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Abstract: Data imbalance remains one of the most wide-spread challenges in the contemporary machine learning. Pres-
ence of imbalanced data can affect the learning possibility of most traditional classification algorithms. One
of the the strategies for handling data imbalance are data-level algorithms that modify the original data distri-
bution. However, despite the amount of existing methods, most are ill-suited for handling image data. One of
the possible solutions to this problem is using alternative feature representations, such as high-level features
extracted from convolutional layers of a neural network. In this paper we experimentally evaluate the possi-
bility of using both the high-level features, as well as the original image representation, on several popular
benchmark datasets with artificially introduced data imbalance. We examine the impact of different data-
level algorithms on both strategies, and base the classification on MobileNet neural architecture. Achieved
results indicate that despite their theoretical advantages, high-level features extracted from a pretrained neural
network result in a worse performance than end-to-end image classification.

1 INTRODUCTION

The problem of data imbalance remains one of the
most wide-spread challenges in the contemporary ma-
chine learning (Krawczyk, 2016). It occurs when-
ever the number of observations in one of the classes
(majority class) is significantly higher than the num-
ber of observations in one of the other classes (mi-
nority class). Traditional learning algorithms are ill-
equipped for handling significant data imbalance, dis-
playing bias towards recognizing objects as belonging
to the majority class, at the expense of performance
on the minority classes. Despite its prevalence in tra-
ditional machine learning, the impact of data imbal-
ance on the problem of image recognition only re-
cently started gaining attention of the research com-
munity (Buda et al., 2018). At the same time, inherent
characteristics of the image data, such as its high di-
mensionality and spacial properties, pose a challenge
for the traditional methods of dealing with data im-
balance (Lusa et al., 2012). This problem becomes
further pronounced in the small-scale image recogni-
tion task, where the amount of data is relatively small
(Japkowicz and Stephen, 2002), at least compared to
the amount required to train contemporary convolu-

tional neural networks.
In this paper we examine the possibility of using

different feature representations in the small-scale im-
balanced image recognition problem. We focus on
two most prevalent representations: original image
data, used directly to train convolutional neural net-
works, and high-level features extracted from the top
layers of a pretrained network, which can be further
used to train a traditional classification algorithm. We
experimentally evaluate the performance of both fea-
ture representations on several popular image recog-
nition benchmarks with artificially introduced data
imbalance, and combine them with a number of state-
of-the-art data-level strategies of handling data imbal-
ance, not designed with the image data in mind. In
the remainder of this paper we discuss the problem
of imbalanced image recognition, presents details of
the conducted experimental study, and discuss its out-
comes.
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2 IMBALANCED IMAGE
RECOGNITION PROBLEM

Methods for handling data imbalance can be divided
into techniques that modify the original data distri-
bution (data-level approaches), either by removing
existing observations (undersampling) or generating
new observations (oversampling), and modifications
to the existing learning algorithms that account for
disproportion between the number of observations be-
tween the classes (algorithm-level approaches). In
the context of image recognition both data-level ap-
proaches pose unique challenges that have to be ad-
dressed to successfully create a convolutional neural
network. In the case of undersampling the main issue
lies in the fact that convolutional neural networks tend
to require large quantities of data during training, and
by performing undersampling we artificially decrease
the amount of available data. In particular in the case
of highly imbalanced, small-scale datasets, for which
the amount of data is limited to begin with, perform-
ing undersampling might not be feasible. On the other
hand, in the case of oversampling the main problem
is that of handling novel data creation. The most
straightforward approach is to simply duplicate the
existing observations from the minority class. This,
however, can lead to overfitting of the classification
algorithm, which was previously demonstrated in the
context of decision trees (Chawla et al., 2002). The
alternative is to generate synthetic observations based
on the existing data: by far the most prevalent strategy
of that type is the Synthetic Minority Oversampling
Technique (SMOTE) (Chawla et al., 2002). SMOTE
is based on the idea of interpolation between a given
minority object and one of its nearest minority neigh-
bors. However, this process was designed with a
traditional data in mind, and is ill-suited for image
data, which was demonstrated in Figure 1. As can be
seen, the interpolated image loses the spatial proper-
ties of its prototypes, producing impossible in prac-
tice data that can potentially negatively affect the pro-
cess of convolutional neural networks training. Since
SMOTE is the cornerstone for most of the contem-
porary methods for handling the data imbalance, the
majority of the existing oversampling algorithms will
display negative characteristics when applied to the
image data.

An alternative to applying the data-level strategies
for handling data imbalance directly to the images is
using different feature representation. Since in the
recent years convolutional neural networks emerged
as a de facto standard in the image recognition do-
main, an obvious choice is extraction of high-level
image representations directly from a convolutional

neural network. This is usually done by capturing the
outputs of one of the last convolutional layers of a
network. Produced features, depending on the input
image size and the architecture of a particular net-
work, might also have smaller dimensionality than
the input images. Furthermore, such extracted fea-
tures are more suitable for data interpolation, since
their geometrical properties differ from the original
image data. Finally, particularly in the case of small-
scale image recognition problem, extracting the fea-
tures from an existing network opens up the possi-
bility of using pretraining: training the network that
will be used during the feature extraction on another
dataset, possibly consisting of a significantly larger
amount of data. However, despite all of the afore-
mentioned possible advantages, in practice it is not
clear if, and if so to what extent, using high-level fea-
tures extracted from a convolutional neural network
is feasible in practice, especially in presence of data
imbalance. Even more so, it is not clear what ef-
fect using different feature representations will have
on traditional data-level approaches to handling data
imbalance.

3 EXPERIMENTAL STUDY

To evaluate the feasibility of using different feature
representations in the imbalanced image recognition
task we conducted an experimental analysis on sev-
eral image recognition benchmarks. Specifically, we
considered the possibility of using features extracted
from pretrained convolutional neural network as an
alternative to the original image representation. Fur-
thermore, we examined the feasibility of different
data resampling techniques in both settings. In the
remainder of this section we give a detailed descrip-
tion of the set-up of the conducted experiments, and
we discuss the achieved results.

Datasets. Despite the prevalence of data imbalance
in real-life image recognition problems, most contem-
porary benchmark datasets provide data with a bal-
anced class distribution. To the best of our knowl-
edge, as of yet there exist no dedicated benchmark
for imbalanced image recognition. The alleviate this
issue we artificially introduced data imbalance to
three popular benchmark datasets: MNIST (LeCun
et al., 1998), consisting of 60000 train and 10000 test
grayscale images of handwritten digits with dimen-
sionality of 28×28 pixels, CIFAR-10 (Krizhevsky
et al., 2009), consisting of 50000 train and 10000
test 32×32 color images of objects such as airplanes,
birds and trucks, and STL-10 (Coates et al., 2011),
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Figure 1: An example of SMOTE interpolation applied to the image data.

consisting of 5000 train and 8000 test 96×96 color
images, with classes similar to CIFAR-10. Each of the
datasets consists of 10 classes, which is crucial for the
problem of imbalanced data resampling, where the
multi-class nature of the data further complicates the
relations between the classes. During the described
experiments we consolidated the image format across
the datasets by resizing them to the dimensionality
equal to 64×64 and, in case of MNIST, replicating
the grayscale images to obtain 3 color channels.

To introduce data imbalance we performed a fol-
lowing procedure: first of all, we randomly ordered
all of the classes. Secondly, for a specified imbalance
ratio (IR), the total number of observations per class
equal to n, and the number of classes M = 10, we cal-
culated the ratio of observations for i-th class as

ri = 1+
IR−1
M−1

· (i−1), (1)

and the desired number of observations for i-th class
as

ni =
1
ri
·n, (2)

with i ∈ {1,2, ...,10}. Finally, for each of the classes
we undersampled the observations up to the point of
achieving the specified number of observations. Both
train and test partitions used the same ratios of ob-
servations for individual classes, and the number of
observations was scaled depending on the size of re-
spective partition. This procedure was repeated 10
times for each of the datasets, creating folds in which
different classes were designated as either the major-
ity or the minority. Final results were averaged across
the folds.

Feature Representations. In the conducted exper-
iments we considered two different feature repre-
sentations commonly used in the image recognition
task. First of all, original image representation, more
specifically 64×64 color images. Convolutional neu-
ral networks take advantage of the spatial properties
of the image data and do not require any feature ex-

traction. However, image data is ill-suited for ad-
vanced oversampling techniques, such as SMOTE,
which natively supports only one-dimensional feature
representation. To mitigate this problem, when apply-
ing resampling on the image data it was vectorized
prior to the resampling, and reverted to the original
multi-dimensional format afterwards.

Secondly, we considered the possibility of using
high-level features extracted from a pretrained convo-
lutional neural network. Extracting features from a
previously trained model is a common practice that
enables the possibility of using different classifica-
tion algorithms. It is especially useful when rela-
tively small amount of data is available, since convo-
lutional neural networks typically require large quan-
tities of data to achieve a satisfactory performance.
Finally, in theory higher level feature representation
can be useful for data resampling. For instance,
SMOTE algorithm uses data interpolation between
two nearby observations to generate new synthetic
instances. This can produce unrealistic observations
when dealing with image data, posing an additional
difficulty during training of convolutional neural net-
works, which were designed for dealing with spatially
plausible data. In this paper we used the features
extracted from the last convolutional layer of Mo-
bileNet (Howard et al., 2017) network, flattened into
a 4096-dimensional vectors. Used network was pre-
viously trained on the ImageNet (Deng et al., 2009)
dataset, and was not finetuned to the specific bench-
mark datasets.

Classification Algorithms. Depending on the fea-
ture representation, we considered two methods of
data classification. First of all, for the original im-
age representation we trained a MobileNet. The net-
works weights were once again initialized with the
ones obtained during training on ImageNet dataset.
However, during classification the network was after-
wards finetuned to each of the considered benchmark
datasets. To achieve this, the fully-connected layer of
the original model was replaced with a global average
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pooling layer, followed by a 1024-dimensional fully-
connected layer with a ReLU activation function and
an another 10-dimensional fully-connected layer with
a softmax activation function, all with a randomly ini-
tialized weights. The final model was than trained on
the target dataset for 50 epochs, using RMSprop al-
gorithm with learning rate equal to 0.0001 and batch
size equal to 32. On the other hand, when using the
high-level features extracted from the pretrained Mo-
bileNet, the SVM classifier with a RBF kernel and
a regularization constant equal to 1.0 was used. The
implementations of MobileNet and SVM were taken
from, respectively, Keras (Chollet et al., 2015) and
scikit-learn (Pedregosa et al., 2011) machine learning
libraries.

Resampling Techniques. To reduce the negative
impact of data imbalance we considered several data-
level algorithms. We investigated the possibility
of using both the oversampling and the undersam-
pling algorithms. Specifically, we used the random
oversampling (ROS), random undersampling (RUS),
SMOTE, SMOTE combined with Edited Nearest
Neighbours (S+ENN), and undersampling based on
instance hardness threshold (IHT) (Smith et al.,
2014). Both the oversampling and the undersampling
was performed up to the point of achieving balanced
class distributions. The implementations of the al-
gorithms provided in the imbalanced-learn (Lemaı̂tre
et al., 2017) were used.

Evaluation Metrics. Traditionally, the metric most
commonly used to evaluate the performance of im-
age recognition algorithms is classification accuracy.
However, it is not a proper choice for evaluating the
performance on the data with skewed class distribu-
tion, since it assigns weight of the miss-classification
of individual classes as proportional to the number of
observations that they consist of. Instead, we evalu-
ate the performance of classifiers on multi-class im-
balanced data using three dedicated skew-insensitive
metrics (Branco et al., 2017): Average Accuracy
(AvAcc), Class Balance Accuracy (CBA), and Ge-
ometric Average of Recall (MAvG). They are ex-
pressed as follows:

AvAcc =
∑

M
i=1 T PRi

M
, (3)

CBA =
∑

M
i=1

mati,i
max(∑

M
i=1 mati, j ,∑M

i=1 mat j,i)

M
, (4)

MAvG = M

√
M

∏
i=1

recalli, (5)

where M is the number of classes, and mati, j stands
for the number of instances of the true class i that were
predicted as class j.

Results. In the conducted experiments we consid-
ered three benchmark datasets: CIFAR-10, MNIST
and STL-10, and three different levels of imbalance:
small (IR = 2.0), medium (IR = 5.0) and high (IR =
10.0). Furthermore, for both of the considered fea-
ture representations we evaluated the baseline case in
which no data resampling was applied, as well as re-
sampling with SMOTE, S+ENN and IHT algorithms.
Additionally, for the original image representation we
considered ROS and RUS algorithms: we did not
use them in combination with the SVM classification
of convolutional neural networks features since, con-
trary to the previously described algorithms, random
approaches produce the same results regardless of the
choice of feature representation.

We present the observed results in Table 1 and Ta-
ble 2, with the former containing the results for the
individual datasets, and the later the results for the
individual imbalanced ratios. Several important con-
clusions can be made based on the observed results.
First of all, using the original image representation to
train a convolutional neural network led to achieving
a significantly better performance than using the high-
level features extracted from a pretrained network, re-
gardless of the choice of dataset, imbalance ratio or
performance metric. It is not clear what caused such
a discrepancy, but several possible factors can be dis-
cussed. To begin with, using a pretrained model can
lead to a failure when the training data varies drasti-
cally between the pretrained model and the target do-
main. However, while a possible reason in case of
MNIST, both CIFAR-10 and STL-10 share the same
classes with the ImageNet: in fact, STL-10 is a subset
of ImageNet dataset. Second, more plausible expla-
nation is that pretrained models do not achieve sat-
isfactory performance without additional finetuning.
It is not obvious whether that is the case for Mo-
bileNets: while it is true that fully-connected layers
are not usable when the spatial dimensionality of the
input images changes, used feature extraction proce-
dure discarded all of the fully-connected layers are
relied solely on the output of the convolutional lay-
ers. Still, it is possible that due to the increased size
images are interpreted by the network as having low
resolution, which was shown to degrade the perfor-
mance of several neural architectures (Koziarski and
Cyganek, 2018). Final, most interesting explanation
is that convolutional neural networks are, by default,
more resilient to the presence of class imbalance than
traditional learning algorithms, such as SVM. This
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Table 1: Results for the individual datasets, averaged over the considered imbalanced ratios.

Original image representation, CNN classifier CNN features, SVM classifier

Metric Dataset Base ROS RUS SMOTE S+ENN IHT Base SMOTE S+ENN IHT

AvAcc CIFAR 0.8718 0.8744 0.8296 0.8617 0.7320 0.7779 0.7007 0.7164 0.6642 0.6089
MNIST 0.9924 0.9931 0.9903 0.9933 0.9918 0.9694 0.9622 0.9672 0.9619 0.8732
STL-10 0.7461 0.7466 0.6885 0.7397 0.5073 0.6737 0.5103 0.5326 0.5199 0.5139

CBA CIFAR 0.8544 0.8584 0.7693 0.8450 0.6555 0.6868 0.6735 0.6957 0.5406 0.5125
MNIST 0.9894 0.9906 0.9837 0.9908 0.9886 0.9316 0.9549 0.9590 0.9399 0.7776
STL-10 0.7139 0.7130 0.6104 0.7041 0.3696 0.5872 0.4437 0.4729 0.3830 0.4170

MAvG CIFAR 0.8661 0.8691 0.8249 0.8542 0.7210 0.7720 0.6410 0.6946 0.5919 0.5996
MNIST 0.9923 0.9931 0.9903 0.9933 0.9918 0.9690 0.9617 0.9669 0.9616 0.8692
STL-10 0.7288 0.7296 0.6751 0.7187 0.3107 0.6644 0.2156 0.3175 0.1577 0.4782

Table 2: Results for the individual imbalanced ratios (IR), averaged over the considered datasets.

Original image representation, CNN classifier CNN features, SVM classifier

Metric IR Base ROS RUS SMOTE S+ENN IHT Base SMOTE S+ENN IHT

AvAcc 2.0 0.8853 0.8864 0.8721 0.8823 0.7280 0.8586 0.7622 0.7714 0.7208 0.7325
5.0 0.8696 0.8705 0.8336 0.8651 0.7501 0.8009 0.7167 0.7323 0.7188 0.6607
10.0 0.8552 0.8572 0.8027 0.8474 0.7531 0.7616 0.6943 0.7125 0.7064 0.6029

CBA 2.0 0.8682 0.8684 0.8488 0.8644 0.6641 0.8259 0.7300 0.7426 0.6349 0.6740
5.0 0.8527 0.8538 0.7834 0.8463 0.6769 0.7219 0.6814 0.7018 0.6203 0.5516
10.0 0.8369 0.8398 0.7311 0.8292 0.6727 0.6577 0.6607 0.6832 0.6082 0.4813

MAvG 2.0 0.8822 0.8827 0.8684 0.8788 0.6425 0.8554 0.7316 0.7509 0.5703 0.7245
5.0 0.8629 0.8635 0.8276 0.8573 0.6861 0.7959 0.5881 0.6530 0.6032 0.6492
10.0 0.8421 0.8456 0.7943 0.8301 0.6948 0.7542 0.4986 0.5751 0.5377 0.5733

hypothesis is partially supported by the results pre-
sented in Table 2, where the relative drop of the per-
formance with the increase of imbalance ratio is, in
the baseline case, higher for the features extracted
from the convolutional neural network than the origi-
nal image representation. Still, more research would
be required to reliably confirm this hypothesis.

Secondly, it is worth noting that the choice of data
resampling depends on both the chosen feature rep-
resentation and the type of objects present in images.
Generally, the only technique that improved the per-
formance of classification with original image repre-
sentation for all of the datasets was random oversam-
pling. Both random undersampling, as well as the
more advanced techniques, that is SMOTE, S+ENN
and IHT, actually resulted in a deteriorated perfor-
mance, in some cases significantly. The only excep-
tion was MNIST dataset, for which SMOTE actu-
ally produced a marginally better results than both the
baseline and the random oversampling. This leads to a
conclusion that unless the considered data is relatively
simple, applying any advanced resampling techniques
directly to the images is not advisable. Random over-

sampling, while improving the performance in all of
the cases, did so only marginally, even for high im-
balance levels. On the other hand, using SMOTE
was a feasible strategy when operating on a high-
level features extracted from the convolutional neu-
ral network, leading to a greater improvement in per-
formance. However, due to the significantly worse
baseline performance, simply using the original im-
age representation without any resampling was still a
preferable strategy.

4 CONCLUSIONS

The aim of this paper was examining the possibil-
ity of using different feature representations in small-
scale imbalanced image recognition task. To this end
we experimentally evaluated the performance of Mo-
bileNet on three popular image recognition bench-
marks: CIFAR-10, MNIST and STL-10, with differ-
ent levels of introduced data imbalance. We consid-
ered two feature representations: original image rep-
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resentation and high-level features extracted from a
pretrained convolutional neural network, as well as
several popular data-level techniques for alleviating
the negative impact of data imbalance. Presented re-
sults indicate that using the original image represen-
tation with simple random oversampling leads to the
best results on the considered benchmark datasets.
Contrary to the results that could be expected for
tabular data, using other resampling techniques usu-
ally led to a deteriorated performance. Furthermore,
while using SMOTE improved performance for the
features extracted from the pretrained network, the
overall performance of that approach was still sig-
nificantly worse than simply using the original image
representation. Observed results suggest feasibility of
several further research directions: first of all, since
applying SMOTE actually produced a better perfor-
mance for the features extracted from the convolu-
tional neural network, it is possible that proposing a
better feature representation would preserve this ef-
fect, while improving the overall performance. Such
additional feature representations could include: fea-
tures extracted from a finetuned neural network, ear-
lier layers of the network, different neural architec-
tures, or autoencoders. Secondly, the observed results
suggest that convolutional neural networks may be
more resilient to the presence of data imbalance than
traditional learning algorithms, such as SVM. The
observed improvement in performance due to using
dedicated data preprocessing algorithm was also rel-
atively smaller than for the SVM. This, if confirmed
with further studies, could indicate that either dealing
with data imbalance is less pressing problem in the
image recognition task, or the data-level strategies are
not a suitable approach for solving it.
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