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Knowledge representation in OWL ontologies gained a lot of popularity with the development of Big Data,
Artificial Intelligence, Semantic Web, and Linked Open Data. OWL ontologies are very versatile, and there
are many tools for analysis, design, documentation, and mapping. They can capture concepts and categories,
their properties and relations. Normalized Systems (NS) provide a way of code generation from a model of
so-called NS Elements resulting in an information system with proven evolvability. The model used in NS
contains domain-specific knowledge that can be represented in an OWL ontology. This work clarifies the
potential advantages of having OWL representation of the NS model, discusses the design of a bi-directional
transformation between NS models and domain ontologies in OWL, and describes its implementation. It
shows how the resulting ontology enables further work on the analytical level and leverages the system design.
Moreover, due to the fact that NS metamodel is metacircular, the transformation can generate ontology of NS
metamodel itself. It is expected that the results of this work will help with the design of larger real-world
applications as well as the metamodel and that the transformation tool will be further extended with additional

features which we proposed.

1 INTRODUCTION

Ontologies are widely used in the software engi-
neering domain to describe the meaning of data in
a machine-actionable and yet flexible format (Bha-
tia et al.,, 2016). The usage of ontologies and re-
lated technologies such as the Web Ontology Lan-
guage (OWL) or the Resource Description Frame-
work (RDF) can vary — Semantic Web, integration of
databases, or ontology-driven conceptual modelling.
An ontology forms a graph of terms, their relations
and properties that represent knowledge of a particu-
lar domain. Graphs of different ontologies can also be
connected using relations of their terms. This versatil-
ity and modularity bring many exciting opportunities
in terms of integrations and transformations (Isotani
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etal., 2015). As ontologies are crucial in current soft-
ware engineering, a discipline of ontology engineer-
ing is becoming more prominent(Hitzler et al., 2016).

Normalized Systems (NS) theory (Mannaert et al.,
2016) targets the evolvability of systems as fine-
grained modular structures. Although the theory is
applicable to various domains, for example, civil en-
gineering, it describes how to build evolvable-proven
software using so-called Elements. The realization
of this theory exists in the form of code expanders
and related tool Prime Radiant to streamline the pro-
cess. Using expanders, the NS model, composed of
Elements and related entities, is used together with
custom code fragments to produce the evolvable en-
terprise information system. When change occurs in
a model or technologies, the application can be eas-
ily expanded again with the new changes. Normal-
ized Systems has been applied to several real-world
and large-scale applications (Huysmans and Verelst,
2013; De Bruyn, 2011; Oorts et al., 2014).
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Currently, two problems lie in the NS models.
First, NS models tie domain-specific knowledge such
as entities, their attributes, processes, or views on en-
tities together with implementation-specific configu-
rations such as form-rendering details, visibility of at-
tributes, or timed triggers and integrations with other
systems. The second and related issue is the absence
of explicit compatibility or mappings with different
modelling languages that are often used for domain
analysis such as UML, OntoUML, ORM, or BPMN.
Elimination of those issues would allow to re-use do-
main models from other languages and to create mod-
els without the knowledge of implementation details.

In this work, we present first systematic approach
of providing model interoperability of the domain-
specific part of any NS model using transformation
to OWL ontology and back. By choosing OWL we
open the NS model to a wide set of tools and fur-
ther ontology engineering. Bi-directionality of trans-
formation is essential as models exist on both sides.
First, we want to transform NS models (including the
NS metamodel itself) into ontology in OWL. On the
other hand, we may edit and compose models in OWL
using other models and ontology mappings. The gen-
eral hypothesis is that if we carefully select domain-
specific parts and expose them using OWL, it will
(1) allow analysis and further work with the model
on ontology level free from implementation details,
(2) make mappings from other modelling languages
possible through existing OWL technologies, and (3)
provide useful insights to NS metamodel.

This paper starts in Section 2 by introducing rel-
evant topics with references to related work. Based
on the related work, Section 3 describes the design of
the bi-directional transformation and discusses vari-
ous options and possible outcomes. Design serves for
its implementation that is summarized in Section 4
and then evaluated in Section 6 together with propos-
als of future steps.

2 METHODOLOGY AND
RELATED WORK

In this section, we present overview of the most rel-
evant topics related to our work. The overview pro-
vides a necessary context for our approach.

2.1 Conceptual Modelling in Software
Engineering

Conceptual modelling is a vital activity used in soft-
ware engineering as well as other domains to pro-

mote understanding and communication related to the
selected problem domain. It is primarily intended
for human beings to model the domain using spe-
cific modelling language and with a focus on certain
aspects. That, together with abstractions, helps to
understand and overview the true essence (Verdonck
et al., 2015). Some of the modelling languages, e.g.
OntoUML, are called “ontology-driven” because they
are tightly related to general concepts from some up-
per ontology — in case of OntoUML, it is UFO (Uni-
fied Foundation Ontology) (Guizzardi, 2005).

Notwithstanding, conceptual models are intended
for humans; they are often used for other purposes
as well. Some tools provide transformations of mod-
elling languages to other languages or various for-
mats including OWL. The more critical part of soft-
ware engineering related to models is model-driven
development. It uses models to automatically gener-
ate code fragments, skeletons, parts of applications,
or even complex information systems. (Embley and
Thalheim, 2012)

The usual problem with model-driven develop-
ment (MDD) is that it does not handle changes over
time well, and consistency between model and im-
plementation is easily broken. It uses multiple lay-
ers of models: computation-independent, platform-
independent, and platform-specific. MDD tries to
limit the inconsistency issue but add levels of com-
plexity to the whole process. (Tolvanen and Kelly,
2016)

2.2 Ontology Engineering

Ontology engineering is a discipline of computer and
information science which deals with methods for de-
signing and building ontologies. It covers the use
of various formal languages for expressing ontolo-
gies, not just OWL — but also, for example, SHACL,
OntoUML, Gellish. The main goals are to offer a
direction towards solving the inter-operability prob-
lems brought about by semantic obstacles and well-
describe the knowledge of a particular domain. The
most often uses of ontology engineering are currently
in fields of life sciences, data/system integration, and
artificial intelligence. (Hitzler et al., 2016)

2.3 Normalized Systems

Normalized Systems Theory (Mannaert et al., 2016)
targets the development of highly evolvable in-
formation systems where combinatorial effects are
eliminated or systematically under control. The
book (Mannaert et al., 2016) also describes how to
build such software systems based on four elemen-
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tary principles: Separation of Concerns, Data Version
Transparency, Action Version Transparency, and Sep-
aration of States. It results in a fine-grained mod-
ular structure composed of so-called Elements. To
make the development of evolvable information sys-
tems possible and efficient, it applies a code gen-
eration technique producing skeletons from the NS
model and custom code fragments.

NSX spin-off uses this theory in practice to de-
velop and maintain evolvable enterprise information
systems for various customers. For the code genera-
tors, the Expanders are used that take the NS model,
custom code fragments, technology and other config-
urations, and using code templates expand the infor-
mation system. To automate the whole process, Prime
Radiant tool serves to design the models in compo-
nents, configure the application, and maintain deploy-
ments. (NSX bvba, 2019)

There are five types of NS Elements: Data, Task,
Flow, Connector, and Trigger. Data Elements carry
structural information about entities and their at-
tributes and relationships. Transformation of Data El-
ements is the primary concern of this paper. Remain-
ing Elements are concerned with behavior, orchestra-
tion, and interaction. The core of NS metamodel de-
scribes these NS Elements and is itself described by
them, thus forming a metacircular model. Prime Ra-
diant tool is also an evolvable application. (NSX bvba,
2019; Mannaert et al., 2019)

2.4 The Web Ontology Language

The Web Ontology Language (OWL) is a declarative
language for expressing ontologies, i.e. sets of pre-
cise descriptive statements about some domain of in-
terest (Hitzler et al., 2009). The overlap between on-
tologies and conceptual modelling is significant. Both
share the same goal to capture the semantics. Addi-
tionally, conceptual models capture some domain on-
tology using a modelling language. OWL provides
a machine-actionable and straightforward way of de-
scribing a domain using classes, properties, and in-
dividuals. In OWL, everything forms a triple: state-
ment with subject, predicate, and object. This triplet
is similar to RDF schemas, as OWL itself is based on
RDF at a technical level'. However, OWL is a higher
conceptual languages and provides additional seman-
tics not available in RDF. Also, OWL uniquely iden-
tifies every object using international resource identi-
fiers (IRIs).

OWL documents can be captured using various
syntaxes such as RDF/XML, Turtle, Manchester, or
OWL/XML. Another aspect that is vital for Semantic

luses RDF as an interchange/persistence mechanism

76

Web but also other use cases of OWL is the ability
to link terms from other ontologies or use ontology
mapping and alignment techniques for integration or
transformation of knowledge in ontologies. Ontolo-
gies, together with OWL and RDF, are very flexible
and enable to capture any knowledge to be further
used, re-used, or linked to other knowledge. It is cru-
cial in the domain of software engineering where se-
mantics capture in machine-actionable and standard
way streamline integration and data processing (Bha-
tia et al., 2016).

2.5 Ontology-driven Software
Development

Ontologies as domain description are used in the soft-
ware development cycle similarly to model-driven
development already for several years in various
ways. First, there are libraries and frameworks, e.g.
RDF4J (Eclipse Foundation, 2019), rdflib (RDFLib
Team, 2019), or Apache Jena (The Apache Software
Foundation, 2019), that allow using OWL and RDF
specifications in software. Then there are persistence
libraries that allow integrating data classes with OWL
ontologies and store instances in various triple-stores.
Example of this approach is, for instance, JOPA (Led-
vinka et al., 2016). Ontologies can also be used dur-
ing the design and specification of information sys-
tems (Kfemen and Kouba, 2011). Such ontology can
provide semantics to multiple applications and cor-
rectness of data integration.

Related to the transformations of various con-
ceptual and other models to OWL ontologies and
back, several attempts for UML and especially its
Class Diagrams has been made in (Gasevic et al.,
2004), (Zedlitz et al., 2011), and (Sadowska and
Huzar, 2019). There is also a working transforma-
tion from already-mentioned OntoUML to OWL and
SWRL (Barcelos et al., 2013). Even closer to our
work is the transformation of Extended ER models
into OWL described in (Telnarova, 2018). It will be
possible to take advantage of existing to-OWL trans-
formations once we enable bi-directional conversion
between NS and OWL.

2.6 Bi-directional Transformations

Bi-directional transformations (often called BX) are
means of maintaining consistency between two or
more representations of information used in various
disciplines (Czarnecki et al., 2009). There are already
existing languages and other means for the specifica-
tion of bi-directional transformations between some
representations, i.e. between models using certain
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metamodels. The most work has been done for XML,
for example, biXid (Kawanaka and Hosoya, 2006)
based on programming-by-relation paradigm for re-
lations over XML documents, or Multifocal (Pacheco
and Cunha, 2012) for XML schemas using algebraic
rewrite system. In the field of model-driven develop-
ment, JTL (Cicchetti et al., 2010) is a language de-
signed to support non-bijective transformations and
change propagation. BOTL (Braun and Marschall,
2003) uses a different approach with a focus on the
transformation of objects.

Although our requirements are very specific and
implementation follows certain constraints, existing
bi-directional transformations are a valuable source of
information for our design. Eventually, our transfor-
mation will be rewritten into a model and code for
executing transformation will be generated according
to the NS approach.

3 OUR APPROACH

This section explains the goals and design of their ful-
filment in order to achieve the bi-directional transfor-
mation between OWL and NS models. It also briefly
describes the background and necessary details of NS
metamodel.

3.1 Goals and Resources

First, we need to summarize the problem statement,
set the goals, and describe the available resources us-
able for their fulfilment. The problem is allowing NS
models to be transformable from its XML represen-
tation into OWL ontologies and back. Ideally, the
bi-directional transformation should be lossless, i.e.
all domain-specific parts will be transformed in both
directions, if present in the model or the ontology, re-
spectively. Moreover, in both NS model and OWL on-
tology, relations of NS models to NS metamodel are
needed to provide the semantics (e.g. capture that as
Aircraft in NS model is an instance of Data Element
from NS metamodel, Aircraft as an class in ontology
is instance of class Date Element from NS metamodel
ontology).

1. Create a subset of NS metamodel that holds
domain-specific and implementation-agnostic
knowledge.

2. Allow transformation of NS model from its XML
format to OWL with all domain-specific informa-
tion provided and relations to NS metamodel.

3. Allow transformation of OWL with relations to
NS metamodel to the XML format of NS model

with all domain-specific information provided.

As for the resources, libraries to work efficiently
with both OWL ontologies and NS metamodels using
XML import and export are available. NS metamodel
itself is supplied as a standard NS model in XML
format (Mannaert et al., 2019). By transforming the
domain-specific part of the metamodel to OWL, we
will get all the terminology to that the models refer.

3.2 Domain-specific Parts

Before devising the transformation architecture, we
need to select the domain-specific parts of the NS
metamodel, i.e. the entities, relations, and attributes
that carry the semantics of the domain and are not
implementation-related details. The core selected
parts are:

* Application — integrates together Components for
some particular purpose and has its metadata such
as name or description among implementation de-
tails.

e Component — is reusable encapsulation of a
model that can be bound to multiple Applications.
Among its metadata, it also has Component De-
pendencies and links to Data Elements.

 Data Element — represents an entity or a concept.
In contrast to Task, Flow, and Service Elements
who are tightly related to implementation, Data
Elements carry the structural domain knowledge.

* Fields — are describing properties of a Data El-
ement and are also the most complex part of
domain-related metamodel section. There are
Link Fields to form relationships between Data
Elements and Value Fields to serve as tradi-
tional attributes. Optionally, Value Field can
also be Calculated Field, which means that the
value is computed from others (e.g. age using
birthdate). This concept is similar to a derived
attribute in UML.

e Data Projection — is a specified view on a Data
Element, i.e. a subset of its original Fields using
Reference Field together with possible other Cal-
culated Fields.

* Options — for Components, Data Elements, and
Fields, it is possible to specify options of certain
pre-defined type with name-value pair. Although
Options serve for implementation details, they can
be used to store domain knowledge as well.

Another important part is Value Field Type, that
serves to assign data types to value fields. These types
can be defined on the level of Components, but there
are also several pre-defined types with its counterparts

77



ENASE 2020 - 15th International Conference on Evaluation of Novel Approaches to Software Engineering

Table 1: Concept transformation from NS to OWL.

NS Metamodel | OWL Ontology
Component Ontology
Component Dependency | Imported Ontology
Data Element Class

Value Field Datatype Property
Link Field Object Property

* (all) Individual (of NS:*)

in code. We consider this currently as an implemen-
tation detail and use default type String. On the other
hand, for Link Types, we need to distinguish differ-
ent types of links (one-to-many, many-to-many, and
directions) as it is crucial for domain modelling.

3.3 Architecture

The overall architecture of our proposed solution is
depicted in Figure 1. For the direction towards the
OWL ontology, after loading the NS Elements model
of an Application, we process separate Components
and their domain-specific parts which lie in the Data
Elements subtree of the metamodel. As the tree
of component is processed, individuals are added
to the ontology (e.g. Aircraft with rdf:type of
NS:DataElement). Those individuals represent the
NS Elements model and will provide the transforma-
tion back to the XML.

In addition to transformation into individuals,
some parts of the model can also have other
special meaning in the OWL ontology. For
example, Aircraft as NS:DataElement is also
OWL:Class and its callSign as NS:ValueField is
OWL:DatatypeProperty. It enables to have individ-
uals on the ontological level of this domain-specific
model. With this approach it is possible, for instance,
to create an individual of Aircraft with callSign
of literal "BEL812" as described in Figure 2.

The equivalent concepts for the mapping of NS
Elements and OWL metamodels can be found in Ta-
ble 1. As a Component forms an Ontology, the fields
of a Component, such as a name, description, or ver-
sion, should become annotations of the transformed
Ontology. This level of transformation allows instan-
tiation of the model and interrelating with other on-
tologies by imports or using ontology matching tech-
niques. Produced OWL ontology can be exported to
a file.

For the other direction, an Ontology is loaded
from OWL a file, and backward re-construction of
an NS Elements Component can start. Everything
is retrieved only from individuals representing each
NS Component. Individual of a Component has its

78

value fields such as name, description, or version en-
coded using datatype properties. Component’s link
fields are encoded using object properties. One of the
properties of a Component is a link field to Data El-
ements. These elements, and generally any other el-
ements connected via link fields, are processed in the
same way as a Component. Once a Component is
completely transformed from the Ontology, it can be
again exported to XML for further work in NS tools.

3.4 NS Elements Metamodel
Transformation

With the described architecture and the homoiconicity
of NS metamodel (Mannaert et al., 2019), some inter-
esting consequences need to be pointed out. In the
NS Elements metamodel, Component, Data Element,
Field, Link Field, Data Option, Data Option Type, and
others are modelled as Data Elements. According to
Table 1, we expect the generated ontology to contain
Data Element (from NS metamodel) both as an OWL
Class DataElement and an OWL Individual of type
OWL Class DataElement, i.e. itself. This principle
of treating a Class as an Instance (of a Metaclass) is
called punning (Hitzler et al., 2009).

NS models do not allow inheritance due to combi-
natorial effect concerns (Mannaert et al., 2016), there-
fore models are “flat”, i.e. without any hierarchy.
However, there are Taxonomy Data Elements in the
metamodel that specify certain types of entities, e.g.
Data Element Type specifies types of Data Elements.
These taxonomy instances are not directly encoded
as parts of the Component model. Instead, they are
stored separately inside “prime-data” model as de-
picted in Figure 1.

To make transformations lossless in both direc-
tions, it is required to use the ontology of metamodel
so individuals are bound by its semantics. To make
this possible, we bootstrap by manually declaring a
minimum subset of elements necessary to automat-
ically read all identifiers of NS metamodel. After
reading of those elements, we can discard the manual
bootstrap, and rely only on continuous regeneration.

4 TRANSFORMATION
IMPLEMENTATION

In this section, we describe the implementation of the
bi-directional transformation between NS models and
OWL ontologies. We focus on the key parts and tech-
niques used to achieve extensible transformation ac-
cording to the design that we discussed above.
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Figure 2: Example of class and related individual.

4.1 Technology Stack

Because of interoperability with the current NS tech-
nology stack, we use Java as the core technology. The
NS library used is capable of XML import, export,
and representation using Tree classes. In terms of NS,
both XML and Tree representations are data projec-
tions, i.e. different views on a NS model. Tree projec-
tions are designed to be Plain Old Java Objects (PO-
JOs) — therefore does not bound any special restric-
tions. With this library, the boxes Import and Export
on the left side in Figure 1 are trivially covered. Im-
port requires a path to a model folder or XML file and
gives Application tree representation object (it links
to other objects according to the metamodel). For
the other direction, export requires application object
and target folder (and optionally additional options)
to write the model.

There are multiple options for working with OWL
ontologies in Java. We identified a free and open-
source framework Apache Jena (The Apache Soft-
ware Foundation, 2019), which targets Semantic Web
and Linked Data applications, as the most suitable for
our purpose. Its multiple APIs are well-documented
and capable of working with Individuals, all types of
Properties, Ontologies, and Models as well as with
representation using Graphs, Nodes, and Statements.
An ontology model in Jena is an extension of the RDF
model, providing extra capabilities for handling on-
tologies.

ontology
Figure 1: Architecture of NS-OWL bi-directional transformation.

For both ontology and RDF models, there is a pos-
sibility of import and export using a wide variety of
formats including Turtle, RDF/XML, JSON-LD, N-
Quads, or RDF binary. This functionality covers the
right-hand side export/import in Figure 1. Also, the
framework helps significantly with building ontology
models and querying the individuals.

4.2 URI Resolution

With the ability to import and export NS models
and ontologies, it remains to implement the trans-
formation itself between NS Tree projections and
Jena’s ontology model. Every single entity in an
ontology model needs to have a unique identifier
— typically random for anonymous/nameless nodes
and Uniform Resource Identifier (URI) for other.
For this purpose, our URI resolver creates a URI
composed of a configured prefix, Component name,
entity name (e.g. data element name), and in some
cases also “parent” name(s). An example of such
URI for data element Flight in Airlines compo-
nent with https://normalizedsystems.org prefix is
https://normalizedsystems.org/airlines/
Flight (for further example we leave out the pre-
fix). In the case of fields or similar parent-child
related entities where unique naming in the NS
model is limited to a parent’s scope, we need
a parent or eventually more parent names to be
included. For instance, a number of the Flight
from an example depicted in Figure 3 would
have URI  airlines/Flight/flightNumber.
To avoid name clashes with instances,
those are separated by hash symbol, e.g.
elements/DataElementType#Primary.

For relating entities of an NS model to the meta-
model, having all URIs of metamodel entities used in
transformation is necessary. Although the metamodel
is metacircular and transformable into ontology with
its URIs, we need to define them manually as an NS
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vocabulary (at least) for the initial transformation. A
similar approach is used in Apache Jena framework
for well-known vocabularies such as OWL, RDEFS,
DCTerms, SKOS, or FOAF (The Apache Software
Foundation, 2019). Generation of this vocabulary is
possible due to its simplicity — it is just naming of re-
sources, e.g. resource name DataElement has defined
constant URI element s#DataElement. It may tempt
to use more flexible dynamic URI composing but in-
consistencies must be avoided.

Another option would be to generate persistent
URISs, e.g. using UUID — airlines#<UUID>. In this
case, URI remains the same even when the underlying
construct is renamed. On the other hand, there is al-
ways a need to query the name and any rename in the
model must still be solved by three-way merging even
when using UUIDs because they are not currently en-
coded in the NS metamodel. In case of a change in
the metamodel, it is only a question of changing the
URI resolver component to change the whole logic of
URIs.

4.3 NS to OWL Transformation

With Apache Jena, the transformation in the direc-
tion from NS tree POJOs to an ontology model com-
posed of Individuals, Classes, and Properties is very
straightforward and systematic as shown in Source
Code 1. We implemented it using a combined builder
and visitor pattern. A transformation class encapsu-
lates the addition of a single entity from the meta-
model. Each transformation class is instantiated with
some context information (such as uriResolver utility,
or mutable target ontology model), and executed with
the element that is currently being transformed. Then
the method contains a “recipe” of its inclusion to the
given ontology model:

1. Create an individual of a specific class from meta-
model using URI from the NS vocabulary and
with own URI generated by the URI resolver of
the context.

2. Convert data and object properties using URIs
from the NS vocabulary. For object properties,
the targets are also added to the ontology model
(propagates transformation through the tree) or
looked up in case of backlinks.

3. Add specific transformation based on Table 1, e.g.
an ontology class for a data element using still the
same URL

4. Return resulting individual for further processing,
e.g. for object properties.
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A somewhat different treatment is applied to
Fields®. Different types of Fields (Value Field, Link
Field) are implemented via composition inside the NS
Field element. Therefore, the returned individual is of
multiple types at once and has properties according to
the types. Secondly, the transformation of link fields
requires the addressing of data elements. There are
numerous possible implementations, but to ensure the
existence of target, we first process all data elements
and then try to find the adequate using a lookup table.
Finally, we also implemented a mechanism to find the
inversed object properties, i.e. the matching link field
from the target element.

This code may appear verbose, and one could be-
lieve that it may be hard to maintain and keep con-
sistent. However, our goal is to generate the code in
both directions based on the NS metamodel, and man-
ually intervene only where necessary by adding cus-
tom code between // anchor:custom-* comments,
that will be preserved between code regenerations.

4.4 OWL to NS Transformation

As explained in the design, the direction back from
OWL ontology to the NS model is driven by individ-
uals with NS metamodel compliant types and proper-
ties. The implementation is using the same patterns
as the other direction explained above. A transforma-
tion class encapsulates construction of a single tree
POJO. Each transformation object takes an ontology
model, URI, and optionally context information as in-
puts of constructor and method call. The method con-
tains the “recipe” of composing the POJO according
to NS metamodel:

1. Find an individual based on a given URI and ver-
ify its type using the NS vocabulary.

2. Create a corresponding tree POJO.

3. Set all properties that are available in the ontology
model. If missing a required one, throw an appro-
priate exception. In the case of links, transform
the linked resource(s). All backlinks are ignored
and left empty as those are optional in NS model
— computed when necessary.

4. Return the tree POJO for further processing, e.g.
for linking.

The transformation process starts on the level of
application where it tries to query the model for ap-
plication individual according to the type; then com-
ponents are processes, then its data elements and de-

2NS Fields and relations between Data Elements is cur-
rently being redesigned, but the design have not been final-
ized before publishing of this paper.
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Source Code 1: Example of Data Element to ontology model transformation in Java with Apache Jena.

public class DataElementTreeToOwl implements TreeToOwlTransformer<DataElementTree, ComponentTree>

=

public DataElementTreeToOwl (OwlModel owlModel, UriResolver uriResolver

//

@Override

public Individual transform(DataElementTree dataElementTree, URI parentURI)
URI dataElementURI = uriResolver.urifFor (parentURI, dataElementTree.getlName());

// anchor:custom-uri:start
// anchor:custom-uri:end

// Individual
Individual individual = owlModel.
individual.addE vy (NS.DataEle

// DataElement/dataOptions link field

ividual (dataElementURI, NS.DataElement);
dataElementTree.getName ());

DataOptionTreeToOwl dataOptionTreeToOwl = new DataOptionTreeToOwl (owlModel, uriResolver)
ArrayList<RDFNode> dataOptionNodes = new ArrayList<>();

for (DataOptionTree dataOption :

}

dataElementTree.c
dataOptionNodes.add (dataOptionTreeToOwl.tra

tDataOp
rm(dataOption, dataElementURI));

individual.addProperty (NS.DataElement dataOptions, owlModel.createLlist (dataOptionNodes));

// Class

OwlClass owlClass = ontModel.c
owlClass.set crCl (OWL2.Thing) ;
owlClass.addP

// anchor:custom-transformation:start

(RDF.type, NS.DataElement);

155 (dataElementURI) ;

// custom code that will be preserved by code generator

// anchor:custom-transformation:end
return individual;

pendencies, etcetera. Currently, other additional in-
formation stored in the given ontology model is ig-
nored. If there is, for example, an individual of the
data element type that is not linked from any compo-
nent, it will not be transformed into a data element
POJO. Similarly, all additional information such as
classes, properties, inversed properties, or extra anno-
tations, are ignored as well. It produces the same NS
model (more specifically, the same part that we identi-
fied as domain-specific) when transformed into OWL
and then back again.

Although transformation from OWL to NS is
lossy with respect to OWL-specific information, we
are interested in keeping both representations. One of
our aims is to use OWL to contain additional knowl-
edge which has no execution semantics and thus is not
directly applicable to NS code generation. Therefore
this limitation is not applicable, as we can transform
the NS-compatible ontology subset, whilst preserving
additional OWL knowledge.

S TRANSFORMATION EXAMPLE

In this section, we provide an example to illustrate
the functionality of the transformation. The example
explains the usefulness by showing the resulting ap-
plication and use of existing tools for both NS models
and OWL ontologies. The summary of the presented
example is in Section 6.

5.1 Flight Booking Model

For this example, we will start with a simple model
of Flight Booking domain. In terms of the NS model,
it is a single component with six data elements and
several value/link fields. The diagram of this model is
shown in Figure 3. The model includes both many-
to-many and one-to-many relationships. Also, var-
ious types of value fields are being used, including
Date, Double, and Boolean. With all this, the exam-
ple model covers the most commonly used structural
constructs of the NS model.
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org.normalizedsystem s.n&?(i- org.normal izedsy stcms.ns;-
Airport Location

name : String city : String

location : Location[Ln01] streetAnd Numnber : String

isAllowed : Boalean country: String

org.normal izedsystems.nsx
Flight

flightMumber: String
departureAirport : Airport[Ln01]
departureTime : DateLong :
arrivalAirport : Airport[Ln01]
arrivalTime : DateLong
airLine : Airline[Ln01]
status : String

org.normal izedsystems.nsx %
Airline
name : String
status : String
headQuarters : Location[Ln01]
abbreviation : String
flights : Flight[Ln05]

org.normalizedsystem s.n&?—
Booking
bookingTime: DatelLong
flight : Flight[LnD1]
status : String
price : Dauble
persons : Person[Ln0&]

org.normal izedsy stcms.ns:(L
Person

| firstName: String

7 lastName : String

dateOfBirth : Date

booking : Booking[Ln03]

Figure 3: The example NS model for flight booking domain.

5.2 Transformed Ontology

Figure 4 shows the result of NS-to-OWL transforma-
tion in WebVOWL tool. All six data elements be-
came classes (light blue circles) with is-a relation-
ship to external DataElement from the metamodel on-
tology (dark blue circle). The link fields (i.e. re-
lationships) are also present in the ontology as ob-
ject properties with navigation between classes, e.g.
headQuarters between Airline and Location. Both bi-
directional relationships (Person-Booking and Flight-
Airline) are present and connected as inverse ob-
ject properties. Finally, matching datatypes (yellow
boxes) were used for generated datatype properties
based on value fields.

5.3 Adjustments in Ontology

With OWL ontology for our model, we can take ad-
vantage of tooling for analysing and editing ontolo-
gies. To demonstrate this, we can split streetAndNum-
ber property to two using Protégé. First, we rename
the existing property to street. Then, we create a new
datatype property number with domain Location and
range xsd.int. We additionally need to create a new in-
dividual of type ValueField to capture other necessary
details according to the metamodel ontology such as
if it is an info field. Similarly, we could edit classes
and object properties to improve our model. Finally,
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Figure 4: The generated OWL ontology for flight booking
domain.

we can transform back to NS model — it queries the
individuals according to the metamodel ontology.

5.4 Information System from Ontology

Our example model can then serve for expanding an
enterprise information system for flight booking man-
agement. NS tooling takes care of generating the ap-
plication, injecting harvested code fragments, build-
ing, and then maintaining the application instance.
The fragment of changed entity Location where street
and number are separate arguments is shown in Fig-
ure 5. With the use of Normalized Systems, we can
continually update and improve the model (or ontol-
ogy) as we need and re-generate the application.

Data in the application instances will be migrated
as long as the naming remains. For example, with our
change of street, all records of Location would remain
with its city and country but divided street and num-
ber would be empty as those are new attributes with-
out any connection to the previous streetAndNumber.
If we need some more complicated data migration, it
has to be done using a separate OWL-OWL transfor-
mation, or in case of migration of a running system
using e.g. ETL workflows.
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Location
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City Country Street Number
Prague Czech Republic Thakurova 9
Antwerp Belgium Prinsstraat 13
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&

Figure 5: Screenshot from generated NS application.

6 RESULTS DISCUSSION AND
FUTURE WORK

The features of the designed and implemented trans-
formation are discussed in this section. We focus
mainly on its evolvability and outcomes. We also pro-
vide thoughts about future development.

6.1 Model Openness

OWL representation of NS models increases its open-
ness and enables the use of a wide variety of exist-
ing tools for OWL analysis, design, transformation,
documentation, and others. The entities from OWL
based on an NS model can be easily related to other
domain-specific ontology or to describe data. Annota-
tion tools provide developers and analysts with a way
of capturing additional knowledge that is not possible
to achieve in current NS tools. A considerable advan-
tage is that those annotations can be based on stan-
dard ontologies for metadata such as Dublin Core?,
but also a specific one can be created. Tools such
as Widoco (Garijo, 2017), Protégé (Musen, 2015), or
WebVOWL (Lohmann et al., 2014) allows different
views on the model (as shown in Figure 6) and its
documentation which should improve the efficiency
of the development process. However, it must be ver-
ified in practice on real-world and large-scale NS ap-
plications.

6.2 NS Metamodel Ontology

The transformation tool has been used for various
tests of NS models in order to verify the function-
ality of different transformation rules and mainly for
the NS metacircular metamodel. For the metamodel,
the resulting ontology contains 1493 individuals, 132

3https://dublincore.org/specifications/

classes, 468 datatype properties, and 484 object prop-
erties. The generated documentation using Widoco
tool is now experimentally used together with cus-
tom annotations added to the ontology for its analy-
sis and serves as another developers documentation
of the metamodel. Longer-term use of the documen-
tation is needed prior to making conclusions about its
advantages. With this ontology, it is possible to com-
pose an NS model purely in OWL as individuals and
then turn it into a domain-specific part of an NS appli-
cation. For future development, metacircularity can
be reflected in the transformation where static NS vo-
cabulary can be checked using generated ontology or
derived from it directly.

6.3 Ontology Evolvability

A resulting ontology of an NS model can be re-
generated via XML representation when there is a
change in an NS model and vice versa. The version
number of an NS component is used for versioning its
OWL counterpart. Although there is no mechanism of
merging changes done in both representations, if an-
notations to the ontology are linking from a different
file using URISs, the re-generation can still use them.
Other verification procedures may be implemented in
the future to check the consistency of models and even
merge the changes when loading both an NS model
and related OWL ontology using comparison and user
interaction.

Concerning the development of NS metamodel it-
self, there might be a need for edits in the transforma-
tion tool. The library used for import, export, and tree
objects can be then upgraded and recipes of transfor-
mations changed. The only important aspect is that
transformation recipes need to be consistent in both
directions. It is desirable to have a NS expander for
OWL that would ensure the evolvability as OWL on-
tology is practically just a different view on the same
model, i.e. data projection. Still, we need the other
direction to be consistent.

6.4 Ontology Enrichment and Mapping

Using the ontology of an NS model, it is possible to
enrich it and capture aspects that are not allowed with
current NS metamodel. For example, it is possible
to use inheritance between classes in ontology, or link
other ontologies such as FOAF*. Also, ontology map-
ping methods can be used to find correspondences be-
tween an NS model represented as ontology and other
domain ontologies. All of this could result in propos-
als of NS metamodel enhancements related to its ex-

“http://xmlns.com/foaf/spec/
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Figure 6: Example of WebVOWL visualization of generated ontology for NS metamodel.

pressiveness. Another possible future improvement is
the transformation of other parts of NS models related
to behaviour or even application settings.

7 CONCLUSIONS

In this paper, we first discussed the need for a way
how to represent Normalized Systems domain mod-
els in OWL ontologies. We briefly explained the core
terminology and methods related to the topic. As Nor-
malized Systems provide a way of building evolvable
information systems based on an NS model using ex-
panders. As OWL ontologies allow flexible knowl-
edge representation with various existing tools, we
designed and implemented the bi-directional trans-
formation between those model representations. It
can be used to transform any domain-specific part
of NS application to OWL and vice versa. Owing
to the homoiconicity of the NS metamodel, we were
able to transform it into an OWL ontology as well
and use documentation tool together with other OWL
techniques to create and maintain a flexible develop-
ers documentation. We demonstrated the use of bi-
directional transformation on a simple example that
concludes by generating an NS application. Finally,
we also discussed other advantages brought by the
transformation, its evolvability, and suggested possi-
ble future development. Nevertheless, the real usage
with large-scale NS application will verify the value
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of the transformation and reveal opportunities for im-
provement.
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