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Abstract: The heterogeneity of symptoms in Parkinson’s Disease (PD) has motivated investigating PD subtypes using 
cluster analysis techniques. Previous studies investigating PD clustering have typically focused on symptoms 
assessed using standardized clinical evaluations and patient reported outcome measures. Here, we explore PD 
subtype delineation using speech signals. We used data from the recently concluded Parkinson’s Voice 
Initiative (PVI) study where sustained vowels were solicited and collected under non-controlled acoustic 
conditions. We acoustically characterized 2097 sustained vowel /a/ recordings from 1138 PD participants 
using 307 dysphonia measures which had previously been successfully used in applications including 
differentiating healthy controls from PD participants, and matching speech dysphonia to the standard PD 
clinical metric quantifying symptom severity. We applied unsupervised feature selection to obtain a concise 
subset of the originally computed dysphonia measures and explored hierarchical clustering combined with 
2D-data projections using t-distributed stochastic neighbor embedding to facilitate visual exploration of PD 
subgroups. We computed four main clusters which provide tentative insights into different dominating 
speech-associated pathologies. Collectively, these findings provide new insights into the nature of PD towards 
exploring speech-PD data-driven subtyping. 

1 INTRODUCTION 

Parkinson’s Disease (PD) is a progressive 
neurodegenerative disorder with continuously 
increasing prevalence rates and growing burden for 
national health systems (Dorsey et al., 2013). In 2016 
there were approximately 6.1 million people 
reportedly diagnosed with PD compared to 2.5 
million people in 1990 (GBD, 2018). The primary PD 
symptom constellation comprises tremor, rigidity, 
bradykinesia, and postural stability. These fit within 
the broader spectrum of variable factors including 
motor, cognitive, and neuropsychiatric symptoms 
(Olanow, Stern, Sethi 2009). PD is well reported as a 
largely heterogeneous disease, which is further 
accentuated with considerable heterogeneity in 
individual patient symptom severity trajectories 
(Fereshtehnejad et al., 2015). 
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Assigning PD participants into subtypes is 
clinically important since homogeneous groups 
exhibit stronger clinical symptom manifestation and 
potentially stronger genetic coherence. Therefore, 
understanding different PD subtypes may lead to new 
insights towards involved biological pathways, which 
in turn may lead to better-informed, targeted 
treatment strategies. In practice, PD group 
membership may be achieved using some predefined 
clinical intuition and criteria such as age onset and 
dominating symptoms. Data-driven approaches to 
delineate PD subtypes have received increasing 
attention in the research community over the last few 
years (Lewis et al., 2005; Selikhova et al., 2009; 
Lawton, 2018). Indicative examples include using 
clinico-pathological characteristics (Selikhova et al., 
2009), standardized clinical instruments to assess 
motor, non-motor, and cognitive domains (Lawton, 
2018), or sensor-based gait pattern analysis (Nguyen 
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et al. 2019). The use of different modalities or clinical 
instruments to assess symptoms can potentially 
provide new insights, but makes comparisons across 
studies particularly challenging and may explain 
discrepancies in the reported PD subtypes.  

Crucially for the purposes of this study, speech is 
very strongly associated with overall PD symptom 
severity as assessed using standardized clinical 
metrics (Tsanas, 2019) and 29% of people diagnosed 
with PD consider it one of their most debilitating 
symptoms (Hartelius and Svensson, 1994). Recent 
studies have demonstrated the potential of speech 
signals and in particular sustained vowel /a/ 
phonations in PD applications, e.g. to (1) differentiate 
Healthy Controls (HC) from people diagnosed with 
PD with almost 99% accuracy (Tsanas et al., 2012), 
(2) accurately replicate the Unified Parkinson’s 
Disease Rating Scale (UPDRS) (Tsanas et al., 2011), 
which is the standard clinical tool to provide an 
overall PD symptom assessment, and (3) 
automatically assess voice rehabilitation (Tsanas et 
al., 2014a). Recent work has also demonstrated the 
potential of speech signals towards distinguishing 
people with Leucine-Rich Repeat Kinase 2 (LRRK2) 
associated PD, idiopathic PD, and HC (Arora et al., 
2018). Moreover, speech articulation kinematic 
models to characterize PD dysarthria and provide 
insights into the underlying vocal production 
mechanism have been developed (Gomez et al., 
2019). Collectively, these studies and many others 
demonstrate the enormous potential of using speech 
signals in the context of PD analysis.  

The aforementioned diverse problems rely on the 
existence of clinical labels and belong to the 
supervised learning paradigm. In situations where 
clinical labels (i.e. outcomes of interest) are not 
available, researchers typically resort to unsupervised 
learning methods for data exploration. These 
exploratory methods aim to decipher hidden patterns in 
the data or provide the means towards understanding 
the internal data structure e.g. with cluster analysis 
methods (Hastie, Tibshirani, Friedman, 2009). Cluster 
analysis aims to group together “similar” data samples 
(also known as objects in the statistics parlance) and in 
distinct groups data samples  which are “different”. 
There are numerous strategies and algorithms for 
cluster analysis where  the central notion is the concept 
of computing similarity amongst objects (see Hastie, 
Tibshirani, Friedman, 2009; Duda, Hart, Stork, 
2001). In simple terms, each object is assigned (or 
probabilistically assigned) cluster membership. The 
resulting outputs of cluster analysis are known as 
clusters or groups, and are often referred to as derived 
subtypes in clinical applications.  

Most studies aiming to report PD subtypes rely on 
standard cluster analysis methods and in particular k-
means (e.g. Lewis et al., 2005; Lawton et al., 2018), 
which is one of the simplest approaches but which is 
known to have some fundamental drawbacks (Hastie, 
Tibshirani, Friedman, 2009; Duda, Hart, Stork, 
2001). Additional considerations in cluster analysis 
include how to select a robust feature subset in an 
unsupervised feature selection framework (Dy and 
Brodley, 2004), potentially standardizing variables or 
introducting weights for different variables, and 
finally validating findings. Unfortunately many of the 
finer details in the application of the end-to-end 
cluster analysis methodology in clinical studies are 
frequently not reported. For an overview of this field 
(albeit using a different clinical application as an 
exemplar), including highlighting shortfalls and 
suggestions for best practice when reporting 
clustering results we refer to Horne et al. (2020).  

The aim of this study is to explore speech-PD 
data-driven subtyping using cluster analysis methods 
and provide tentative new insights into the nature of PD 
speech symptoms. Towards this aim we acoustically 
characterize sustained vowel /a/ phonations, determine 
a subset of dysphonia measures using unsupervised 
feature selecton, and experiment with different cluster 
analysis and data visualization tools.   

2 DATA 

The PVI study solicited phone calls from participants 
across seven major geographical locations 
(Argentina, Brazil, Canada, Mexico, Spain, USA, and 
the UK). People were requested to call a dedicated 
phone number and contribute (1) basic demographic 
information (age, gender), (2) self-report whether 
they had been clinically diagnosed with PD, and (3) 
two sustained vowel /a/ phonations. Following 
standard voice assessment protocols participants 
were instructed to sustain vowel /a/ for as long and as 
steadily as possible (Titze, 2000). Recordings were 
sampled at 8 kHz and stored on secure servers hosted 
by Aculab.  

In this study we only processed data from the PD 
participants to investigate PD subtypes and discarded 
data contributed by HC. Furthermore, we focus only on 
the data from the US cohort (geographic location with 
most data) to simplify analysis and avoid language 
confounds which might be otherwise reflected in the 
clustering results. In total, we processed 2097 sustained 
vowel /a/ phonations from 1138 PD participants (605 
males) with age (mean ± standard deviation): 
63.7±10.8 years. For further details on the PVI study 
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we refer to our previous work (Arora, Baghai-Ravary, 
Tsanas, 2019; Tsanas and Arora, 2019). 

3 METHODS 

3.1 Data Pre-processing 

We developed a speech recognition software which 
automatically transcribed the participants’ responses 
over the phone regarding age, gender, and self-
reported PD assessment. When the automated speech 
recognition algorithm had less than 90% confidence 
regarding the participants’ responses, the recordings 
were aurally inspected. Furthermore, we developed 
signal processing tools to screen out non-usable 
recordings e.g. with excessive background noise.  

For further details please see (Arora, Baghai-
Ravary, Tsanas, 2019).  

3.2 Acoustic Characterization of 
Sustained Vowel /a/ Phonations 

We used the Voice Analysis Toolbox (freely available 
on the first author’s website: https://www.darth-
group.com/software) to acoustically characterize each 
sustained vowel /a/ phonation using 307 dysphonia 
measures. The toolbox includes a range of widely 
used dysphonia measures which have been developed 
specifically to characterize sustained vowel /a/ 
phonations, and has been extensively validated in PD 
applications (Tsanas et al., 2010; Tsanas et al., 2011; 
Tsanas et al., 2012; Tsanas, 2012; Tsanas et al., 
2014a; Arora, Baghai-Ravary, Tsanas, 2019), and 
other voice-related applications (Tsanas and Gomez-
Vilda, 2013; San Segundo, Tsanas, Gomez-Vilda, 
2017). For the underlying rationale, conceptual basis 
and physiological background, as well as the 
algorithmic expressions for the computation of the 
dysphonia measures we refer to (Tsanas, 2012; 
Tsanas, 2013). A key component in speech signal 
analysis which is frequently a prerequisite for the 
computation of more advanced dysphonia measures 
is the fundamental frequency (F0), and in particular 
its time-varying property also known as F0 contour. 
We used the SWIPE algorithm (Camacho and Harris, 
2008), which we had previously demonstrated is the 
most accurate F0 estimation algorithm in sustained 
vowel /a/ phonations (Tsanas et al., 2014b). Overall, 
applying the speech signal processing algorithms to 
each of the phonations in the study resulted in a 
2097×307 feature matrix which was subsequently 
mined to determine possible cluster solutions. All 
features are continuous random variables.  

Before using the 307 features in the subsequent 
stages we linearly scaled each feature to be in the 
range [0, 1] so that no feature dominates others, in 
accordance to the standard rule of thumb for distance-
based machine learning algorithms (Bishop, 2006). 

3.3 Unsupervised Feature Selection 

A high dimensional dataset may increase the noise to 
signal ratio and obscure data structure and pattern 
recognition algorithms. This standard problem is 
known as the curse of dimensionality and is often 
detrimental for the performance of machine learning 
algorithms (Guyon et al. 2006; Hastie, Tibshirani, 
Friedman, 2009). According to the general principle 
of parsimony, it is desirable to develop a predictive 
model which at the same time is as simple as possible, 
i.e. via reducing the dimensionality of the input space. 
This approach is known as dimensionality reduction, 
and can be achieved either by feature transformation 
(transforming the features to populate a new, lower 
dimensional space), or by feature selection (choosing 
a subset of features from the original feature set). The 
latter is typically preferred in clinical settings because 
it is desirable to retain the interpretability of the 
original features (Guyon et al., 2006; Tsanas, Little, 
McSharry, 2013).  

In supervised learning frameworks, feature 
selection can be wrapped around a well-defined 
objective function capitalizing on the provided labels. 
Feature selection in unsupervised learning setups is 
less well defined and therefore more challenging (Dy 
and Brodley, 2004). The aim is identifying 
informative features supporting complex structures 
embedded in the high-dimensional space, as Dy and 
Brodley (2004) suggest: “The goal of feature 
selection for unsupervised learning is to find the 
smallest feature subset that best uncovers 
“interesting natural” groupings (clusters) from data 
according to the chosen criterion.” 

Here, we used the algorithmic approach endorsed 
by Yao et al. (2015) called i-Detect to select 
informative features where the identified feature 
subspace has the following property: the difference 
between the total volume of the space spanned by the 
selected feature subset and the sum of the volumes of 
clusters in the embedded manifolds is maximized. 
The i-Detect algorithm has two free hyper-parameters 
which need to be optimized: the kernel width, and the 
regularization parameter. Given that the algorithm is 
not sensitive to the choice of the kernel width (Yao et 
al. 2015), we focused only on experimenting with the 
selection of the regularization parameter. 
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Ultimately, the output of this unsupervised 
feature selection algorithm is a feature weight vector 
where many of the features are assigned to zero 
weighting and hence can be eliminated. The 
computed weights are then used to rank the original 
features and decide on an appropriate cut-off. 

3.4 Clustering 

Clustering falls under the unsupervised learning 
category and aims to provide some insight into the 
structure of the data to and group objects based on the 
similarity of the provided features. The output of a 
clustering algorithm indicates the (probabilistic) 
cluster membership of each object into the possible 
clusters. There are many clustering algorithms in the 
research literature, each with shortcomings and 
different strategies to optimize performance.  

In this study, we used hierarchical clustering 
which is a popular cluster analysis method that has 
often been successfully used in diverse applications 
(Hastie, Tibshirani, Friedman, 2009). Unlike other 
competing cluster analysis methods such as k-means, 
hierarchical clustering does not require pre-
specifying the number of clusters in the data. 
Hierarchical clustering constructs a dendrogram to 
represent the data in a tree-based form, which 
intuitively depicts how objects are grouped in the 
form of different levels. The tree is recursively split 
to form new clusters, aiming to maximize the between 
group dissimilarity. For further background details 
we refer readers to (Duda, Hart, and Stork 2004). 

We used hierarchical clustering with Ward’s 
linkage to cluster both the original high-dimensional 
data and the lower-dimensional representation 
obtained following unsupervised feature selection. 
The number of clusters was determined following 
visual inspection of the dendrogam in accordance 
with Sheaves et al. (2016). In essence, we aim to find 
a cut-off where there is considerable dissimilarity 
difference between successive levels. 

3.5 Data Visualization 

We applied the t-distributed Stochastic Neighbor 
Embedding (t-SNE) algorithm (van der Maaten and 
Hinton, 2008) to visualize the data structure embedded 
in the high-dimensional space (using the original 307-
dimensional space and also the feature space spanned 
with the selected features). The resulting 2D data 
representation can potentially provide new insights 
following visual inspection and can also be used to 
visually assess the cluster analysis results. 

4 RESULTS 

Figure 1 presents the dendrogram when using the 
original high-dimensional feature set prior to feature 
selection. Based on visual inspection, we decided to 
opt for six clusters (highlighted with the dotted red 
line). Following this, each object is assigned into a 
cluster. We applied t-SNE to project the high-
dimensional data into a 2D space, using the cluster 
labels to colour the two-dimensional objects in the 
projected feature space (see Figure 2). We remark that 
there is fairly good agreement (following visual 
inspection) on the assigned clusters and the t-SNE 2D 
projection. 

 

Figure 1: Dendrogram for the hierarchical clustering with 
Ward’s linkage to determine the number of clusters in the 
analysis using all data. Following visual inspection we 
decided to opt for six clusters (highlighted with the dotted 
red line). 

 

Figure 2: Two-dimensional representation of the original 
high-dimensional dataset using t-SNE and marking the six 
clusters (denoted C1…C6) computed using hierarchical 
clustering with the original feature set (see dendrogram in 
Figure 1). 
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Figure 3: Output of the i-Detect algorithm assigning feature 
weights resulting in unsupervised feature selection.  

Figure 3 presents the output of i-Detect, denoting 
the indices of the selected features associated with 
non-zero weights (the vast majority of the features 
were assigned zero weights and hence can be 
eliminated from further processing). We set a cut-off 
threshold at 0.05, which yielded 21 features. Overall, 
the selected feature subset comprises primarily 
wavelet-based features. We then repeated the process 
with hierarchical clustering (Figure 4) and 2D 
projection of the feature space spanned by the 
selected feature subset (Figure 5). We note that this 
time we decided on four clusters in the reduced 
feature space following visual inspection of the 
dendrogram, and again the 2D projection in Figure 5 
is well aligned with the identified clusters. The 
computed four clusters were relatively evenly 
distributed with 458, 540, 577, and 522 objects in each.  

 

Figure 4: Dendrogram for the hierarchical clustering with 
Ward’s linkage to determine the number of clusters in the 
analysis using all data. Following visual inspection we 
decided to opt for six clusters (highlighted with the dotted 
red line). 

 

Figure 5: Two-dimensional representation of the dataset 
with selected features (seen in Figure 3) using t-SNE and 
marking the four clusters (denoted C1…C4) computed 
using hierarchical clustering with the selected feature 
subset (see Figure 4). 

5 DISCUSSION 

We explored the potential of processing features 
extracted using acoustic analysis of sustained vowel 
/a/ phonations in order to apply cluster analysis and 
define PD subtypes. Using unsupervised feature 
selection we determined a subset of 21 features from 
the originally high-dimensional subset of 307 
features. We reported that the 2097 PD phonations 
used in the study could be clustered into four groups. 
Therefore, in principle a new PD participant could be 
phenotyped on the basis of a sustained vowel /a/ 
phonation to identify the PD group with which they 
are similar. In turn, if we could interpret what these 
clusters mean this may have important implications 
regarding PD symptom trajectory and developing 
better-targeted therapeutic strategies. 

Interestingly, previous studies on PD subtyping 
have also reported the identification of four groups 
even though they had used very different data 
modalities. For example, Lewis et al. (2005), 
collected demographic, motor, mood, and cognitive 
measures from 120 early-stage PD participants and 
applied standard k-means cluster analysis which 
resulted into four main subgroups: (1) younger PD 
onset; (2) tremor-dominant; (3) non-tremor dominant 
with considerable cognitive impairment and mild 
depression; and (4) rapid disease progression but no 
cognitive impairment. Lawton et al. (2018) 
investigated motor, non-motor, and cognitive 
domains expressed using standardized clinical 
instruments on two large PD cohorts (1601 and 944 
participants). They applied standard k-means 
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clustering on the latent variables extracted through 
factor analysis of the aggregate standardized 
questionnaires, and reported four main subgroups: (1) 
fast motor progression with symmetrical motor 
disease, poor olfaction, cognition and postural 
hypotension; (2) mild motor and non-motor disease 
with intermediate motor progression; (3) severe 
motor disease, poor psychological well-being and 
poor sleep with an intermediate motor progression; 
(4) slow motor progression with tremor-dominant, 
unilateral disease. van Rooden et al. (2011) similarly 
applied cluster analysis on two PD cohorts (344 and 
357 participants) and reported four subgroups: (1) 
mildly affected in all domains, (2) predominantly 
severe motor complications, (3) affected mainly on 
nondopaminergic domains with no major motor 
complications, (4) severely affected across all 
domains. Mu et al. (2017) employed k-means domain 
clustering based on motor and non-motor symtoms in 
PD using two cohorts (411 and 540 participants), and 
similarly also reported finding four clusters: (1) mild, 
(2) non-motor dominant, (3) motor-dominant, and (4) 
severe.  

Although there appear quite clear differences in 
the distributions of the selected features 
corresponding to each of the four clusters (results not 
shown) it is difficult to associate those with specific 
vocal performance degradation symptoms. In all 
cases, the wavelet coefficients used here correspond 
to expressing uncertainties in the F0. Moreover, it is 
not clear whether and how well the four identified 
clusters on the basis of the acoustic features extracted 
from the sustained vowel /a/ phonations match with 
the PD symptoms using in previous studies (Lewis et 
al. 2005; van Rooden et al., 2011; Lawton et al., 
2018). Unfortunately, additional modalities or 
UPDRS assessments are not available in the PVI 
dataset, and other studies which have longitudinal 
clinical evaluations and patient reported outcome 
measures do not have speech signal recordings which 
would enable to explore bridging this gap. 

The 2D projected feature space using t-SNE was 
intuitively appealing both when using the original 
high-dimensional dataset and also with the selected 
feature subset comprising 21 features: the clusters 
identified using hierarchical clustering appear to be 
generally well separated in the t-SNE derived scatter 
plots. This suggests that there is indeed some inherent 
underlying structure in the data, and that indeed the 
unsupervised feature selection algorithm has 
provided a feature subset that leads to some 
meaningful natural grouping of the PD cohort. 

The field of PD subtyping on the basis of voice 
appears to have been scarcely investigated. Rueda 

and Krishnan (2018) attempted cluster analysis 
algorithms on the basis sustained vowel /a/ recordings 
in 57 HC and 57 matched PD participants. However, 
the limited sample size suggests there is no sufficient 
statistical power to detect multiple clusters and hence 
their findings should be interpreted very tentatively. 
Moreover, mixing healthy controls with PD 
participants by design is not aimed to deliver PD 
subtypes but rather a more generic grouping of 
voices. We only used data from the PVI US cohort in 
this study. We decided to focus only on a single 
cohort to avoid potential language confounds in the 
design of cluster analysis; we are currently working 
on generalizing findings to the other cohorts in PVI, 
developing new insights when comparing derived 
cluster groups across the different locations where PD 
participants self-enrolled. 

We envisage the PVI study and the findings 
presented herein may contribute towards improving 
understanding of the nature of PD subtypes and hence 
potentially informing therapeutic interventions in 
clinical practice (Triantafyllidis and Tsanas, 2019). 
We are further exploring the PVI data to investigate 
differences across PD cohorts at scale between 
different geographical locations, both towards under-
standing differences versus HC and also internal 
variability which may inform future clinical trials. 
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