cart
6.0.2 628 113 k Shopping Cart Software 8 24 24 0

I, Librarian 4.6 114 26 k PDF File Manager 6 6 6 0

Total 2,802 522 k – 38 79 75 4

positive tainting for detection of SQLi. Their tech-
nique is based on the marking and tracking of trusted
data, instead of untrusted data.

Dashe et al. (Dahse and Holz, 2014) proposed an
approach that detects second-order vulnerabilities in
web applications, such as stored XSS and second-
order SQLi. The approach identifies taintable data
stores and checks if a symbol originating from such a
data store reaches a sensitive sink without being sani-
tized.

Livshits and Lam (Livshits and Lam, 2005) devel-
oped a static analysis approach that is based on con-
text sensitive pointer alias analysis and introduced ex-
tensions to the handling of strings and containers to
improve the precision.

AMNESIA (Halfond and Orso, 2005) is a tool that
protects web applications from SQLi attacks, resort-
ing from static and dynamic analysis. In the static
phase, the tool inspects the application’s code to get a
model of all queries. In the dynamic phase, the tool
monitors the application to detect SQLi attacks based
on the extracted models.

Flynn et al. (Flynn et al., 2018) developed and
tested classification models that predict if static anal-
ysis alerts are true or false positives, using a combi-
nation of multiple SATs. Other works study the prob-
lem of combining SATs (Nunes et al., 2017) (Algaith
et al., 2018).

In recent years, there have also been some re-
search efforts focused on applying machine learning
(ML) approaches to the detection of vulnerabilities in
source code (Grieco et al., 2016) (Shar and Tan, 2012)
(Shar et al., 2013) (Yamaguchi et al., 2011) (Medeiros
et al., 2016).

There are a few SATs that employ code correc-
tion. WebSSARI (Huang et al., 2004) is a tool that
statically finds XSS and SQLi vulnerabilities and then
remove them by inserting guards to secure it. The
authors, however, do not explain how the guards are
inserted or what they consist of. Medeiros et al.

(Medeiros et al., 2014) developed WAP, a SAT for
PHP web applications. The most novel aspects of the
tool are the use of data mining to predict false posi-
tives and automatic code correction. WAP uses taint
analysis to find several types of vulnerabilities, and
then to be processed by data mining to classify each
one as a false positive or not. Lastly, the vulnerabili-
ties that were not classified as false positives are cor-
rected automatically.

6 CONCLUSION

In this work, we proposed an approach for automated
code correction of PHP web application, visioning re-
moving XSS and SQLi vulnerabilities from their code
and improving their security. For that, firstly, we
analyzed a multitude of sanitization methods avail-
able in PHP for both of these vulnerabilities and the
situations when they should be applied and they do
not work as expected. Also, we verified that the ex-
istent SATs do not apply code correction, and the
very few ones that apply they often produce new pro-
grams that are syntactically invalid and can not be
executed. We proposed an approach based on taint
analysis to find and correct vulnerabilities in simpli-
fied PHP programs (i.e., slices of code) by adding
new lines of code containing secure corrections, tak-
ing into account the defects of sanitization functions.
We implemented the approach in the PHPCORREC-
TOR static analysis tool, written in Python. The devel-
oped tool was evaluated using both test cases retrieved
from SARD and real web applications obtained from
Exploit-DB. The results showed that all corrected pro-
grams were syntactically valid and preserved their
original behavior for both types of vulnerabilities.

Towards Web Application Security by Automated Code Correction

95

ACKNOWLEDGMENTS

This work was partially supported by the na-
tional funds through FCT with reference to SEAL
project (PTDC/CCI-INF/29058/2017), and LASIGE
Research Unit (UIDB/50021/2020).

REFERENCES

Acar, Y., Backes, M., Fahl, S., Kim, D., Mazurek, M. L.,
and Stransky, C. (2016). You Get Where You’re Look-
ing for: The Impact of Information Sources on Code
Security. In Proceedings of the IEEE Symposium on
Security and Privacy.

Algaith, A., Nunes, P., Fonseca, J., Gashi, I., and Viera, M.
(2018). Finding SQL Injection and Cross Site Script-
ing Vulnerabilities with Diverse Static Analysis Tools.
In Proceedings of the European Dependable Comput-
ing Conference.

Anderson, D. and Hills, M. (2017). Query Construction Pat-
terns in PHP. In Proceedings of the International Con-
ference on Software Analysis, Evolution and Reengi-
neering.

Dahse, J. and Holz, T. (2014). Static Detection of Second-
Order Vulnerabilities in Web Applications. In Pro-
ceedings of the USENIX Security Symposium.

Fischer, F., Böttinger, K., Xiao, H., Stransky, C., Acar,
Y., Backes, M., and Fahl, S. (2017). Stack Overflow
Considered Harmful? The Impact of Copy Paste on
Android Application Security. In Proceedings of the
IEEE Symposium on Security and Privacy.

Flynn, L., Snavely, W., Svoboda, D., VanHoudnos, N., Qin,
R., Burns, J., Zubrow, D., Stoddard, R., and Marce-
Santurio, G. (2018). Prioritizing Alerts from Multi-
ple Static Analysis Tools, Using Classification Mod-
els. In Proceedings of the International Workshop on
Software Qualities and Their Dependencies.

Grieco, G., Grinblat, G. L., Uzal, L., Rawat, S., Feist, J., and
Mounier, L. (2016). Toward Large-Scale Vulnerabil-
ity Discovery Using Machine Learning. In Proceed-
ings of the ACM Conference on Data and Application
Security and Privacy.

Halfond, W. G. J. and Orso, A. (2005). AMNESIA: Anal-
ysis and Monitoring for NEutralizing SQL-injection
Attacks. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing.

Halfond, W. G. J., Orso, A., and Manolios, P. (2008).
WASP: Protecting Web Applications Using Positive
Tainting and Syntax-Aware Evaluation. IEEE Trans-
actions on Software Engineering.

Huang, J., Li, Y., Zhang, J., and Dai, R. (2019). UChecker:
Automatically Detecting PHP-Based Unrestricted File
Upload Vulnerabilities. In Proceedings of the IEEE/I-
FIP International Conference on Dependable Systems
and Networks.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T.,
and Kuo, S.-Y. (2004). Securing Web Application
Code by Static Analysis and Runtime Protection. In

Proceedings of the International Conference on World
Wide Web.

Livshits, V. B. and Lam, M. S. (2005). Finding Security
Vulnerabilities in Java Applications with Static Anal-
ysis. In Proceedings of the USENIX Security Sympo-
sium.

Medeiros, I., Neves, N. F., and Correia, M. (2014). Au-
tomatic Detection and Correction of Web Applica-
tion Vulnerabilities using Data Mining to Predict False
Positives. In Proceedings of the International World
Wide Web Conference.

Medeiros, I., Neves, N. F., and Correia, M. (2016).
DEKANT: a static analysis tool that learns to detect
web application vulnerabilities. In Proceedings of
the 25th International Symposium on Software Testing
and Analysis.

Nunes, P., Medeiros, I., Fonseca, J., Neves, N. F., Correia,
M., and Vieira, M. (2017). On Combining Diverse
Static Analysis Tools for Web Security: An Empirical
Study. In Proceedings of the European Dependable
Computing Conference.

Schwartz, E. J., Avgerinos, T., and Brumley, D. (2010).
All You Ever Wanted to Know about Dynamic Taint
Analysis and Forward Symbolic Execution (but Might
Have Been Afraid to Ask). In Proceedings of the IEEE
Symposium on Security and Privacy.

Shar, L. K. and Tan, H. B. K. (2012). Mining Input Saniti-
zation Patterns for Predicting SQL Injection and Cross
Site Scripting Vulnerabilities. In Proceedings of the
International Conference on Software Engineering.

Shar, L. K., Tan, H. B. K., and Briand, L. C. (2013). Mining
SQL Injection and Cross Site Scripting Vulnerabilities
using Hybrid Program Analysis. In Proceedings of the
International Conference on Software Engineering.

Shirey, R. (2007). Internet Security Glossary. RFC 4949,
IETF.

Steffens, M., Rossow, C., Johns, M., and Stock, B. (2019).
Don’t trust the locals: Investigating the prevalence of
persistent client-side cross-site scripting in the wild.
In Proceedings of the Network and Distributed System
Security Symposium.

van der Stock, A., Glas, B., Smithline, N., and Gigler, T.
(2017). Owasp Top 10 2017 The Ten Most Critical
Web Application Security Risks. Technical report,
OWASP.

WhiteHat Security (2019). Technical report, WhiteHat Se-
curity.

Yamaguchi, F., Lindner, F., and Rieck, K. (2011). Vulner-
ability Extrapolation: Assisted Discovery of Vulner-
abilities Using Machine Learning. In Proceedings of
the USENIX Conference on Offensive Technologies.

Zheng, Y., Zhang, X., and Ganesh, V. (2013). Z3-str: A Z3-
based String Solver for Web Application Analysis. In
Proceedings of the Joint Meeting on Foundations of
Software Engineering.

ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

96

