information during the first epochs showing itself as 
the most reliable but only for a limited time. 
PEGASIS, being an improvement version of the 
LEACH, shows a performance better of this last, 
while, paradoxically, the simulations identify in the 
AODV protocol, conceived for mobile networks, a 
valid competitor of the PEGASIS. This result can be 
due both to the particular scenario and to the energy 
requests of the other routing protocols. 
REFERENCES 
Shi, E., & Perrig, A. (2004). Designing Secure Sensor 
Networks. IEEE Wireless Communications, 11 (6), 38-
43. DOI:10.1109/MWC.2004.1368895 
Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. & Cayirci, 
E. (2002). Wireless sensor networks: a survey. 
Computer Networks, 38 (4), 393-422. 
DOI:10.1016/S1389-1286(01)00302-4. 
Leccese, F., Cagnetti, M., Ferrone, A., Pecora, A. & Maiolo 
L. (2014). An infrared sensor Tx/Rx electronic card for 
aerospace applications. Proceedings of the IEEE 
International Workshop on Metrology for Aerospace, 
6865948, 353-357. 
DOI:10.1109/MetroAeroSpace.2014.6865948. 
Leccese, F., Cagnetti, M., Sciuto, S., Scorza, A., Torokhtii, 
K., Silva, E. (2017). Analysis, design, realization and 
test of a sensor network for aerospace applications. 
Proceedings of IEEE International Instrumentation and 
Measurement Technology Conference (I2MTC), 1-6. 
DOI:10.1109/I2MTC.2017.7969946. 
Iqbal, Z., Kim, K. & Lee H. N. (2017). A Cooperative 
Wireless Sensor Network for Indoor Industrial 
Monitoring.  IEEE Transactions on Industrial 
Informatics, 13(2), 482-491, April 2017. 
DOI:10.1109/TII.2016.2613504. 
Abruzzese, D. Angelaccio, M. Giuliano, R. Miccoli, L. & 
Vari, A. (2009). Monitoring and vibration risk 
assessment in cultural heritage via Wireless Sensors 
Network.  Proceedings of 2nd Conference on Human 
System Interactions, 568-573. 
DOI:10.1109/HSI.2009.5091040. 
Ming, X., Yabo, D., Dongming, L., Ping, X. & Gang, L. 
(2008). A Wireless Sensor System for Long-Term 
Microclimate Monitoring in Wildland Cultural 
Heritage Sites. Proceedings of IEEE International 
Symposium on Parallel and Distributed Processing 
with Applications, pp. 207-214. 
DOI:10.1109/ISPA.2008.75. 
D'Amato, F., Gamba, P. & Goldoni, E. (2012). Monitoring 
heritage buildings and artworks with Wireless Sensor 
Networks,  Proceedings of IEEE Workshop on 
Environmental Energy and Structural Monitoring 
Systems (EESMS), 1-6. 
DOI:10.1109/EESMS.2012.6348392. 
Abruzzese, D., Angelaccio, M., Buttarazzi, B., Giuliano, 
R., Miccoli, L. & Vari, A. (2009). Long life monitoring 
of historical monuments via Wireless Sensors Network. 
Proceedings of 6th International Symposium on 
Wireless Communication Systems, 570-574. doi: 
10.1109/ISWCS.2009.5285215. 
Pasquali, V., Gualtieri, R., D’Alessandro, G., Granberg, M., 
Hazlerigg, D., Cagnetti, M. & Leccese, F. (2016). 
Monitoring and analyzing of circadian and ultradian 
locomotor activity based on Raspberry-Pi. Electronics 
(Switzerland), 5 (3), art. no. 58, . 
DOI:10.3390/electronics5030058. 
Pasquali, V., D'Alessandro, G., Gualtieri, R. & Leccese, F. 
(2017). A new data logger based on Raspberry-Pi for 
Arctic Notostraca locomotion investigations. 
Measurement: Journal of the International 
Measurement Confederation, 110, 249-256. 
DOI:10.1016/j.measurement.2017.07.004. 
Al-Karaki, J. N. & Kamal, A. E. (2004). Routing techniques 
in wireless sensor networks: a survey. IEEE Wireless 
Communications, 11 (6), 6-28. 
DOI:10.1109/MWC.2004.1368893. 
Leccese, F., Cagnetti, M., Tuti, S., Gabriele, P., De 
Francesco, E., Ðurovi
ć-Pejčev, R. & Pecora, A. (2017). 
Modified LEACH for Necropolis Scenario. 
Proceedings of the IMEKO International Conference 
on Metrology for Archaeology and Cultural Heritage, 
23-25 October, 2017, Lecce, Italy. 
Lamonaca, F., Sciammarella, P. F., Scuro, C., Carni, D. L. 
& Olivito, R.S. (2018). Internet of Things for Structural 
Health Monitoring. Proceeding of the Workshop on 
Metrology for Industry 4.0 and IoT, MetroInd 4.0 and 
IoT 2018, 95-100. 
DOI:10.1109/METROI4.2018.8439038. 
Gallucci, L., Menna, C., Angrisani, L., Asprone, D., Lo 
Moriello, R.S., Bonavolontá, F. & Fabbrocino, F. 
(2017). An embedded wireless sensor network with 
wireless power transmission capability for the 
structural health monitoring of reinforced concrete 
structures.  Sensors (Switzerland), 17 (11), 2566, . 
DOI:10.3390/s17112566. 
Morello, R., De Capua, C. & Meduri, A. (2010). Remote 
monitoring of building structural integrity by a smart 
wireless sensor network. Proceeding of the IEEE 
International Instrumentation and Measurement 
Technology Conference, I2MTC 2010, 1150-1154. 
DOI:10.1109/IMTC.2010.5488136. 
D’Alvia, L., Palermo, E., Rossi, S. & Del Prete, Z. (2017) 
Validation of a low-cost wireless sensors node for 
museum environmental monitoring. ACTA IMEKO, 6 
(3), 45. DOI: 
http://dx.doi.org/10.21014/acta_imeko.v6i3.454. 
Islam, K., Shen, W. & Wang X. (2012). Wireless Sensor 
Network Reliability and Security in Factory 
Automation: A Survey. IEEE Transactions on Systems, 
Man, and Cybernetics, Part C (Applications and 
Reviews), 42 (6), 1243-1256. 
DOI:10.1109/TSMCC.2012.2205680. 
Shen, C. C., Srisathapornphat, C. & Jaikaeo C. (2001). 
Sensor information networking architecture and 
applications.  IEEE Personal Communications, 8 (4), 
52-59. DOI:10.1109/98.944004.