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Abstract: Estimation of the pose of objects is essential in order to interact with the real world in many applications such 
as robotics, augmented reality or autonomous driving. The key challenges we must face in the recognition of 
objects and their pose is due to the diversity of their visual appearance in addition to the complexity of the 
environment, the variations of illumination, and possibilities of occlusions. We have previously shown that 
Hidden Markov Models (HMMs) can improve the recognition of objects even with the help of weak object 
classifiers if orientation information is also utilized during the recognition process. In this paper we describe 
our first attempts when we apply HMMs to improve the pose selection of elementary convolutional neural 
networks (CNNs).

1 INTRODUCTION 

The recognition of 3D objects is an elementary 
problem in many application fields such as robotics, 
autonomous vehicles or augmented reality. However, 
to interact with the objects of the environment, not 
only specific or generic object recognition is 
inevitable, but the determination of their pose is also 
essential. Pose estimation is also a fundamental 
problem in computer vision and large number of 
algorithms have been proposed for the various 
conditions and applications. 

In recent years, the state of the art of convolutional 
neural networks, like Regional CNN (Girshick, 
Donahue, Darrell, & Malik, 2014), Fast R-CNN 
(Redmon, Divvala, Girshick, & Farhadi, 2016), Mask 
R-CNN (He, Gkioxari, Dollar, & Girshick, 2017), 
(Redmon et al.,2016) and Single Shot Detectors (Liu 
et al., 2016), have been proven to be very efficient for 
object detection and recognition in RGB and depth 
images, however these CNNs do not provide us 
straightforward object pose estimation. 

Similarly, the problem of the estimation of the 6-
DoF object pose was recently attacked by different 
CNN approaches. Classical approaches can be 
grouped ( Nöll, Pagani, & Stricker, 2011) as Direct 
Linear Transformation, Perspective n-Point, and a 
priori information estimators; they all suffer from the 
problem of efficient feature selection, 

correspondence generation and outlier filtering. 
Contrary, CNN-based methods have the great 
advantage to learn the combination of the best 
possible features and classifiers or regressors. 

Partially as a result of the Amazon Picking 
Challenge (Correll et al., 2018), interest in object 
manipulation has increased recently leading to the 
development of several 6-DoF object estimation 
methods. Many of these methods, such as PoseCNN 
(Xiang, Schmidt, Narayanan, & Fox, 2018), SSD-6D 
(Kehl, Manhardt, Tombari, Ilic, & Navab, 2017), 
Real-Time Seamless Single Shot 6D Object Pose 
Prediction (Tekin, Sinha, & Fua, 2018) and BB8 (Rad 
& Lepetit, 2017), use convolution neural network 
(CNNs) to estimate pose with high accuracy of 
known objects in cluttered environments. 

It is well-known that the general disadvantage of 
neural network based methods is the dependency on 
the training data and the utilized training methods. 
For example, in (Xu, Bai, & Ghanem, n.d., 2019) the 
performance drop caused by missing object labels is 
analysed. Unfortunately, the generation of training 
data is typically costly whether it is based on real or 
syntactic data, especially if the pose is to be 
represented (Rennie, Shome, Bekris, & De Souza, 
2016). 

We have previously shown that Hidden Markov 
Models (HMMs) can improve the recognition of 
objects from a sequence of images when weak object 
classifiers are utilized (Czúni et al., 2017). Since our 
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proposal utilized orientation sensors it is 
straightforward to investigate whether it can improve 
more sophisticated object recognizers (such as 
CNNs) in pose estimation. 

In this paper we show, that using a general object 
classification network (namely VGG16), the 
temporal inference generated by the HMM can 
significantly increase the pose estimation 
possibilities. The integration of our HMM approach 
with more specific pose related networks is the task 
of future. 

In the following Section we shortly overview 
some relevant papers then in Section 3 we describe 
the details of our object pose estimation method. In 
Section 4 our dataset and experiments are described 
and finally in Section 5 we conclude our paper. 

2 RELATED WORKS 

6D object pose estimation methods can be 
categorized roughly into feature-based, template-
based, and CNN-based methods. 

Traditional local features (Collet, Martinez, & 
Srinivasa, n.d, 2011.) utilize RGB images to extract 
local keypoints and perform feature matching to 
estimate the object pose. Local feature methods are 
often fast and able to handle scene clutter and 
occlusion, but the objects needed enough textures. 

A 3D template model is built and used in 
template-based methods (Hinterstoisser et al., 2013) 
to scan various locations in the input image. A 
similarity score is calculated at each position and the 
best match is obtained by comparing these scores. 
Template-based methods have great advantages on 
texture-less objects however, they suffer from 
occlusions. 
In recent years, CNNs have started to dominate this 
field either, so will review some of the most important 
approaches.  

A main concept behind PoseCNN (Xiang et al., 
2018) is to decouple the pose estimation into separate 
components, allowing the network to identify the 
dependencies and independence between them 
explicitly. PoseCNN carries out three related tasks. 
Starting from predicting an object label for each pixel 
in the input image, estimating the 2D pixel 
coordinates of the object, and estimating the 3D 
Rotation by regressing convolutional features. There 
are two levels in the network architecture of 
PoseCNN. The first level is considered as the 
backbone of the network consisting of 13 convolution 
layers and 4 max pooling layers. Feature maps are 
extracted with various resolution from the input 

image. These features are spread across all the second 
level tasks (i.e. semantic labelling, 3D translation 
estimation, and 3D rotation regression) performed by 
the network.  

The SSD-6D (Kehl et al., 2017) approach is a 
different method to detect instances of 3D objects and 
estimate their 6D poses by a single shot from RGB 
data only. It extends the common SSD paradigm to 
cover the entire 6D pose space and these networks are 
typically trained only on synthetic data. The network 
produces six feature maps on multiple scales for each 
input RGB image. To determine the object class, the 
2D bounding box, and scores for possible viewpoints 
and in-plane rotations, each map is convolved with 
specifically trained kernels. After convolution, these 
feature maps are analysed to create 6D pose 
hypotheses. While SSD-6D can give very good 
results it has its limitations, for example it is 
necessary to find a suitable sampling of the viewing 
space of the model to obtain the satisfactory results. 

In the approach of (Sundermeyer, Marton, 
Durner, & Triebel, 2019) augmented autoencoders 
are used with single RGB images as inputs but 
additionally depth maps may optionally be 
incorporated to refine pose estimation. First SSD is 
applied to detect the required object, to identify its 
bounding box then Augmented Autoencoder (AAE) 
is utilized to estimate the 3D orientation. Because the 
Augmented Autoencoder is trained on 3D syntactic 
models, they used a Domain Randomization (DR) 
strategy to generalize from syntactic data to real.  

3 THE PROPOSED METHOD 

We follow the approach when a single CNN is to 
recognize an object and its pose through several 
observations then a statistical framework is applied to 
evaluate the result of inferences and to make the final 
object recognition and pose estimation. We have 
chosen a well-known neural network, often used as a 
backbone of more complex architectures, namely 
VGG16 (Simonyan & Zisserman, 2015). We don’t 
deal with the localization of the object within the 
image frame. I. e. it gives no big stress for the 
annotation procedure to generate training data but 
makes it a hard work for the processing framework to 
achieve good pose estimation. 

In our view-centred representation, the outlook of 
the object is modelled from different viewpoints with 
multiple 2D images. It would be possible to make 
these sample images from several elevations, 
although in our experiments we implemented only a 
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single elevation methodology (since the used dataset 
COIL contains only such data). 

During the recognition consecutive queries, shots 
taken from different viewing directions, are first 
evaluated by VGG16 inference resulting in 
confidence values. We assume that the relative pose 
changes between the shots are recorded by easily 
available IMU sensors (such as those built into most 
mobile phone).  

Using the image shots, the pre-built object 
models, the trained VGG16 networks, and the change 
in orientation between shots we use an HMM 
framework to evaluate the image sequences and to 
determine the most probable object and its pose series 
generating the observations.  

Since the order of sequential poses (the actual 
changes of relative viewing directions) is determined 
by the behaviour of the camera (or with other words 
by the user) it cannot be generally modelled in the 
model to determine the actual transition probabilities. 
What we can do is to measure the real change in 
relative poses query by query, with the help of IMU 
sensors, and use geometric probabilities to evaluate 
the chance of going from one state to another. For this 
resolution of the problem of computing state 
transitions, please see Subsection 3.2. 

3.1 HMM Object Models 

An HMM is defined by: 
• its states Si, 
• transition probabilities between states Si and Sj 

(see Eq. 2), 
• emission probabilities (P(o), see Eq. 7),  
• initial state probabilities (πi). 

To achieve object retrieval will need to build 
HMM models for all elements of the set of objects 
(M) where different poses (views made from different 
orientations in our case) correspond to the states. 
Then, based on the sequence of observations (oi), we 
will find the most probable state sequence for all 
object models. The state sequence among these, 
which has the highest probability, will belong to the 
object being recognized.  

Traditionally, to build a Markov model means 
learning its parameters (π, transition and emission 
probabilities) by examining training examples. 
However, our case is special: the probability of going 
from one state to another severely depends on the 
user’s behaviour and on the frame rate of the camera. 
Thus, we can’t follow the traditional way, to use the 
Baum-Welch algorithm for parameter estimation 
based on several training samples but can directly 

compute transition probabilities based on geometric 
as described later. Observation probabilities will be 
determined by the confidence values of the trained 
CNN. 

3.2 Object Poses as States in Hidden 
Markov Models 

Let S = {S1,…,SN} denote the set of N possible hidden 
states of a model. In each step of an observation 
process (denoted by index t) the model can be 
described as being in one qt ∈ S state, where t = 
1,…,T. 

In our approach the states can be considered as the 
2D views (poses) of a given object model. This can 
be easily imagined as a camera is targeting towards 
and object from a given elevation and a given 
azimuth. The number of possible states should be kept 
low, otherwise the state transition matrix (A) would 
contain too small numbers and finding the most 
probable state sequence would be too uncertain. On 
the other hand, small number of states would mean 
that quite different appearances of objects should be 
encoded by the same representation (now by a single 
CNN for all objects and their poses) resulting in 
decreased confidence again, thus the generation of 
states should be designed carefully. In our 
experiments we use static subdivision of the circle of 
360º into 8º uniform sectors each with 45º opening. 

We define the initial state probabilities π = {πi}, 
1≤i≤N based on the opening angle of the views: π௜ = 𝑃(𝑞ଵ = 𝑆௜) = 𝛼(𝑆௜)360   (1)

where α(Si) is the angle (given in degree) of 
aperture of state Si. 

3.3 State Transitions 

Between two steps the model can undergo a change 
of states according to a set of transition probabilities 
associated with each state pairs. In general, the 
transition probabilities are: 

aij = P(qt = Sj|qt−1 = Si)  (2)
where now i and j indices refer to states of the HMM, 
aij ≥ 0, and for a given state ∑ 𝑎௜,௝ே௝ୀଵ = 1 holds. The 
transition probability matrix is denoted by A = {aij}, 
1≤i,j≤N. The probability of going from one state to 
another cannot be determined as part of the model but 
we can directly compute transition probabilities based 
on geometric probability as follows. 

First define ∆t−1,t as the orientation difference 
between two successive observations: 
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Δt−1,t = α(ot) − α(ot−1)  (3)

Now define Ri as the aperture interval angle 
belonging to state Si by borderlines: 

Ri=[Si
min, Si

max)  (4)
where Si

min and Si
max denotes the two (left and 

right) terminal positions of state Si (one side is 
specified with an open interval symbol). The back 
projected aperture interval angle is the range of 
orientation from where the previous observation 
should originate: 

.  (5)

Now, to estimate the transition probability we use 
the geometrical probability concept applied on the 
intersection of Lj and Rj: 𝑎௜௝ = 𝑃൫𝑞௧ = 𝑆௝ห𝑞௧ିଵ = 𝑆௜൯ = ఈ൫௅ೕ∩ோ೔൯ఈ൫௅ೕ൯ .  (6)

3.4 Recognition of Objects and Their 
Poses 

The emission probability of a particular observation 
ot for state Si is defined as: 𝑏௜(𝑜௧) = 𝑃(𝑜௧|𝑞௧ = 𝑆௜)��  (7)
Applying VGG16 as a global object classifier, for all 
poses of all objects, we can consider the confidence 
values of inferences as bi-s. We assume that an 
observation sequence contains only one class of 
objects (possibly with several poses as the camera 
moves on). Then for each possible object we 
independently run the Viterbi algorithm to combine 
the values of Eq. 2, Eq. 7, and πi-s to get the most 
probable state sequences. Finally, we choose the 
object with the highest probability value as the 
recognized object and we can also determine the 
poses selected for each query by the Viterbi path. 

4 EVALUATION 

4.1 Dataset 

The COIL-100 dataset (Nene et al., 1996) includes 
100 different objects each with 72 images taken by 5º 
at the same elevation. We have chosen 40 objects 
from the 100 for our experiments, see Fig. 1 for some 
sample images. Each object was represented with 8 
poses by equally divided sectors of 45º. Images are 
originally with black background but to be more 
realistic we have given different backgrounds, 
selected from 200 random images, so the original 

COIL images cover around 25% of the area of 128 × 
128 pixels (Fig. 1 bottom line). We believe that that 
small adjacent black area around the objects does not 
distort the results since it appears in all objects and 
gives no advantage to the classifier. Thus, we got 
2880 images (40 × 72) directly from COIL-100 and 
11520 from augmentation. The dataset was cut into 
training and testing parts so no queries of the 
experiments could exactly match those images used 
to train the CNN. 

 

 
Figure 1: Top line: example objects from the COIL-100 
dataset. Bottom line: test images with different 
backgrounds. 

4.2 Tests and Evaluations 

A single VGG16 network was used to recognize all 
320 (40 objects × 8 poses) classes. The network was 
pre-trained with images of ImageNet (Russakovsky et 
al., 2014). We did not refine the feature extraction 
layers of the network, only the 4 end layers 
responsible for classification, were replaced and re-
trained. During training image rotation, shift, shear, 
zoom, and horizontal flip was applied as further 
augmentation.  

 
Figure 2: Average orientation error at different number of 
queries for VGG16 only (yellow) and VGG+HMM (blue). 

To get a general overview of the performance we 
computed the pose error by averaging the orientation 
error for each object and each pose estimated in 8 
independent random experiments. As one could 
expect the error may depend on the number of 
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observations (i.e. the number of queries). As Fig. 2 
shows, increasing the number of queries results in the 
decrease of average pose error from 67.18º to 44.78º. 
As a reference, we computed the average error of the 
VGG16 network illustrated by yellow in Fig. 2. These 
values are ranging from 67.18º to 63.59º significantly 
higher than the VGG+HMM technique. To highlight 
the information added by the orientation sensor we 
made tests where the transition probabilities were set 
constant. This is named VGG+mHMM and shown by 
green dotted lines in Fig. 2. There is no significant 
difference between VGG16 and VGG+mHMM as 
expected. 

Interestingly, regarding the average object-level 
recognition rate based on 4 queries, the VGG+HMM 
method achieved 99.7% and the VGG16 resulted in 
99.1%, which is a small difference thanks to the good 
general recognition abilities of VGG16.  

 

 
Figure 3: Average orientation error for each object, in case 
of two queries, for VGG16 only (yellow), VGG+HMM 
(blue), and VGG+mHMM with constant transition 
probabilities (green dotted). 

5 CONCLUSIONS 

In our paper we discussed a probabilistic approach to 
enhance the pose estimation capabilities of simple 
classification networks such as VGG16. We utilized 
the orientation sensor to estimate the transition 
probabilities between poses thus HMMs could be 
used to estimate the most probable pose sequences. 
The improvement over the applied CNN is significant 
as shown by experiments using 40 randomly chosen 
objects of the COIL-100 dataset. In future we plan the 
investigate how to fuse the model with more 
sophisticated CNNs such as PoseCNN or SSD-6D. 
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